Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (6): 691-703    DOI: 10.1007/s40333-022-0096-7
Research article     
Dependency of litter decomposition on litter quality, climate change, and grassland type in the alpine grassland of Tianshan Mountains, Northwest China
SU Yuan1,*(), GONG Yanming2, HAN Wenxuan2,3, LI Kaihui2,4,*(), LIU Xuejun2,3
1College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
2State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
3Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
4Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
Download: HTML     PDF(811KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Litter decomposition is an important component of the nutrient recycling process and is highly sensitive to climate change. However, the impacts of warming and increased precipitation on litter decomposition have not been well studied, especially in the alpine grassland of Tianshan Mountains. We conducted a manipulative warming and increased precipitation experiment combined with different grassland types to examine the impact of litter quality and climate change on the litter decomposition rate based on three dominant species (Astragalus mongholicus, Potentilla anserina, and Festuca ovina) in Tianshan Mountains from 2019 to 2021. The results of this study indicated there were significant differences in litter quality, specific leaf area, and leaf dry matter content. In addition, litter quality exerted significant effects on litter decomposition, and the litter decomposition rate varied in different grassland types. Increased precipitation significantly accelerated the litter decomposition of P. anserina; however, it had no significant effect on the litter decomposition of A. mongholicus and F. ovina. However, warming consistently decreased the litter decomposition rate, with the strongest impact on the litter decomposition of F. ovina. There was a significant interaction between increased precipitation and litter type, but there was no significant interaction between warming and litter type. These results indicated that warming and increased precipitation significantly influenced litter decomposition; however, the strength was dependent on litter quality. In addition, soil water content played a crucial role in regulating litter decomposition in different grassland types. Moreover, we found that the litter decomposition rate exhibited a hump-shaped or linear response to the increase of soil water content. Our study emphasizes that ongoing climate change significantly altered litter decomposition in the alpine grassland, which is of great significance for understanding the nutrient supply and turnover of litter.



Key wordslitter decomposition rate      litter quality      warming      increased precipitation      grassland type      Tianshan Mountains     
Received: 15 March 2022      Published: 30 June 2022
Corresponding Authors: * SU Yuan (E-mail: suyuan@ms.xjb.ac.cn);LI Kaihui (E-mail: likh@ms.xjb.ac.cn)
Cite this article:

SU Yuan, GONG Yanming, HAN Wenxuan, LI Kaihui, LIU Xuejun. Dependency of litter decomposition on litter quality, climate change, and grassland type in the alpine grassland of Tianshan Mountains, Northwest China. Journal of Arid Land, 2022, 14(6): 691-703.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0096-7     OR     http://jal.xjegi.com/Y2022/V14/I6/691

Wetland Alpine meadow Alpine meadow steppe Alpine steppe (Site 1) Alpine steppe (Site 2) Alpine steppe (Site 3)
STC (mg/g) 167.99±2.07a 136.91±3.23b 69.29±0.31c 45.47±1.27d 49.17±1.16d 47.45±2.24d
STN (mg/g) 8.42±1.27a 8.46±0.41a 4.99±0.24b 4.30±0.11b 3.98±0.36b 4.15±0.47b
STP (mg/g) 1.21±0.06a 0.82±0.01b 0.70±0.08c 0.81±0.10b 0.94±0.12b 0.88±0.09b
Soil pH 7.67±0.02c 6.86±0.01d 7.87±0.04b 7.99±0.03a 7.85±0.13a 7.88±0.19a
SWC (%) 79.67±3.80a 56.17±2.41b 35.17±0.60c 15.67±0.88d 3.41±0.57f 5.52±0.39e
Table 1 Soil properties in different grassland types
Fig. 1 Initial litter quality of Astragalus mongholicus, Potentilla anserina, and Festuca ovina. (a), litter total carbon (litter C); (b), litter total nitrogen (litter N); (c), litter total phosphorus (litter P); (d), C:N ratio; (e), C:P ratio; (f), N:P ratio; (g), specific leaf area (SLA); (h), leaf dry matter content (LDMC); (i), lignin; (j), cellulose; (k), hemicellulose; (l), the ratio of lignin to litter N. Different lowercase letters indicate significant differences among species. Bars mean standard errors.
Fig. 2 Rate of litter remaining of A. mongholicus (a), P. anserine (b), and F. ovina (c) in different grassland types at 0, 8, 10, 12, 20, and 24 months after the litterbags deployment
Fig. 3 Litter decomposition rate of A. mongholicus, P. anserina, and F. ovina in different grassland types. Different lowercase letters indicate significant differences among the three species in the same grassland (P<0.01), and different capital letters indicate significant differences among grassland types for the same species (P<0.01). Bars mean standard errors.
Fig. 4 Effect of soil water content (SWC) on the litter decomposition rate of A. mongholicus (a), P. anserina (b), and F. ovina (c). Bars mean standard errors.
Fig. 5 Rate of litter remaining of A. mongholicus (a), P. anserine (b), and F. ovina (c) under different trearments at 0, 8, 10, 12, 20, and 24 months after the litterbags deployment
Fig. 6 Effects of different treatments on the litter decomposition rate of A. mongholicus, P. anserina, and F. ovina. Different lowercase letters indicate significant differences among the three species under the same treatment (P<0.01), and different capital letters indicate significant differences among treatments for the same species (P<0.01). Bars mean standard errors.
Grassland type Dominant species Altitude (m) Longitude Latitude Species richness Aboveground biomass (g/m2)
Wetland Carex stenocarpa 3260 83º42′11″E 42º52′48″N 11.8±1.0 65.7±12.8
Alpine meadow Carex stenocarpa and Kobresia capillifolia 3160 83º35′34″E 42º53′24″N 12.1±2.4 103.3±18.2
Alpine meadow steppe Carex stenocarpa and Kobresia capillifolia 2960 83º22′18″E 42º54′21″N 9.5±1.5 59.5±10.1
Alpine steppe (Site 1) Festuca ovina 2460 83º02′36″E 42º54′57″N 8.5±1.5 65.2±20.2
Alpine steppe (Site 2) Festuca ovina 2560 83º03′12″E 42º54′27″N 7.8±1.3 52.5±17.6
Alpine steppe (Site 3) Festuca ovina 2660 83º06′43″E 42º54′28″N 8.7±1.2 48.4±10.1
Table S1 Characteristics of different grassland types in this study
Treatment Treatment intensity Effect Grassland type Precipitation
(mm)
Reference
Open-top chamber 2.00°C - Alpine grassland 300 Hong et al. (2021)
Open-top chamber 2.50°C - Semiarid shrubland 358 Prieto et al. (2019)
Open-top chamber No data - Semiarid grassland 425 Li et al. (2021)
Infrared heater 0.00°C-4.00°C + Alpine grassland 406 Lv et al. (2020)
Infrared heating 1.20°C-1.70°C + Alpine grassland 500 Luo et al. (2010)
Wave heater 1.50°C-1.80°C -/no Alpine grassland 489 Liu et al. (2020)
Open-top chamber 1.00°C-2.00°C - Dry tundra No data Christiansen et al. (2017)
Open-top chamber 2.00°C no Wet grassland 561 Yu et al. (2019)
Open-top chamber 1.00°C-2.00°C no Alpine grassland 593 Shu et al. (2019)
Open-top chamber 1.20°C-1.30°C + Subalpine forest 801 Xu et al. (2015)
Open-top chamber 1.10°C - Arid alpine system 327-456 Brigham et al. (2018)
Open-top chamber 3.20°C +/no Subalpine forest 801 Xu et al. (2012)
Infrared heat 2.50°C no Dry grassland 241 Chuckran et al. (2020)
Reduced precipitation 30% total annual precipitation - Semiarid shrubland 358 Prieto et al. (2019)
Reduced precipitation No data -/no Temperate grassland 654-787 Schuster et al. (2016)
Enhanced precipitation 30% total annual precipitation no Desert grassland 70-150 Zhao et al. (2013)
Enhanced precipitation 50% total annual precipitation + Alpine grassland 489 Liu et al. (2020)
Enhanced precipitation 30% total annual precipitation +/no Typical grassland 385 Liu et al. (2006)
Enhanced precipitation 50% total annual precipitation +/no Typical grassland 379 Wang et al. (2017)
Enhanced precipitation 50%-100% total annual precipitation + Alpine grassland 406 Lv et al. (2020)
Table S2 Summary of the effects of warming and increased precipitation on litter decomposition from field experiments in different grassland types
[1]   Aber J D, Melillo J M. 1980. Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Canadian Journal of Botany, 58(4): 416-421.
doi: 10.1139/b80-046
[2]   Aerts R. 2006. The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94(4): 713-724.
doi: 10.1111/j.1365-2745.2006.01142.x
[3]   Austin A T. 2011. Has water limited our imagination for arid land biogeochemistry? Trends in Ecology and Evolution, 26(5): 229-235.
doi: 10.1016/j.tree.2011.02.003 pmid: 21397975
[4]   Bakker M A, Carreño-Rocabado G, Poorter L. 2011. Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology, 25(3): 473-483.
doi: 10.1111/j.1365-2435.2010.01802.x
[5]   Bradford M A, Warren II R J, Baldrian P, et al. 2014. Climate fails to predict wood decomposition at regional scales. Nature Climate Change, 4(7): 625-630.
doi: 10.1038/nclimate2251
[6]   Bragazza L, Buttler A, Robroek B J M, et al. 2016. Persistent high temperature and low precipitation reduce peat carbon accumulation. Global Change Biology, 22(12): 4114-4123.
doi: 10.1111/gcb.13319 pmid: 27081764
[7]   Chen Y, Sayer E J, Li Z A, et al. 2016. Nutrient limitation of woody debris decomposition in a tropical forest: contrasting effects of N and P addition. Functional Ecology, 30: 295-304.
doi: 10.1111/1365-2435.12471
[8]   Chuckran P F, Reibold R, Throop H L, et al. 2020. Multiple mechanisms determine the effect of warming on plant litter decomposition in a dryland. Soil Biology and Biochemistry, 145: 107799, doi: 10.1016/j.soilbio.2020.107799.
doi: 10.1016/j.soilbio.2020.107799
[9]   Couteaux M M, Bottner P, Berg B. 1995. Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10(2): 63-66.
doi: 10.1016/S0169-5347(00)88978-8
[10]   de la Riva E G, Prieto I, Villar R. 2019. The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests. Plant and Soil, 435: 353-366.
doi: 10.1007/s11104-018-3883-3
[11]   Gao S Q, Song Y Y, Song C C, et al. 2022. Effects of temperature increase and nitrogen addition on the early litter decomposition in permafrost peatlands. CATENA, 209: 105801, doi: 10.1016/j.catena.2021.105801.
doi: 10.1016/j.catena.2021.105801
[12]   Gong Y M, Yue P, Li K H, et al. 2021. Different responses of ecosystem CO2 and N2O emissions and CH4 uptake to seasonally asymmetric warming in an alpine grassland of the Tianshan. Biogeosciences, 18: 3529-3537.
doi: 10.5194/bg-18-3529-2021
[13]   Hong J T, Lu X Y, Ma X X, et al. 2021. Five-year study on the effects of warming and plant litter quality on litter decomposition rate in a Tibetan alpine grassland. Science of The Total Environment, 750: 142306, doi: 10.1016/j.scitotenv.2020.142306.
doi: 10.1016/j.scitotenv.2020.142306
[14]   Huang F, Ding X X, Li W W, et al. 2021. The effect of temperature on the decomposition of different parts of maize residues in a solonchak. CATENA, 201: 105207, doi: 10.1016/j.catena.2021.105207.
doi: 10.1016/j.catena.2021.105207
[15]   Huang G, Li Y. 2017. Photodegradation effects are related to precipitation amount, precipitation frequency and litter traits in a desert ecosystem. Soil Biology and Biochemistry, 115: 383-392.
doi: 10.1016/j.soilbio.2017.08.034
[16]   IPCC. 2014. Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al. Cambridge and New York: Cambridge University Press, 151.
[17]   Knorr M, Frey S D, Curtis P S. 2005. Nitrogen addition and litter decomposition: A meta-analysis. Ecology, 86(12): 3252-3257.
doi: 10.1890/05-0150
[18]   Li K H, Liu X J, Hu Y K, et al. 2020. Long-term increasing productivity of high-elevation grassland caused by elevated precipitation and temperature. Rangeland Ecology and Management, 73: 156-161.
doi: 10.1016/j.rama.2019.08.010
[19]   Li Y, Gong J R, Zhang Z H, et al. 2022. Grazing directly or indirectly affect shoot and root litter decomposition in different decomposition stage by changing soil properties. CATENA, 209: 105803, doi: 10.1016/j.catena.2021.105803.
doi: 10.1016/j.catena.2021.105803
[20]   Liu G F, Wang L, Jiang L, et al. 2018. Specific leaf area predicts dryland litter decomposition via two mechanisms. Journal of Ecology, 106: 218-229.
doi: 10.1111/1365-2745.12868
[21]   Liu H Y, Lin L, Wang H, et al. 2020. Simulating warmer and drier climate increases root production but decreases root decomposition in an alpine grassland on the Tibetan plateau. Plant and Soil, 458: 59-73.
doi: 10.1007/s11104-020-04551-y
[22]   Liu J X, Liu S G, Li Y Y, et al. 2017. Warming effects on the decomposition of two litter species in model subtropical forests. Plant and Soil, 420: 277-287.
doi: 10.1007/s11104-017-3392-9
[23]   Liu P, Huang J H, Han X G, et al. 2006. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied Soil Ecology, 34: 266-275.
doi: 10.1016/j.apsoil.2005.12.009
[24]   Manzoni S, Trofymow J A, Jackson R B, et al. 2010. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80: 89-106.
doi: 10.1890/09-0179.1
[25]   Melillo J M, Aber J D, Muratore J F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63(3): 621-626.
doi: 10.2307/1936780
[26]   Moise E R, Henry H A. 2014. Interactive responses of grass litter decomposition to warming, nitrogen addition and detritivore access in a temperate old field. Oecologia, 176(4): 1151-1160.
doi: 10.1007/s00442-014-3068-6 pmid: 25214243
[27]   Olson J S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44: 322-331.
doi: 10.2307/1932179
[28]   Parton W, Silver W L, Burke I C, et al. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315: 361-364.
doi: 10.1126/science.1134853
[29]   Prieto I, Almagro M, Bastida F, et al. 2019. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. Journal of Ecology, 107: 2364-2382.
doi: 10.1111/1365-2745.13168
[30]   Sanaullah M, Rumpel C, Charrier X, et al. 2011. How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? Plant and Soil, 352: 277-288.
doi: 10.1007/s11104-011-0995-4
[31]   Schuster M J, Kreyling J, Berwaers S, et al. 2016. Drought inhibits synergistic interactions of native and exotic litter mixtures during decomposition in temperate grasslands. Plant and Soil, 415: 257-268.
doi: 10.1007/s11104-016-3162-0
[32]   Song C C, Liu D Y, Yang G S, et al. 2011. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of Northeast China. Ecological Engineering, 37: 1578-1582.
doi: 10.1016/j.ecoleng.2011.03.036
[33]   Van Soest P J, Wine R H. 1968. Determination of lignin and cellulose in acid-detergent fiber with permanganate. Journal of the Association of Official Analytical Chemists, 51(4): 780-785.
[34]   Veen G F C, Sundqvist M K, Wardle D A, et al. 2015. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Functional Ecology, 29: 981-991.
doi: 10.1111/1365-2435.12421
[35]   Wang X X, Dong S K, Gao Q Z, et al. 2014. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China. Soil Biology and Biochemistry, 76: 140-142.
doi: 10.1016/j.soilbio.2014.05.014
[36]   Wang X, Xu Z W, Lü X T, et al. 2017. Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant and Soil, 418: 241-253.
doi: 10.1007/s11104-017-3288-8
[37]   Warrinnier R, Bossuyt S, Resseguier C, et al. 2020. Anaerobic respiration in the unsaturated zone of agricultural soil mobilizes phosphorus and manganese. Environmental Science and Technology, 54(8): 4922-4931.
doi: 10.1021/acs.est.9b06978 pmid: 32212656
[38]   Wei B, Zhang D Y, Kou D, et al. 2022. Decreased ultraviolet radiation and decomposer biodiversity inhibit litter decomposition under continuous nitrogen inputs. Functional Ecology, 36(4): 998-1009.
doi: 10.1111/1365-2435.14015
[39]   Wu Q Q, Yue K, Wang X C, et al. 2020. Differential responses of litter decomposition to warming, elevated CO2, and changed precipitation regime. Plant and Soil, 455: 155-169.
doi: 10.1007/s11104-020-04675-1
[40]   Xie Y J, Xie Y H, Xiao H Y. 2019. Differential responses of litter decomposition to climate between wetland and upland ecosystems in China. Plant and Soil, 440: 1-9.
doi: 10.1007/s11104-019-04022-z
[41]   Xu Z F, Pu X Z, Yin H J, et al. 2012. Warming effects on the early decomposition of three litter types, Eastern Tibetan Plateau, China. European Journal of Soil Science, 63: 360-367.
doi: 10.1111/j.1365-2389.2012.01449.x
[42]   Yin R, Qin W K, Zhao H Y, et al. 2022. Climate warming in an alpine meadow: differential responses of soil faunal vs. microbial effects on litter decomposition. Biology and Fertility of Soils, 58: 509-514.
doi: 10.1007/s00374-022-01639-8
[43]   Yu X F, Guo J W, Lu X G, et al. 2019. Comparative analyses of wetland plant biomass accumulation and litter decomposition subject to in situ warming and nitrogen addition. Science of The Total Environment, 691: 769-778.
doi: 10.1016/j.scitotenv.2019.07.018
[44]   Zhao H M, Huang G, Ma J, et al. 2013. Responses of surface litter decomposition to seasonal water addition in desert. Chinese Journal of Plant Ecology, 36(6): 471-482. (in Chinese)
doi: 10.3724/SP.J.1258.2012.00471
[45]   Zhang W D, Chao L, Yang Q P, et al. 2016. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology, 97(10): 2834-2843.
doi: 10.1002/ecy.1515
[46]   Zhou G Y, Xu S, Ciais P, et al. 2019. Climate and litter C/N ratio constrain soil organic carbon accumulation. National Science Review, 6(4): 746-757.
doi: 10.1093/nsr/nwz045
[1] ZHAO Xuqin, LUO Min, MENG Fanhao, SA Chula, BAO Shanhu, BAO Yuhai. Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change[J]. Journal of Arid Land, 2024, 16(1): 46-70.
[2] ZHANG Wensheng, AN Chengbang, LI Yuecong, ZHANG Yong, LU Chao, LIU Luyu, ZHANG Yanzhen, ZHENG Liyuan, LI Bing, FU Yang, DING Guoqiang. Modern pollen assemblages and their relationships with vegetation and climate on the northern slopes of the Tianshan Mountains, Xinjiang, China[J]. Journal of Arid Land, 2023, 15(3): 327-343.
[3] ZHANG Shubao, LEI Jun, TONG Yanjun, ZHANG Xiaolei, LU Danni, FAN Liqin, DUAN Zuliang. Temporal and spatial responses of ecological resilience to climate change and human activities in the economic belt on the northern slope of the Tianshan Mountains, China[J]. Journal of Arid Land, 2023, 15(10): 1245-1268.
[4] WEI Tianfeng, SHANGGUAN Donghui, TANG Xianglong, QIN Yu. The role of glacial gravel in community development of vascular plants on the glacier forelands of the Third Pole[J]. Journal of Arid Land, 2022, 14(9): 1022-1037.
[5] ZHANG Yin, GULIMIRE Hanati, SULITAN Danierhan, HU Keke. Monitoring and analysis of snow cover change in an alpine mountainous area in the Tianshan Mountains, China[J]. Journal of Arid Land, 2022, 14(9): 962-977.
[6] LI Hongliang, WANG Puyu, LI Zhongqin, JIN Shuang, XU Chunhai, MU Jianxin, HE Jie, YU Fengchen. Effect of topography on the changes of Urumqi Glacier No. 1 in the Chinese Tianshan Mountains[J]. Journal of Arid Land, 2022, 14(7): 719-738.
[7] ABAY Peryzat, GONG Lu, CHEN Xin, LUO Yan, WU Xue. Spatiotemporal variation and correlation of soil enzyme activities and soil physicochemical properties in canopy gaps of the Tianshan Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(7): 824-836.
[8] HUANG Xiaoran, BAO Anming, GUO Hao, MENG Fanhao, ZHANG Pengfei, ZHENG Guoxiong, YU Tao, QI Peng, Vincent NZABARINDA, DU Weibing. Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China[J]. Journal of Arid Land, 2022, 14(5): 502-520.
[9] WANG Bo, LI Yuwei, BAO Yuhai. Grazing alters sandy soil greenhouse gas emissions in a sand-binding area of the Hobq Desert, China[J]. Journal of Arid Land, 2022, 14(5): 576-588.
[10] PENG Jiajia, LI Zhongqin, XU Liping, MA Yuqing, LI Hongliang, ZHAO Weibo, FAN Shuang. Glacier mass balance and its impacts on streamflow in a typical inland river basin in the Tianshan Mountains, northwestern China[J]. Journal of Arid Land, 2022, 14(4): 455-472.
[11] CHEN Haiyan, CHEN Yaning, LI Dalong, LI Weihong, YANG Yuhui. Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains, Central Asia[J]. Journal of Arid Land, 2022, 14(3): 297-309.
[12] ZHANG Xueting, CHEN Rensheng, LIU Guohua. Economic losses from reduced freshwater under future climate scenarios: An example from the Urumqi River, Tianshan Mountains[J]. Journal of Arid Land, 2022, 14(2): 139-153.
[13] QIU Dong, TAO Ye, ZHOU Xiaobing, Bagila MAISUPOVA, YAN Jingming, LIU Huiliang, LI Wenjun, ZHUANG Weiwei, ZHANG Yuanming. Spatiotemporal variations in the growth status of declining wild apple trees in a narrow valley in the western Tianshan Mountains, China[J]. Journal of Arid Land, 2022, 14(12): 1413-1439.
[14] SU Yuan, MA Xiaofei, GONG Yanming, LI Kaihui, HAN Wenxuan, LIU Xuejun. Contrasting effects of nitrogen addition on litter decomposition in forests and grasslands in China[J]. Journal of Arid Land, 2021, 13(7): 717-729.
[15] JI Huiping, CHEN Yaning, FANG Gonghuan, LI Zhi, DUAN Weili, ZHANG Qifei. Adaptability of machine learning methods and hydrological models to discharge simulations in data-sparse glaciated watersheds[J]. Journal of Arid Land, 2021, 13(6): 549-567.