Research article |
|
|
|
|
Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains, Central Asia |
CHEN Haiyan1,2,*(), CHEN Yaning3, LI Dalong1,2, LI Weihong3, YANG Yuhui4 |
1College of Geography and Environmental Science, Hainan Normal University, Haikou 571158, China 2Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, Haikou 571158, China 3State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 4Xinjiang Normal University, Urumqi 830013, China |
|
|
Abstract Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle, forecasting water resource changes, and dealing with the adverse effects of climate change. In this study, we identified water vapor sources of precipitation and evaluated their effects on precipitation stable isotopes in the north slope of the Tianshan Mountains, China. By utilizing the temporal and spatial distributions of precipitation stable isotopes in the forest and grassland regions, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, and isotope mass balance model, we obtained the following results. (1) The Eurasia, Black Sea, and Caspian Sea are the major sources of water vapor. (2) The contribution of surface evaporation to precipitation in forests is lower than that in the grasslands (except in spring), while the contribution of plant transpiration to precipitation in forests (5.35%) is higher than that in grasslands (3.79%) in summer. (3) The underlying surface and temperature are the main factors that affect the contribution of recycled water vapor to precipitation; meanwhile, the effects of water vapor sources of precipitation on precipitation stable isotopes are counteracted by other environmental factors. Overall, this work will prove beneficial in quantifying the effect of climate change on local water cycles.
|
Received: 09 October 2021
Published: 31 March 2022
|
Corresponding Authors:
*CHEN Haiyan (E-mail: chenhaieom13@mails.ucas.ac.cn)
|
|
|
[1] |
An W L, Hou S G, Zhang Q, et al. 2017. Enhanced recent local moisture recycling on the northwestern Tibetan Plateau deduced from ice core deuterium excess records. Journal of Geophysical Research: Atmospheres, 122(23): 12541-12556.
|
|
|
[2] |
Apaéstegui J, Cruz F W, Vuille M, et al. 2018. Precipitation changes over the eastern Bolivian Andes inferred from speleothem (δ18O) records for the last 1400 years. Earth and Planetary Science Letters, 494: 124-134.
doi: 10.1016/j.epsl.2018.04.048
|
|
|
[3] |
Balagizi C M, Kasereka M M, Cuoco E, et al. 2018. Influence of moisture source dynamics and weather patterns on stable isotopes ratios of precipitation in Central-Eastern Africa. Science of the Total Environment, 628-629: 1058-1078.
doi: 10.1016/j.scitotenv.2018.01.284
|
|
|
[4] |
Berberan-Santos M N, Bodunov E N, Pogliani L. 1997. On the barometric formula. American Journal of Physics, 65(5): 404-412.
doi: 10.1119/1.18555
|
|
|
[5] |
Bowen G J, Putman A, Brooks J R, et al. 2018. Inferring the source of evaporated waters using stable H and O isotopes. Oecologia, 187(4): 1025-1039.
doi: 10.1007/s00442-018-4192-5
|
|
|
[6] |
Breitenbach S F M, Adkins J F, Meyer H, et al. 2010. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth and Planetary Science Letters, 292(1-2): 212-220.
doi: 10.1016/j.epsl.2010.01.038
|
|
|
[7] |
Chen H Y, Chen Y N, Li W H, et al. 2018. Identifying evaporation fractionation and streamflow components based on stable isotopes in the Kaidu River Basin with mountain-oasis system in north-west China. Hydrological Processes, 32(15): 2423-2434.
doi: 10.1002/hyp.v32.15
|
|
|
[8] |
Chen H Y, Chen Y N, Li W H, et al. 2019. Quantifying the contributions of snow/glacier meltwater to river runoffs in the Tianshan Mountains, Central Asia. Global and Planetary Change, 174: 47-57.
doi: 10.1016/j.gloplacha.2019.01.002
|
|
|
[9] |
Chen H Y, Chen Y N, Li D L, et al. 2020. Effect of sub-cloud evaporation on precipitation in the Tianshan Mountains (Central Asia) under the influence of global warming. Hydrological Processes, 34(26): 5557-5566.
doi: 10.1002/hyp.v34.26
|
|
|
[10] |
Chen Y N, Li W H, Deng H J, et al. 2016. Changes in Central Asia's water tower: past, present and future. Scientific Reports, 6: 35458, doi: 10.1038/srep35458.
doi: 10.1038/srep35458
|
|
|
[11] |
Craig H, Gordon L I. 1965. Deuterium and oxygen 18 variation in the ocean and the marine atmosphere. In: Tongiorgi E. Stable Isotopes in Oceanographic Studies and Paleotemperatures, Pisa: CNR, 277-374.
|
|
|
[12] |
Crawford J, Hughes C E, Parkes S D. 2013. Is the isotopic composition of event based precipitation driven by moisture source or synoptic scale weather in the Sydney Basin, Australia? Journal of Hydrology, 507: 213-226.
doi: 10.1016/j.jhydrol.2013.10.031
|
|
|
[13] |
Cui B L, Li X Y. 2015. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau. Science of the Total Environment, 527: 26-37.
|
|
|
[14] |
Dai X G, Li W J, Ma Z G, et al. 2007. Water-vapor source shift of Xinjiang region during the recent twenty years. Progress in Natural Science, 17(5): 569-575.
doi: 10.1080/10020070708541037
|
|
|
[15] |
Davis P, Syme J, Heikoop J, et al. 2015. Quantifying uncertainty in stable isotope mixing models. Journal of Geophysical Research-Biogeosciences, 120(5): 903-923.
doi: 10.1002/2014JG002839
|
|
|
[16] |
Delsman J R, Oude E G H P, Beven K J, et al. 2013. Uncertainty estimation of end-member mixing using generalized likelihood uncertainty estimation (GLUE), applied in a lowland catchment. Water Resources Research, 49(8): 4792-4806.
doi: 10.1002/wrcr.20341
|
|
|
[17] |
Diamond R E, Jack S. 2018. Evaporation and abstraction determined from stable isotopes during normal flow on the Gariep River, South Africa. Journal of Hydrology, 559: 569-584.
doi: 10.1016/j.jhydrol.2018.02.059
|
|
|
[18] |
Draxier R R, Hess G D. 1998. An overview of the HYSPLIT_ 4 modelling system for trajectories, dispersion and deposition. Australian Meteorological Magazine, 47(4): 295-308.
|
|
|
[19] |
Draxler R R, Rolph G D. 2016. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model, NOAA Air Resources Laboratory. [2021-3-15]. http://www.arl.noaa.gov/HYSPLIT.php
|
|
|
[20] |
Farinotti D, Longuevergne L, Moholdt G, et al. 2015. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, 8(9): 716-722.
doi: 10.1038/NGEO2513
|
|
|
[21] |
Gat J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24: 225-262.
doi: 10.1146/earth.1996.24.issue-1
|
|
|
[22] |
Gazquez F, Morellon M, Bauska T, et al. 2018. Triple oxygen and hydrogen isotopes of gypsum hydration water for quantitative paleo-humidity reconstruction. Earth and Planetary Science Letters, 481: 177-188.
doi: 10.1016/j.epsl.2017.10.020
|
|
|
[23] |
Gibson J J, Reid R. 2014. Water balance along a chain of tundra lakes: A 20-year isotopic perspective. Journal of Hydrology, 519: 2148-2164.
doi: 10.1016/j.jhydrol.2014.10.011
|
|
|
[24] |
Gibson J J, Birks S J, Yi Y. 2016. Stable isotope mass balance of lakes: a contemporary perspective. Quaternary Science Reviews, 131: 316-328
doi: 10.1016/j.quascirev.2015.04.013
|
|
|
[25] |
Gonfiantini R. 1986. Environmental isotopes in lake studies. In: Fritz P, Fontes J C. Handbook of Environmental Isotope Geochemistry (The Terrestrial Environment, B). Amsterdam: Elsevier, 113-168.
|
|
|
[26] |
Guo W Q, Liu S Y, Yao X J, et al. 2014. The Second Glacier Inventory Dataset of China (Version 1.0). Cold and Arid Regions Science Data Center at Lanzhou. [2021-02-10]. http://data.casnw.net/portal/metadata/6d44fd19-64d7-4af1-8e81-5fa717585b5b .
|
|
|
[27] |
Guo X Y, Tian L D, Wen R, et al. 2017. Controls of precipitation delta O-18 on the northwestern Tibetan Plateau: A case study at Ngari station. Atmospheric Research, 189: 141-151.
doi: 10.1016/j.atmosres.2017.02.004
|
|
|
[28] |
Horita J, Wesolowski D J. 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical-temperature. Geochimica et Cosmochimica Acta, 58(16): 3425-3437.
doi: 10.1016/0016-7037(94)90096-5
|
|
|
[29] |
Huang W, Chang S Q, Xie C L, et al. 2017. Moisture sources of extreme summer precipitation events in North Xinjiang and their relationship with atmospheric circulation. Advances in Climate Change Research, 8(1): 12-17.
doi: 10.1016/j.accre.2017.02.001
|
|
|
[30] |
Jeelani G, Deshpande R D, Galkowski M, et al. 2018. Isotopic composition of daily precipitation along the southern foothills of the Himalayas: impact of marine and continental sources of atmospheric moisture. Atmospheric Chemistry and Physics, 18(12): 8789-8805.
|
|
|
[31] |
Joerin C, Beven K J, Iorgulescu I, et al. 2002. Uncertainty in hydrograph separations based on geochemical mixing models. Journal of Hydrology, 255(1-4): 90-106.
doi: 10.1016/S0022-1694(01)00509-1
|
|
|
[32] |
Kleist D T, Parrish D F, Derber J C, et al. 2009. Introduction of the GSI into the NCEP Global Data Assimilation System. Weather and Forecasting, 24(6): 1691-1705.
doi: 10.1175/2009WAF2222201.1
|
|
|
[33] |
Kong Y, Pang Z, Froehlich K. 2013. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus Series B-Chemical and Physical Meteorology, 65: 19251, doi: 10.3402/tellusb.v65i0.19251.
doi: 10.3402/tellusb.v65i0.19251
|
|
|
[34] |
Krklec K, Dominguez-Villar D. 2014. Quantification of the impact of moisture source regions on the oxygen isotope composition of precipitation over Eagle Cave, central Spain. Geochimica Et Cosmochimica Acta, 134: 39-54.
doi: 10.1016/j.gca.2014.03.011
|
|
|
[35] |
Krklec K, Dominguez-Villar D, Lojen S. 2018. The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe. Journal of Hydrology, 561: 810-821.
doi: 10.1016/j.jhydrol.2018.04.045
|
|
|
[36] |
Li Z X, Qi F, Wang Q J, et al. 2016. Contributions of local terrestrial evaporation and transpiration to precipitation using delta O-18 and D-excess as a proxy in Shiyang inland river basin in China. Global and Planetary Change, 146: 140-151.
doi: 10.1016/j.gloplacha.2016.10.003
|
|
|
[37] |
Liu X K, Rao Z G, Zhang X J, et al. 2015. Variations in the oxygen isotopic composition of precipitation in the Tianshan Mountains region and their significance for the Westerly circulation. Journal of Geographical Sciences, 25(7): 801-816.
doi: 10.1007/s11442-015-1203-x
|
|
|
[38] |
Quincey D, Klaar M, Haines D, et al. 2018. The changing water cycle: the need for an integrated assessment of the resilience to changes in water supply in High-Mountain Asia. Wiley Interdisciplinary Reviews-Water, 5(1): e1258, doi: 10.1002/wat2.1258.
|
|
|
[39] |
Rahul P, Ghosh P, Bhattacharya S K. 2016. Rainouts over the Arabian Sea and Western Ghats during moisture advection and recycling explain the isotopic composition of Bangalore summer rains. Journal of Geophysical Research-Atmospheres, 121(11): 6148-6163.
doi: 10.1002/jgrd.v121.11
|
|
|
[40] |
Rai S P, Purushothaman P, Kumar B, et al. 2014. Stable isotopic composition of precipitation in the River Bhagirathi Basin and identification of source vapour. Environmental Earth Sciences, 71(11): 4835-4847.
doi: 10.1007/s12665-013-2875-0
|
|
|
[41] |
Schlesinger W H, Jasechko S. 2014. Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189: 115-117.
|
|
|
[42] |
Skrzypek G, Mydlowski A, Dogramaci S, et al. 2015. Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. Journal of Hydrology, 523: 781-789.
doi: 10.1016/j.jhydrol.2015.02.010
|
|
|
[43] |
Sodemann H, Schwierz C, Wernli H. 2008. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. Journal of Geophysical Research-Atmospheres, 113(D3): D031107, doi: 10.1029/2007JD008503.
|
|
|
[44] |
Tang Y, Pang H, Zhang W, et al. 2015. Effects of changes in moisture source and the upstream rainout on stable isotopes in precipitation - a case study in Nanjing, eastern China. Hydrology and Earth System Sciences, 19(10): 4293-4306.
doi: 10.5194/hess-19-4293-2015
|
|
|
[45] |
Tang Y, Song X F, Zhang Y H, et al. 2017. Using stable isotopes to understand seasonal and interannual dynamics in moisture sources and atmospheric circulation in precipitation. Hydrological Processes, 31(26): 4682-4692.
doi: 10.1002/hyp.v31.26
|
|
|
[46] |
Tang Z G, Wang X R, Wang J, et al. 2017. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001-2015. Remote Sensing, 9(10): 1045, doi: 10.3390/rs9101045.
|
|
|
[47] |
Tian L D, Yao T D, MacClune K, et al. 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysical Research-Atmospheres, 112(D10): D10112, doi: 10.1029/2006JD007718.
|
|
|
[48] |
Tian L D, Yu W S, Schuster P F, et al. 2020. Control of seasonal water vapor isotope variations at Lhasa, southern Tibetan Plateau. Journal of Hydrology, 580: 124237, doi: 10.1016/j.jhydrol.2019.124237.
doi: 10.1016/j.jhydrol.2019.124237
|
|
|
[49] |
van der Ent R J, Savenije H H G, Schaefli B, et al. 2010. Origin and fate of atmospheric moisture over continents. Water Resources Research, 46: W05295, doi: 10.1029/2010WR009127.
|
|
|
[50] |
Vimeux F, Risi C. 2021. Isotopic equilibrium between raindrops and water vapor during the onset and the termination of the 2005-2006 wet season in the Bolivian Andes. Journal of Hydrology, 598: 126472, doi: 10.1016/j.jhydrol.2021.126472.
|
|
|
[51] |
Wang S J, Zhang M J, Che Y J, et al. 2016. Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach. Water Resources Research, 52(4): 3246-3257.
doi: 10.1002/2015WR018135
|
|
|
[52] |
Wang S J, Zhang M J, Crawford J, et al. 2017. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. Journal of Geophysical Research-Atmospheres, 122(5): 2667-2682.
doi: 10.1002/2015JD024626
|
|
|
[53] |
Wei Z W, Lee X H, Liu Z F, et al. 2018. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia. Earth and Planetary Science Letters, 488: 181-192.
doi: 10.1016/j.epsl.2018.02.015
|
|
|
[54] |
Xu M, Kang S C, Wu H, et al. 2018. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmospheric Research, 203: 141-163.
doi: 10.1016/j.atmosres.2017.12.007
|
|
|
[55] |
Yakir D, Sternberg L D L. 2000. The use of stable isotopes to study ecosystem gas exchange. Oecologia, 123(3): 297-311.
doi: 10.1007/s004420051016
pmid: 28308584
|
|
|
[56] |
Zhang R, Jiang D B, Zhang Z S, et al. 2017. Comparison of the climate effects of surface uplifts from the northern Tibetan Plateau, the Tianshan, and the Mongolian Plateau on the East Asian climate. Journal of Geophysical Research-Atmospheres, 122(15): 7949-7970.
doi: 10.1002/2017JD026470
|
|
|
[57] |
Zhao Y, Zhou T J. 2021. Interannual Variability of Precipitation Recycle Ratio Over the Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 126(2): e2020JD033733, doi: 10.1029/2020JD033733.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|