Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (9): 1067-1083    DOI: 10.1007/s40333-023-0028-1     CSTR: 32276.14.s40333-023-0028-1
Research article     
Combination of artificial zeolite and microbial fertilizer to improve mining soils in an arid area of Inner Mongolia, China
LI Wenye1, ZHANG Jianfeng2, SONG Shuangshuang3, LIANG Yao4, SUN Baoping1,*(), WU Yi5, MAO Xiao6, LIN Yachao1
1School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
2China ENFI Engineering Co., Ltd., Beijing 100038, China
3PIESAT Information Technology Co., Ltd., Beijing 100195, China
4Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
5Shanxi Dadi Minji Ecological Environment Co., Ltd., Beijing Branch, Beijing 100083, China
6Bureau of Agriculture and Rural Affairs, Wangcheng District, Changsha 410211, China
Download: HTML     PDF(4252KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Restoration of mining soils is important to the vegetation and environment. This study aimed to explore the variations in soil nutrient contents, microbial abundance, and biomass under different gradients of substrate amendments in mining soils to select effective measures. Soil samples were collected from the Bayan Obo mining region in Inner Mongolia Autonomous Region, China. Contents of soil organic matter (SOM), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon/microbial biomass nitrogen (MBC/MBN) ratio, biomass, and bacteria, fungi, and actinomycetes abundance were assessed in Agropyron cristatum L. Gaertn., Elymus dahuricus Turcz., and Medicago sativa L. soils with artificial zeolite (AZ) and microbial fertilizer (MF) applied at T0 (0 g/kg), T1 (5 g/kg), T2 (10 g/kg), and T3 (20 g/kg). Redundancy analysis (RDA) and technique for order preference by similarity to ideal solution (TOPSIS) were used to identify the main factors controlling the variation of biomass. Results showed that chemical indices and microbial content of restored soils were far greater than those of control. The application of AZ significantly increases SOM, AN, and AP by 20.27%, 23.61%, and 40.43%, respectively. AZ significantly increased bacteria, fungi, and actinomycetes abundance by 0.63, 3.12, and 1.93 times of control, respectively. RDA indicated that AN, MBC/MBN ratio, and SOM were dominant predictors for biomass across samples with AZ application, explaining 87.6% of the biomass variance. SOM, MBC/MBN ratio, and AK were dominant predictors with MF application, explaining 82.9% of the biomass variance. TOPSIS indicated that T2 was the best dosage and the three plant species could all be used to repair mining soils. AZ and MF application at T2 concentration in the mining soils with M. sativa was found to be the most appropriate measure.



Key wordsamendment      arid area      mining soils      restoration      soil nutrition     
Received: 02 June 2023      Published: 30 September 2023
Corresponding Authors: * SUN Baoping (E-mail: sunbp@163.com)
Cite this article:

LI Wenye, ZHANG Jianfeng, SONG Shuangshuang, LIANG Yao, SUN Baoping, WU Yi, MAO Xiao, LIN Yachao. Combination of artificial zeolite and microbial fertilizer to improve mining soils in an arid area of Inner Mongolia, China. Journal of Arid Land, 2023, 15(9): 1067-1083.

URL:

http://jal.xjegi.com/10.1007/s40333-023-0028-1     OR     http://jal.xjegi.com/Y2023/V15/I9/1067

Fig. 1 Soil nutrients and biomass of different plants with the application of artificial zeolite (AZ, a1-e1) and microbial fertilizer (MF, a2-e2). CK, control; AG, Agropyron cristatum L. Gaertn.; ET, Elymus dahuricus Turcz.; ML, Medicago sativa L.; SOM, soil organic matter; AN, available nitrogen; AP, available phosphorous; AK, available potassium; T0, 0 g/kg; T1, 5 g/kg; T2, 10 g/kg; T3, 20 g/kg. Different lowercase letters within the same treatment indicate significant difference among different amended concentrations of AZ and MF. The red dotted line represents nutrient classification. Bars are standard errors.
Plant Treat-ment Concen-tration
(g/kg)
AZ MF
Bacteria
(×106 CFU/g)
Fungi
(×105 CFU/g)
Actinomyce-
tes
(×106 CFU/g)
MBC/
MBN
Bacteria
(×106 CFU/g)
Fungi
(×105 CFU/g)
Actinomyce-
tes
(×106 CFU/g)
MBC/
MBN
AG T0 0 1.07±0.38b 2.95±0.05b 3.06±0.04c 3.69±0.47a 1.02±0.05b 2.19±0.25b 3.02±0.61a 18.16±0.58a
T1 5 1.14±0.05c 2.81±0.07b 3.25±0.09d 5.50±0.91a 1.03±0.12b 2.14±0.36cd 3.80±0.32b 7.41±0.09b
T2 10 1.17±0.04c 3.23±0.08a 3.20±0.14a 7.87±5.14a 1.08±0.08a 2.16±0.86c 3.66±0.15c 6.25±0.73c
T3 20 1.44±0.03a 3.37±0.17a 3.65±030b 2.72±0.56a 1.07±0.26a 2.22±0.35a 3.71±0.02b 6.97±1.04b
ET T0 0 1.03±0.02a 0.78±0.08a 1.82±0.13a 0.67±0.14b 0.83±0.31d 2.17±1.06c 1.80±0.57c 16.46±0.47a
T1 5 1.22±0.04b 1.68±0.32b 2.18±3.91b 8.71±2.14a 1.14±0.25b 2.22±0.65b 1.93±0.26b 6.63±0.69b
T2 10 1.41±0.49b 3.12±1.49b 2.10±1.60ab 8.58±4.33a 0.93±0.17c 2.24±0.43a 1.62±0.05d 6.54±0.35b
T3 20 1.48±0.14b 2.43±0.64b 2.70±1.35ab 14.02±5.72a 1.46±0.05a 2.15±0.26d 1.45±0.41a 6.44±0.83b
ML T0 0 1.19±0.53ab 2.00±0.13b 1.05±0.05c 1.92±0.28b 1.17±1.02b 2.17±0.52d 1.03±1.05d 10.51±0.27a
T1 5 1.20±0.20b 2.05±1.29b 1.77±4.32bc 2.44±0.23ab 1.09±1.73c 2.40±1.31c 1.23±0.71c 4.31±1.08c
T2 10 1.28±0.74b 4.58±1.58a 2.07±3.74a 1.83±0.15b 0.84±1.51d 2.95±1.27a 1.27±0.32b 5.28±0.24b
T3 20 1.94±0.42a 4.35±1.43ab 2.03±5.68ab 6.68±4.68a 1.51±0.89a 2.52±0.51b 1.47±0.98a 6.00±0.71b
Table 1 Microbial content and microbial biomass carbon/microbial biomass nitrogen (MBC/MBN) ratio with the application of artificial zeolite (AZ) and microbial fertilizer (MF)
Fig. 2 Redundancy analysis (RDA) for the relationship between environmental factors (red lines) with the application of artificial zeolite (AZ; a) and microbial fertilizer (MF; b). AN, available nitrogen; AP, available phosphorous; AK, available potassium; MBC/MBN ratio, microbial biomass carbon/microbial biomass nitrogen ratio; SOM, soil organic matter; CK, control; AG, A. cristatum; ET, E. dahuricus; ML, M. sativa; T0, 0 g/kg; T1, 5 g/kg; T2, 10 g/kg; T3, 20 g/kg.
Statistic Axis 1 Axis 2 Axis 3 Axis 4
Eigenvalue 0.9678 0.0116 0.0203 0.0003
Explained variation (cumulative; %) 96.78 97.94 99.97 100.00
Pseudo-canonical correlation 0.9925 0.8115 0.0000 0.0000
Explained fitted variation (cumulative; %) 98.82 100.00
Table 2 Redundancy analysis (RDA) results between biomass and soil nutrient factors with the application of artificial zeolite
Statistic Axis 1 Axis 2 Axis 3 Axis 4
Eigenvalue 0.8498 0.0093 0.1318 0.0091
Explained variation (cumulative; %) 84.98 85.91 99.09 100.00
Pseudo-canonical correlation 0.9305 0.7083 0.0000 0.0000
Explained fitted variation (cumulative; %) 98.92 100.00
Table 3 RDA analysis results between biomass and soil nutrient factors with the application of microbial fertilizer
Fig. 3 Weight results of various evaluation indicators. MBC/MBN ratio, microbial biomass carbon/microbial biomass nitrogen ratio; SOM, soil organic matter; AN, available nitrogen; AP, available phosphorous; AK, available potassium.
Fig. 4 Euclidean distances of artificial zeolite (AZ; a) and microbial fertilizer (MF; b). AG, A. cristatum; ET, E. dahuricus; ML, M. sativa; T0, 0 g/kg; T1, 5 g/kg; T2, 10 g/kg; T3, 20 g/kg. Dmin, the minimum of distance; Dmax, the maximum of distance.
Fig. 5 Technique for order preference by similarity to ideal solution (TOPSIS) ranking result graph based on entropy weight method. AZ, artificial zeolite; MF, microbial fertilizer; AG, A. cristatum; ET, E. dahuricus; ML, M. sativa; T0, 0 g/kg; T1, 5 g/kg; T2, 10 g/kg; T3, 20 g/kg.
Fig. 6 Schematic diagram of improving mining soils with the application of artificial zeolite (AZ; a) and microbial fertilizer (MF; b). AN, available nitrogen; AP, available phosphorous; AK, available potassium; SOM, soil organic matter.
[1]   Adesemoye A, Torbert H, Kloepper J. 2010. Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Applied Soil Ecology, 46(1): 54-58.
doi: 10.1016/j.apsoil.2010.06.010
[2]   Angst G, Mueller C W, Angst Š, et al. 2018. Fast accrual of C and N in soil organic matter fractions following post-mining reclamation across the USA. Journal of Environmental Management, 209: 216-226.
doi: S0301-4797(17)31229-X pmid: 29294447
[3]   Aparna K, Pasha M, Rao D, et al. 2014. Organic amendments as ecosystem engineers: Microbial, biochemical and genomic evidence of soil health improvement in a tropical arid zone field site. Ecological Engineering, 71: 268-277.
doi: 10.1016/j.ecoleng.2014.07.016
[4]   Bao S. 2000. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 20-25. (in Chinese)
[5]   Baumann K, Sanaullah M, Chabbi A, et al. 2013. Changes in litter chemistry and soil lignin signature during decomposition and stabilisation of 13C labelled wheat roots in three subsoil horizons. Soil Biology and Biochemistry, 67: 55-61.
doi: 10.1016/j.soilbio.2013.07.012
[6]   Behzadian M, Khanmohammadi Otaghsara S, Yazdani M, et al. 2012. A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17): 13051-13069.
doi: 10.1016/j.eswa.2012.05.056
[7]   Brookes P, Landman A, Pruden G, et al. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6): 837-842.
doi: 10.1016/0038-0717(85)90144-0
[8]   Celestina C, Hunt J R, Sale P W, et al. 2019. Attribution of crop yield responses to application of organic amendments: A critical review. Soil & Tillage Research, 186: 135-145.
[9]   Chen D, Wang X, Carrión V J, et al. 2022. Acidic amelioration of soil amendments improves soil health by impacting rhizosphere microbial assemblies. Soil Biology and Biochemistry, 167: 108599, doi: 10.1016/j.soilbio.2022.108599.
doi: 10.1016/j.soilbio.2022.108599
[10]   Dai X, Zhou W, Liu G, et al. 2019. Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments. Geoderma, 337: 1116-1125.
doi: 10.1016/j.geoderma.2018.11.023
[11]   Dębska B, Długosz J, Piotrowska-Długosz A, et al. 2016. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration-results from a field-scale study. Journal of Soils and Sediments, 16(10): 2335-2343.
doi: 10.1007/s11368-016-1430-5
[12]   Farzad N, Morteza K K, Saeid E, et al. 2007. The effects of natural zeolite on vegetative growth, flower and physiological characteristics of African marigold (Tagetes erecta L.'Queen'). Horticulture, Environment, and Biotechnology, 48(4): 241-245.
[13]   Feagley S E, Valdez M S, Hudnall W H. 1994. Papermill sludge, phosphorus, potassium, and lime effect on clover grown on a mine soil. Journal of Environmental Quality, 23(4): 759-765.
[14]   Franks D M, Boger D V, Côte C M, et al. 2011. Sustainable development principles for the disposal of mining and mineral processing wastes. Resources Policy, 36(2): 114-122.
doi: 10.1016/j.resourpol.2010.12.001
[15]   Fu L, Penton C R, Ruan Y, et al. 2017. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biology and Biochemistry, 104: 39-48.
doi: 10.1016/j.soilbio.2016.10.008
[16]   Ge Q, Tian Q, Hou R, et al. 2022. Combing phosphorus-modified hydrochar and zeolite prepared from coal gangue for highly effective immobilization of heavy metals in coal-mining contaminated soil. Chemosphere, 291: 132835, doi: 10.1016/j.chemosphere.2021.132835.
doi: 10.1016/j.chemosphere.2021.132835
[17]   Gmach M R, Cherubin M R, Kaiser K, et al. 2019. Processes that influence dissolved organic matter in the soil: A review. Scientia Agricola, 77(3): e20180164, doi: 10.1590/1678-992X-2018-0164.
doi: 10.1590/1678-992X-2018-0164
[18]   Green S, Renault S. 2008. Influence of papermill sludge on growth of Medicago sativa, Festuca rubra and Agropyron trachycaulum in gold mine tailings: A greenhouse study. Environmental Pollution, 151(3): 524-531.
doi: 10.1016/j.envpol.2007.04.016
[19]   Guo H, Yao J, Cai M, et al. 2012. Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere, 87(11): 1273-1280.
doi: 10.1016/j.chemosphere.2012.01.034 pmid: 22336736
[20]   Hazrati S, Tahmasebi-Sarvestani Z, Mokhtassi-Bidgoli A, et al. 2017. Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L. Agricultural Water Management, 181: 66-72.
doi: 10.1016/j.agwat.2016.11.026
[21]   Hoang S A, Sarkar B, Seshadri B, et al. 2021. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. Journal of Hazardous Materials, 416: 125702, doi: 10.1016/j.jhazmat.2021.125702.
doi: 10.1016/j.jhazmat.2021.125702
[22]   Hou W, Xue X, Li X, et al. 2019. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Research, 236(12): 14-23.
doi: 10.1016/j.fcr.2019.03.006
[23]   Jiang J, Wang Y P, Yu M, et al. 2018. Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chemical Geology, 501: 86-94.
doi: 10.1016/j.chemgeo.2018.10.009
[24]   Knox A, Kaplan D, Adriano D, et al. 2003. Apatite and phillipsite as sequestering agents for metals and radionuclides. Journal of Environmental Quality, 32(2): 515-525.
pmid: 12708675
[25]   Kumari S, Ahirwal J, Maiti S K. 2022. Reclamation of industrial waste dump using grass-legume mixture: An experimental approach to combat land degradation. Ecological Engineering, 174: 106443, doi: 10.1016/j.ecoleng.2021.106443.
doi: 10.1016/j.ecoleng.2021.106443
[26]   Lahori A H, Mierzwa-Hersztek M, Demiraj E, et al. 2020. Direct and residual impacts of zeolite on the remediation of harmful elements in multiple contaminated soils using cabbage in rotation with corn. Chemosphere, 250: 126317, doi: 10.1016/j.chemosphere.2020.126317.
doi: 10.1016/j.chemosphere.2020.126317
[27]   Ledin M, Pedersen K. 1996. The environmental impact of mine wastes-roles of microorganisms and their significance in treatment of mine wastes. Earth-Science Reviews, 41(17): 67-108.
doi: 10.1016/0012-8252(96)00016-5
[28]   Li H, Shi W Y, Shao H B, et al. 2009. The remediation of the lead-polluted garden soil by natural zeolite. Journal of Hazardous Materials, 169(1-3): 1106-1111.
doi: 10.1016/j.jhazmat.2009.04.067 pmid: 19428181
[29]   Li X, Huang L. 2015. Toward a new paradigm for tailings phytostabilization-nature of the substrates, amendment options, and anthropogenic pedogenesis. Critical Reviews in Environmental Science Technology, 45(8): 813-839.
doi: 10.1080/10643389.2014.921977
[30]   Li Y, Xia G, Wu Q, et al. 2022. Zeolite increases grain yield and potassium balance in paddy fields. Geoderma, 405: 115397, doi: 10.1016/j.geoderma.2021.115397.
doi: 10.1016/j.geoderma.2021.115397
[31]   Liu J, Jiang B, Shen J, et al. 2021. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agriculture, Ecosystems & Environment, 311(6): 107286, doi: 10.1016/j.agee.2020.107286.
doi: 10.1016/j.agee.2020.107286
[32]   Liu Z, Lan J, Li W, et al. 2023. Reseeding improved soil and plant characteristics of degraded alfalfa (Medicago sativa) grassland in loess hilly plateau region, China. Ecological Engineering, 190: 106933, doi: 10.1016/j.ecoleng.2023.106933.
doi: 10.1016/j.ecoleng.2023.106933
[33]   Marschner B, Brodowski S, Dreves A, et al. 2008. How relevant is recalcitrance for the stabilization of organic matter in soils?. Journal of Plant Nutrition and Soil Science, 171(1): 91-110.
doi: 10.1002/jpln.v171:1
[34]   Montalvo S, Huiliñir C, Borja R, et al. 2020. Application of zeolites for biological treatment processes of solid wastes and wastewaters-A review. Bioresource Technology, 301: 122808, doi: 10.1016/j.biortech.2020.122808.
doi: 10.1016/j.biortech.2020.122808
[35]   Moraetis D, Papagiannidou S, Pratikakis A, et al. 2016. Effect of zeolite application on potassium release in sandy soils amended with municipal compost. Desalination Water Treatment, 57(28): 13273-13284.
doi: 10.1080/19443994.2015.1065440
[36]   Moreau D, Bardgett R D, Finlay R D, et al. 2019. A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 33(4): 540-552.
doi: 10.1111/1365-2435.13303
[37]   Nisbet A F, Konoplev A V, Shaw G, et al. 1993. Application of fertilisers and ameliorants to reduce soil to plant transfer of radiocaesium and radiostrontium in the medium to long term-a summary. Science of the Total Environment, 137(1): 173-182.
doi: 10.1016/0048-9697(93)90386-K
[38]   Noli F, Tsamos P. 2016. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Science of the Total Environment, 563-564: 377-385.
doi: 10.1016/j.scitotenv.2016.04.098
[39]   Palansooriya K N, Shaheen S M, Chen S S, et al. 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 134: 105046, doi: 10.1016/j.envint.2019.105046.
doi: 10.1016/j.envint.2019.105046
[40]   Rahimi E, Nazari F, Javadi T, et al. 2021. Potassium-enriched clinoptilolite zeolite mitigates the adverse impacts of salinity stress in perennial ryegrass (Lolium perenne L.) by increasing silicon absorption and improving the K/Na ratio. Journal of Environmental Management, 285: 112142, doi: 10.1016/j.jenvman.2021.112142.
doi: 10.1016/j.jenvman.2021.112142
[41]   Raza T, Qadir M F, Khan K S, et al. 2023. Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. Journal of Environmental Management, 344: 118529, doi: 10.1016/j.jenvman.2023.118529.
doi: 10.1016/j.jenvman.2023.118529
[42]   Reichert J M, Suzuki L E A S, Reinert D J, et al. 2009. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102(2): 242-254.
doi: 10.1016/j.still.2008.07.002
[43]   Reynolds W D, Drury C F, Yang X M, et al. 2008. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma, 146(3-4): 466-474.
doi: 10.1016/j.geoderma.2008.06.017
[44]   Ribeiro S S, Schwartz G, Silva A R, et al. 2021. Soil properties under different supplementary organic fertilizers in a restoration site after kaolin mining in the Eastern Amazon. Ecological Engineering, 170(1): 106352, doi: 10.1016/j.ecoleng.2021.106352.
doi: 10.1016/j.ecoleng.2021.106352
[45]   Savvas D, Ntatsi G. 2015. Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196: 66-81.
doi: 10.1016/j.scienta.2015.09.010
[46]   Shrestha R K, Lal R. 2010. Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma, 157(3): 196-205.
doi: 10.1016/j.geoderma.2010.04.013
[47]   Siebielec G, Siebielec S, Lipski D. 2018. Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity. Journal of Cleaner Production, 187: 372-379.
doi: 10.1016/j.jclepro.2018.03.245
[48]   Sun T, Mao X, Ma Q, et al. 2023. Response of rice yield to organic amendments was regulated by soil chemical properties, microbial functional genes and bacterial community rather than fungal community. Applied Soil Ecology, 188: 104923. doi: 10.1016/j.apsoil.2023.104923.
doi: 10.1016/j.apsoil.2023.104923
[49]   Suppes R, Heuss-Aßbichler S. 2021. Resource potential of mine wastes: A conventional and sustainable perspective on a case study tailings mining project. Journal of Cleaner Production, 297(4): 126446, doi: 10.1016/j.jclepro.2021.126446.
doi: 10.1016/j.jclepro.2021.126446
[50]   Trinchera A, Rivera C M, Rinaldi S, et al. 2010. Granular size effect of clinoptilolite on maize seedlings growth. The Open Agriculture Journal, 4(1): 23-30.
doi: 10.2174/1874331501004010023
[51]   Urra J, Mijangos I, Epelde L, et al. 2020. Impact of the application of commercial and farm-made fermented liquid organic amendments on corn yield and soil quality. Applied Soil Ecology, 153: 103643, doi: 10.1016/j.apsoil.2020.103643.
doi: 10.1016/j.apsoil.2020.103643
[52]   Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6): 703-707.
doi: 10.1016/0038-0717(87)90052-6
[53]   Wang B, Chu C, Wei H, et al. 2020a. Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environmental Pollution, 267(3): 115411, doi: 10.1016/j.envpol.2020.115411.
doi: 10.1016/j.envpol.2020.115411
[54]   Wang L, Kwok J S H, Tsang D C W, et al. 2015. Mixture design and treatment methods for recycling contaminated sediment. Journal of Hazardous Materials, 283: 623-632.
doi: 10.1016/j.jhazmat.2014.09.056 pmid: 25464304
[55]   Wang X, Li Y, Wei Y, et al. 2020b. Effects of fertilization and reclamation time on soil bacterial communities in coal mining subsidence areas. Science of the Total Environment, 739(17): 139882, doi: 10.1016/j.scitotenv.2020.139882.
doi: 10.1016/j.scitotenv.2020.139882
[56]   Wei H, Guenet B, Vicca S, et al. 2014. High clay content accelerates the decomposition of fresh organic matter in artificial soils. Soil Biology and Biochemistry, 77: 100-108.
doi: 10.1016/j.soilbio.2014.06.006
[57]   Wong M H. 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6): 775-780.
doi: 10.1016/s0045-6535(02)00232-1 pmid: 12688490
[58]   Wu L, Zheng H, Wang X. 2021. Effects of soil amendments on fractions and stability of soil organic matter in saline-alkaline paddy. Journal of Environmental Management, 294(4): 112993, doi: 10.1016/j.jenvman.2021.112993.
doi: 10.1016/j.jenvman.2021.112993
[59]   Wu Y J, Zhou H, Zou Z J, et al. 2016. A three-year in-situ study on the persistence of a combined amendment (limestone+sepiolite) for remedying paddy soil polluted with heavy metals. Ecotoxicology Environmental Safety, 130: 163-170.
doi: 10.1016/j.ecoenv.2016.04.018
[60]   Xiao E, Ning Z, Xiao T, et al. 2021. Soil bacterial community functions and distribution after mining disturbance. Soil Biology and Biochemistry, 157: 108232, doi: 10.1016/j.soilbio.2021.108232.
doi: 10.1016/j.soilbio.2021.108232
[61]   Xie Z, Yu Z, Li Y, et al. 2022. Soil microbial metabolism on carbon and nitrogen transformation links the crop-residue contribution to soil organic carbon. Npj Biofilms and Microbiomes, 8(1): 14, doi: 10.1038/s41522-022-00277-0.
doi: 10.1038/s41522-022-00277-0 pmid: 35365687
[62]   Xu R, Li B, Xiao E, et al. 2020. Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage. Environmental Pollution, 261: 114226, doi: 10.1016/j.envpol.2020.114226.
doi: 10.1016/j.envpol.2020.114226
[63]   Ye Z H, Shu W S, Zhang Z Q, et al. 2002. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere, 47(10): 1103-1111.
pmid: 12137044
[64]   Zahedi H, Noormohammadi G, Rad A S, et al. 2009. The effects of zeolite and foliar applications of selenium on growth, yield and yield components of three canola cultivars under drought stress. World Applied Sciences Journal, 7(2): 255-262.
[65]   Zhao H, Zhang J, Wu F, et al. 2022. A 3-year field study on lead immobilisation in paddy soil by a novel active silicate amendment. Environmental Pollution, 292: 118325, doi: 10.1016/j.envpol.2021.118325.
doi: 10.1016/j.envpol.2021.118325
[66]   Zhao L, Cao X, Zheng W, et al. 2016. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry & Engineering, 4(3): 1630-1636.
[67]   Zheng T, Zeng H, Zhang X, et al. 2023. Differential responses of soil community to reclamation with legumes versus grasses after an application of blended amendments in mining-disturbed soils. Journal of Cleaner Production, 418: 138113, doi: 10.1016/j.jclepro.2023.138113.
doi: 10.1016/j.jclepro.2023.138113
[1] Ayesha ALAM, Elke GABRIEL-NEUMANN. Prospects and limitations of soil amendment and irrigation techniques for the water-saving public urban greenery and ephemeral weed management in the sandy soils of the United Arab Emirates[J]. Journal of Arid Land, 2024, 16(9): 1288-1302.
[2] YANG Jianhua, LI Yaqian, ZHOU Lei, ZHANG Zhenqing, ZHOU Hongkui, WU Jianjun. Effects of temperature and precipitation on drought trends in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(8): 1098-1117.
[3] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[4] SHEN Jianxiang, WANG Xin, WANG Lei, WANG Jiahui, QU Wenjie, ZHANG Xue, CHANG Xuanxuan, YANG Xinguo, CHEN Lin, QIN Weichun, ZHANG Bo, NIU Jinshuai. Spatiotemporal characteristics of seed rain and soil seed bank of artificial Caragana korshinskii Kom. forest in the Tengger Desert, China[J]. Journal of Arid Land, 2024, 16(4): 550-566.
[5] TANG Xiaoyan, FENG Yongjiu, LEI Zhenkun, CHEN Shurui, WANG Jiafeng, WANG Rong, TANG Panli, WANG Mian, JIN Yanmin, TONG Xiaohua. Urban growth scenario projection using heuristic cellular automata in arid areas considering the drought impact[J]. Journal of Arid Land, 2024, 16(4): 580-601.
[6] BAO Anming, YU Tao, XU Wenqiang, LEI Jiaqiang, JIAPAER Guli, CHEN Xi, Tojibaev KOMILJON, Shomurodov KHABIBULLO, Xabibullaev B SAGIDULLAEVICH, Idirisov KAMALATDIN. Ecological problems and ecological restoration zoning of the Aral Sea[J]. Journal of Arid Land, 2024, 16(3): 315-330.
[7] MAO Zhengjun, WANG Munan, CHU Jiwei, SUN Jiewen, LIANG Wei, YU Haiyong. Feature extraction and analysis of reclaimed vegetation in ecological restoration area of abandoned mines based on hyperspectral remote sensing images[J]. Journal of Arid Land, 2024, 16(10): 1409-1425.
[8] NAN Weige, DONG Zhibao, ZHOU Zhengchao, LI Qiang, CHEN Guoxiang. Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land, China[J]. Journal of Arid Land, 2024, 16(1): 14-28.
[9] Mohsen SHARAFATMANDRAD, Azam KHOSRAVI MASHIZI. Evaluation of restoration success in arid rangelands of Iran based on the variation of ecosystem services[J]. Journal of Arid Land, 2023, 15(11): 1290-1314.
[10] WANG Yaobin, SHANGGUAN Zhouping. Formation mechanisms and remediation techniques for low-efficiency artificial shelter forests on the Chinese Loess Plateau[J]. Journal of Arid Land, 2022, 14(8): 837-848.
[11] Keiichi KIMURA, Akito KONO, Susumu YAMADA, Tomoyo F KOYANAGI, Toshiya OKURO. Grazing and heat stress protection of native grass by a sand-fixing shrub in the arid lands of northern China[J]. Journal of Arid Land, 2022, 14(8): 867-876.
[12] WANG Yuxia, ZHANG Jing, YU Xiaojun. Effects of mulch and planting methods on Medicago ruthenica seed yield and soil physical-chemical properties[J]. Journal of Arid Land, 2022, 14(8): 894-909.
[13] WANG Kun, WANG Xiaoxia, FEI Hongyan, WAN Chuanyu, HAN Fengpeng. Changes in diversity, composition and assembly processes of soil microbial communities during Robinia pseudoacacia L. restoration on the Loess Plateau, China[J]. Journal of Arid Land, 2022, 14(5): 561-575.
[14] YAO Kaixuan, Abudureheman HALIKE, CHEN Limei, WEI Qianqian. Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang[J]. Journal of Arid Land, 2022, 14(3): 262-283.
[15] LI Feng, LI Yaoming, ZHOU Xuewen, YIN Zun, LIU Tie, XIN Qinchuan. Modeling and analyzing supply-demand relationships of water resources in Xinjiang from a perspective of ecosystem services[J]. Journal of Arid Land, 2022, 14(2): 115-138.