Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (3): 297-309    DOI: 10.1007/s40333-022-0090-0
Research article     
Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains, Central Asia
CHEN Haiyan1,2,*(), CHEN Yaning3, LI Dalong1,2, LI Weihong3, YANG Yuhui4
1College of Geography and Environmental Science, Hainan Normal University, Haikou 571158, China
2Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, Haikou 571158, China
3State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
4Xinjiang Normal University, Urumqi 830013, China
Download: HTML     PDF(1168KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle, forecasting water resource changes, and dealing with the adverse effects of climate change. In this study, we identified water vapor sources of precipitation and evaluated their effects on precipitation stable isotopes in the north slope of the Tianshan Mountains, China. By utilizing the temporal and spatial distributions of precipitation stable isotopes in the forest and grassland regions, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, and isotope mass balance model, we obtained the following results. (1) The Eurasia, Black Sea, and Caspian Sea are the major sources of water vapor. (2) The contribution of surface evaporation to precipitation in forests is lower than that in the grasslands (except in spring), while the contribution of plant transpiration to precipitation in forests (5.35%) is higher than that in grasslands (3.79%) in summer. (3) The underlying surface and temperature are the main factors that affect the contribution of recycled water vapor to precipitation; meanwhile, the effects of water vapor sources of precipitation on precipitation stable isotopes are counteracted by other environmental factors. Overall, this work will prove beneficial in quantifying the effect of climate change on local water cycles.



Key wordsTianshan Mountains      Manas River Basin      water vapor sources of precipitation      land cover      precipitation stable isotopes      Hybrid Single-Particle Lagrangian Integrated Trajectory     
Received: 09 October 2021      Published: 31 March 2022
Corresponding Authors: *CHEN Haiyan (E-mail: chenhaieom13@mails.ucas.ac.cn)
Cite this article:

CHEN Haiyan, CHEN Yaning, LI Dalong, LI Weihong, YANG Yuhui. Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains, Central Asia. Journal of Arid Land, 2022, 14(3): 297-309.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0090-0     OR     http://jal.xjegi.com/Y2022/V14/I3/297

Fig. 1 (a) Schematic of the study area and hydrological stations used in the study and (b) land cover of the Manas River Basin. Land cover data are from MODIS Land Cover Products (MCD12Q1) (https://lpdaac. usgs.gov/products/mcd12q1v006/).
Fig. 2 Spatial and temporal distributions of raw and adjust trajectories of Honggou station for each precipitation event in August 2015 to July 2016 in (a) spring, (b) summer, (c) autumn, and (d) winter. The satellite-derived land cover is downloaded from Natural Earth (http://www.naturalearthdata.com).
Fig. 3 Distribution of water vapor sources from different directions at Honggou station during August 2015 to July 2016. Here, the summer half year occurs from April to September, while the winter half year ranges from October to March in the next year.
Table 1 Meteorological parameters, isotopic composition of different components in the forest and grassland regions in different seasons
Study area Station Time Latitude Longitude Altitude (m) Proportion (%) Landcover Reference
fev ftr
Urumqi River Basin Urumqi April 2003-July 2004 (summer) 43°47′N 86°37′E 918 6.8-12.0 Oasis Kong et al. (2013)
Houxia 43°17′N 87°11′E 2100 0.9-1.8 Forest
Gaoshan 43°06′N 86°50′E 3545 0.0-1.0 Grassland
Northwest Tibet Plateau Chongce 1979-2012 35°14′N 81°07′E 6010 15.0-2.6 Glacier/
snow
An et al. (2017)
Zangser Kangri 1979-2008 34°18′N 85°51′E 6226 24.7-81.6
Qinghai Lake Basin July 2009-June 2010 36°32′-
37°15′N
99°36′-
100°47′E
3193 23.4 Water Cui and Li (2015)
Tianshan Moutains Shehezi August 2012-September 2013 (summer) 44°59′N 86°03′E 443 0.6±1.7 2.8±3.6 Oasis Wang et al. (2016)
Caijiahu 44°12′N 87°32′E 441 1.2±1.6 6.8±3.0
Urumqi 43°47′N 87°39′E 935 6.2±1.4 12.0±2.1
Shiyang River Basin Xidahe July 2013-June 2014
(growing season)
38°06′N 101°24′E 2900 9.0 15.0 Forest Li et al. (2016)
Anyuan 37°18′N 102°54′E 2700 12.0 19.0 Bare land
Jiutiaoling 37°54′N 102°06′E 2225 10.0 16.0 Bare land
Yongchang 38°12′N 102°00′E 1976 9.0 12.0 Oasis
Wuwei 37°54′N 102°42′E 1531 8.0 13.0 Oasis
Minqin 38°36′N 103°06′E 1367 5.0 9.0 Oasis
Manas River Basin Honggou 2015-2016 (spring) 43°43′N 85°44′E 1472 3.7 0.4 Forest This study
Honggou 2015-2016 (summer) 43°43′N 85°44′E 1472 1.2 5.4 Forest This study
Honggou 2015-2016 (autumn) 43°43′N 85°44′E 1472 2.7 1.1 Forest This study
Honggou 2015-2016 (winter) 43°43′N 85°44′E 1472 0.4 0.0 Forest This study
Kensiwate 2015-2016 (spring) 43°58′N 85°57′E 860 2.5 1.7 Grassland This study
Kensiwate 2015-2016 (summer) 43°58′N 85°57′E 860 1.3 3.8 Grassland This study
Kensiwate 2015-2016 (autumn) 43°58′N 85°57′E 860 4.4 1.0 Grassland This study
Kensiwate 2015-2016 (winter) 43°58′N 85°57′E 860 0.5 0.0 Grassland This study
Table 2 Comparison of studies on recycled water vapor estimated based on stable water isotopes in Northwest China
Fig. 4 Relationship between δ18O and back tracking time of precipitation vapor (a and b) and the relationship between d-excess and back tracking time of precipitation vapor (c and d) at Honggou station from August 2015 to July 2016. (a) and (c) denote the summer half year; (b) and (d) denote the winter half year. The boxes represent the 25%-75% percentiles, and the line through the box represents the median (50th percentile). The whiskers indicate the 90th and 10th percentiles, and points above and below the whiskers indicate the 95th and 5th percentiles. Different lowercase letters in the figure indicate the significant differences among the five back tracking times (P<0.05).
Fig. 5 Relationship of moisture transport distance with δ18O (a) and d-excess (b) in precipitation
[1]   An W L, Hou S G, Zhang Q, et al. 2017. Enhanced recent local moisture recycling on the northwestern Tibetan Plateau deduced from ice core deuterium excess records. Journal of Geophysical Research: Atmospheres, 122(23): 12541-12556.
[2]   Apaéstegui J, Cruz F W, Vuille M, et al. 2018. Precipitation changes over the eastern Bolivian Andes inferred from speleothem (δ18O) records for the last 1400 years. Earth and Planetary Science Letters, 494: 124-134.
doi: 10.1016/j.epsl.2018.04.048
[3]   Balagizi C M, Kasereka M M, Cuoco E, et al. 2018. Influence of moisture source dynamics and weather patterns on stable isotopes ratios of precipitation in Central-Eastern Africa. Science of the Total Environment, 628-629: 1058-1078.
doi: 10.1016/j.scitotenv.2018.01.284
[4]   Berberan-Santos M N, Bodunov E N, Pogliani L. 1997. On the barometric formula. American Journal of Physics, 65(5): 404-412.
doi: 10.1119/1.18555
[5]   Bowen G J, Putman A, Brooks J R, et al. 2018. Inferring the source of evaporated waters using stable H and O isotopes. Oecologia, 187(4): 1025-1039.
doi: 10.1007/s00442-018-4192-5
[6]   Breitenbach S F M, Adkins J F, Meyer H, et al. 2010. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth and Planetary Science Letters, 292(1-2): 212-220.
doi: 10.1016/j.epsl.2010.01.038
[7]   Chen H Y, Chen Y N, Li W H, et al. 2018. Identifying evaporation fractionation and streamflow components based on stable isotopes in the Kaidu River Basin with mountain-oasis system in north-west China. Hydrological Processes, 32(15): 2423-2434.
doi: 10.1002/hyp.v32.15
[8]   Chen H Y, Chen Y N, Li W H, et al. 2019. Quantifying the contributions of snow/glacier meltwater to river runoffs in the Tianshan Mountains, Central Asia. Global and Planetary Change, 174: 47-57.
doi: 10.1016/j.gloplacha.2019.01.002
[9]   Chen H Y, Chen Y N, Li D L, et al. 2020. Effect of sub-cloud evaporation on precipitation in the Tianshan Mountains (Central Asia) under the influence of global warming. Hydrological Processes, 34(26): 5557-5566.
doi: 10.1002/hyp.v34.26
[10]   Chen Y N, Li W H, Deng H J, et al. 2016. Changes in Central Asia's water tower: past, present and future. Scientific Reports, 6: 35458, doi: 10.1038/srep35458.
doi: 10.1038/srep35458
[11]   Craig H, Gordon L I. 1965. Deuterium and oxygen 18 variation in the ocean and the marine atmosphere. In: Tongiorgi E. Stable Isotopes in Oceanographic Studies and Paleotemperatures, Pisa: CNR, 277-374.
[12]   Crawford J, Hughes C E, Parkes S D. 2013. Is the isotopic composition of event based precipitation driven by moisture source or synoptic scale weather in the Sydney Basin, Australia? Journal of Hydrology, 507: 213-226.
doi: 10.1016/j.jhydrol.2013.10.031
[13]   Cui B L, Li X Y. 2015. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau. Science of the Total Environment, 527: 26-37.
[14]   Dai X G, Li W J, Ma Z G, et al. 2007. Water-vapor source shift of Xinjiang region during the recent twenty years. Progress in Natural Science, 17(5): 569-575.
doi: 10.1080/10020070708541037
[15]   Davis P, Syme J, Heikoop J, et al. 2015. Quantifying uncertainty in stable isotope mixing models. Journal of Geophysical Research-Biogeosciences, 120(5): 903-923.
doi: 10.1002/2014JG002839
[16]   Delsman J R, Oude E G H P, Beven K J, et al. 2013. Uncertainty estimation of end-member mixing using generalized likelihood uncertainty estimation (GLUE), applied in a lowland catchment. Water Resources Research, 49(8): 4792-4806.
doi: 10.1002/wrcr.20341
[17]   Diamond R E, Jack S. 2018. Evaporation and abstraction determined from stable isotopes during normal flow on the Gariep River, South Africa. Journal of Hydrology, 559: 569-584.
doi: 10.1016/j.jhydrol.2018.02.059
[18]   Draxier R R, Hess G D. 1998. An overview of the HYSPLIT_ 4 modelling system for trajectories, dispersion and deposition. Australian Meteorological Magazine, 47(4): 295-308.
[19]   Draxler R R, Rolph G D. 2016. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model, NOAA Air Resources Laboratory. [2021-3-15]. http://www.arl.noaa.gov/HYSPLIT.php
[20]   Farinotti D, Longuevergne L, Moholdt G, et al. 2015. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, 8(9): 716-722.
doi: 10.1038/NGEO2513
[21]   Gat J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24: 225-262.
doi: 10.1146/earth.1996.24.issue-1
[22]   Gazquez F, Morellon M, Bauska T, et al. 2018. Triple oxygen and hydrogen isotopes of gypsum hydration water for quantitative paleo-humidity reconstruction. Earth and Planetary Science Letters, 481: 177-188.
doi: 10.1016/j.epsl.2017.10.020
[23]   Gibson J J, Reid R. 2014. Water balance along a chain of tundra lakes: A 20-year isotopic perspective. Journal of Hydrology, 519: 2148-2164.
doi: 10.1016/j.jhydrol.2014.10.011
[24]   Gibson J J, Birks S J, Yi Y. 2016. Stable isotope mass balance of lakes: a contemporary perspective. Quaternary Science Reviews, 131: 316-328
doi: 10.1016/j.quascirev.2015.04.013
[25]   Gonfiantini R. 1986. Environmental isotopes in lake studies. In: Fritz P, Fontes J C. Handbook of Environmental Isotope Geochemistry (The Terrestrial Environment, B). Amsterdam: Elsevier, 113-168.
[26]   Guo W Q, Liu S Y, Yao X J, et al. 2014. The Second Glacier Inventory Dataset of China (Version 1.0). Cold and Arid Regions Science Data Center at Lanzhou. [2021-02-10]. http://data.casnw.net/portal/metadata/6d44fd19-64d7-4af1-8e81-5fa717585b5b .
[27]   Guo X Y, Tian L D, Wen R, et al. 2017. Controls of precipitation delta O-18 on the northwestern Tibetan Plateau: A case study at Ngari station. Atmospheric Research, 189: 141-151.
doi: 10.1016/j.atmosres.2017.02.004
[28]   Horita J, Wesolowski D J. 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical-temperature. Geochimica et Cosmochimica Acta, 58(16): 3425-3437.
doi: 10.1016/0016-7037(94)90096-5
[29]   Huang W, Chang S Q, Xie C L, et al. 2017. Moisture sources of extreme summer precipitation events in North Xinjiang and their relationship with atmospheric circulation. Advances in Climate Change Research, 8(1): 12-17.
doi: 10.1016/j.accre.2017.02.001
[30]   Jeelani G, Deshpande R D, Galkowski M, et al. 2018. Isotopic composition of daily precipitation along the southern foothills of the Himalayas: impact of marine and continental sources of atmospheric moisture. Atmospheric Chemistry and Physics, 18(12): 8789-8805.
[31]   Joerin C, Beven K J, Iorgulescu I, et al. 2002. Uncertainty in hydrograph separations based on geochemical mixing models. Journal of Hydrology, 255(1-4): 90-106.
doi: 10.1016/S0022-1694(01)00509-1
[32]   Kleist D T, Parrish D F, Derber J C, et al. 2009. Introduction of the GSI into the NCEP Global Data Assimilation System. Weather and Forecasting, 24(6): 1691-1705.
doi: 10.1175/2009WAF2222201.1
[33]   Kong Y, Pang Z, Froehlich K. 2013. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus Series B-Chemical and Physical Meteorology, 65: 19251, doi: 10.3402/tellusb.v65i0.19251.
doi: 10.3402/tellusb.v65i0.19251
[34]   Krklec K, Dominguez-Villar D. 2014. Quantification of the impact of moisture source regions on the oxygen isotope composition of precipitation over Eagle Cave, central Spain. Geochimica Et Cosmochimica Acta, 134: 39-54.
doi: 10.1016/j.gca.2014.03.011
[35]   Krklec K, Dominguez-Villar D, Lojen S. 2018. The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe. Journal of Hydrology, 561: 810-821.
doi: 10.1016/j.jhydrol.2018.04.045
[36]   Li Z X, Qi F, Wang Q J, et al. 2016. Contributions of local terrestrial evaporation and transpiration to precipitation using delta O-18 and D-excess as a proxy in Shiyang inland river basin in China. Global and Planetary Change, 146: 140-151.
doi: 10.1016/j.gloplacha.2016.10.003
[37]   Liu X K, Rao Z G, Zhang X J, et al. 2015. Variations in the oxygen isotopic composition of precipitation in the Tianshan Mountains region and their significance for the Westerly circulation. Journal of Geographical Sciences, 25(7): 801-816.
doi: 10.1007/s11442-015-1203-x
[38]   Quincey D, Klaar M, Haines D, et al. 2018. The changing water cycle: the need for an integrated assessment of the resilience to changes in water supply in High-Mountain Asia. Wiley Interdisciplinary Reviews-Water, 5(1): e1258, doi: 10.1002/wat2.1258.
[39]   Rahul P, Ghosh P, Bhattacharya S K. 2016. Rainouts over the Arabian Sea and Western Ghats during moisture advection and recycling explain the isotopic composition of Bangalore summer rains. Journal of Geophysical Research-Atmospheres, 121(11): 6148-6163.
doi: 10.1002/jgrd.v121.11
[40]   Rai S P, Purushothaman P, Kumar B, et al. 2014. Stable isotopic composition of precipitation in the River Bhagirathi Basin and identification of source vapour. Environmental Earth Sciences, 71(11): 4835-4847.
doi: 10.1007/s12665-013-2875-0
[41]   Schlesinger W H, Jasechko S. 2014. Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189: 115-117.
[42]   Skrzypek G, Mydlowski A, Dogramaci S, et al. 2015. Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. Journal of Hydrology, 523: 781-789.
doi: 10.1016/j.jhydrol.2015.02.010
[43]   Sodemann H, Schwierz C, Wernli H. 2008. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. Journal of Geophysical Research-Atmospheres, 113(D3): D031107, doi: 10.1029/2007JD008503.
[44]   Tang Y, Pang H, Zhang W, et al. 2015. Effects of changes in moisture source and the upstream rainout on stable isotopes in precipitation - a case study in Nanjing, eastern China. Hydrology and Earth System Sciences, 19(10): 4293-4306.
doi: 10.5194/hess-19-4293-2015
[45]   Tang Y, Song X F, Zhang Y H, et al. 2017. Using stable isotopes to understand seasonal and interannual dynamics in moisture sources and atmospheric circulation in precipitation. Hydrological Processes, 31(26): 4682-4692.
doi: 10.1002/hyp.v31.26
[46]   Tang Z G, Wang X R, Wang J, et al. 2017. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001-2015. Remote Sensing, 9(10): 1045, doi: 10.3390/rs9101045.
[47]   Tian L D, Yao T D, MacClune K, et al. 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysical Research-Atmospheres, 112(D10): D10112, doi: 10.1029/2006JD007718.
[48]   Tian L D, Yu W S, Schuster P F, et al. 2020. Control of seasonal water vapor isotope variations at Lhasa, southern Tibetan Plateau. Journal of Hydrology, 580: 124237, doi: 10.1016/j.jhydrol.2019.124237.
doi: 10.1016/j.jhydrol.2019.124237
[49]   van der Ent R J, Savenije H H G, Schaefli B, et al. 2010. Origin and fate of atmospheric moisture over continents. Water Resources Research, 46: W05295, doi: 10.1029/2010WR009127.
[50]   Vimeux F, Risi C. 2021. Isotopic equilibrium between raindrops and water vapor during the onset and the termination of the 2005-2006 wet season in the Bolivian Andes. Journal of Hydrology, 598: 126472, doi: 10.1016/j.jhydrol.2021.126472.
[51]   Wang S J, Zhang M J, Che Y J, et al. 2016. Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach. Water Resources Research, 52(4): 3246-3257.
doi: 10.1002/2015WR018135
[52]   Wang S J, Zhang M J, Crawford J, et al. 2017. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. Journal of Geophysical Research-Atmospheres, 122(5): 2667-2682.
doi: 10.1002/2015JD024626
[53]   Wei Z W, Lee X H, Liu Z F, et al. 2018. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia. Earth and Planetary Science Letters, 488: 181-192.
doi: 10.1016/j.epsl.2018.02.015
[54]   Xu M, Kang S C, Wu H, et al. 2018. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmospheric Research, 203: 141-163.
doi: 10.1016/j.atmosres.2017.12.007
[55]   Yakir D, Sternberg L D L. 2000. The use of stable isotopes to study ecosystem gas exchange. Oecologia, 123(3): 297-311.
doi: 10.1007/s004420051016 pmid: 28308584
[56]   Zhang R, Jiang D B, Zhang Z S, et al. 2017. Comparison of the climate effects of surface uplifts from the northern Tibetan Plateau, the Tianshan, and the Mongolian Plateau on the East Asian climate. Journal of Geophysical Research-Atmospheres, 122(15): 7949-7970.
doi: 10.1002/2017JD026470
[57]   Zhao Y, Zhou T J. 2021. Interannual Variability of Precipitation Recycle Ratio Over the Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 126(2): e2020JD033733, doi: 10.1029/2020JD033733.
[1] WANG Yinping, JIANG Rengui, YANG Mingxiang, XIE Jiancang, ZHAO Yong, LI Fawen, LU Xixi. Spatiotemporal characteristics and driving mechanisms of land use/land cover (LULC) changes in the Jinghe River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 91-109.
[2] ZHANG Wensheng, AN Chengbang, LI Yuecong, ZHANG Yong, LU Chao, LIU Luyu, ZHANG Yanzhen, ZHENG Liyuan, LI Bing, FU Yang, DING Guoqiang. Modern pollen assemblages and their relationships with vegetation and climate on the northern slopes of the Tianshan Mountains, Xinjiang, China[J]. Journal of Arid Land, 2023, 15(3): 327-343.
[3] CAO Yijie, MA Yonggang, BAO Anming, CHANG Cun, LIU Tie. Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model[J]. Journal of Arid Land, 2023, 15(12): 1455-1473.
[4] ZHANG Shubao, LEI Jun, TONG Yanjun, ZHANG Xiaolei, LU Danni, FAN Liqin, DUAN Zuliang. Temporal and spatial responses of ecological resilience to climate change and human activities in the economic belt on the northern slope of the Tianshan Mountains, China[J]. Journal of Arid Land, 2023, 15(10): 1245-1268.
[5] YAN Xue, LI Lanhai. Spatiotemporal characteristics and influencing factors of ecosystem services in Central Asia[J]. Journal of Arid Land, 2023, 15(1): 1-19.
[6] WEI Tianfeng, SHANGGUAN Donghui, TANG Xianglong, QIN Yu. The role of glacial gravel in community development of vascular plants on the glacier forelands of the Third Pole[J]. Journal of Arid Land, 2022, 14(9): 1022-1037.
[7] ZHANG Yin, GULIMIRE Hanati, SULITAN Danierhan, HU Keke. Monitoring and analysis of snow cover change in an alpine mountainous area in the Tianshan Mountains, China[J]. Journal of Arid Land, 2022, 14(9): 962-977.
[8] JIN Junfang, YIN Shuyan, YIN Hanmin. Impact of land use/land cover types on surface humidity in northern China in the early 21st century[J]. Journal of Arid Land, 2022, 14(7): 705-718.
[9] LI Hongliang, WANG Puyu, LI Zhongqin, JIN Shuang, XU Chunhai, MU Jianxin, HE Jie, YU Fengchen. Effect of topography on the changes of Urumqi Glacier No. 1 in the Chinese Tianshan Mountains[J]. Journal of Arid Land, 2022, 14(7): 719-738.
[10] ABAY Peryzat, GONG Lu, CHEN Xin, LUO Yan, WU Xue. Spatiotemporal variation and correlation of soil enzyme activities and soil physicochemical properties in canopy gaps of the Tianshan Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(7): 824-836.
[11] SU Yuan, GONG Yanming, HAN Wenxuan, LI Kaihui, LIU Xuejun. Dependency of litter decomposition on litter quality, climate change, and grassland type in the alpine grassland of Tianshan Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(6): 691-703.
[12] HUANG Xiaoran, BAO Anming, GUO Hao, MENG Fanhao, ZHANG Pengfei, ZHENG Guoxiong, YU Tao, QI Peng, Vincent NZABARINDA, DU Weibing. Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China[J]. Journal of Arid Land, 2022, 14(5): 502-520.
[13] PENG Jiajia, LI Zhongqin, XU Liping, MA Yuqing, LI Hongliang, ZHAO Weibo, FAN Shuang. Glacier mass balance and its impacts on streamflow in a typical inland river basin in the Tianshan Mountains, northwestern China[J]. Journal of Arid Land, 2022, 14(4): 455-472.
[14] ZHANG Xueting, CHEN Rensheng, LIU Guohua. Economic losses from reduced freshwater under future climate scenarios: An example from the Urumqi River, Tianshan Mountains[J]. Journal of Arid Land, 2022, 14(2): 139-153.
[15] QIU Dong, TAO Ye, ZHOU Xiaobing, Bagila MAISUPOVA, YAN Jingming, LIU Huiliang, LI Wenjun, ZHUANG Weiwei, ZHANG Yuanming. Spatiotemporal variations in the growth status of declining wild apple trees in a narrow valley in the western Tianshan Mountains, China[J]. Journal of Arid Land, 2022, 14(12): 1413-1439.