Research article |
|
|
|
|
Combination of artificial zeolite and microbial fertilizer to improve mining soils in an arid area of Inner Mongolia, China |
LI Wenye1, ZHANG Jianfeng2, SONG Shuangshuang3, LIANG Yao4, SUN Baoping1,*(), WU Yi5, MAO Xiao6, LIN Yachao1 |
1School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China 2China ENFI Engineering Co., Ltd., Beijing 100038, China 3PIESAT Information Technology Co., Ltd., Beijing 100195, China 4Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 5Shanxi Dadi Minji Ecological Environment Co., Ltd., Beijing Branch, Beijing 100083, China 6Bureau of Agriculture and Rural Affairs, Wangcheng District, Changsha 410211, China |
|
|
Abstract Restoration of mining soils is important to the vegetation and environment. This study aimed to explore the variations in soil nutrient contents, microbial abundance, and biomass under different gradients of substrate amendments in mining soils to select effective measures. Soil samples were collected from the Bayan Obo mining region in Inner Mongolia Autonomous Region, China. Contents of soil organic matter (SOM), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon/microbial biomass nitrogen (MBC/MBN) ratio, biomass, and bacteria, fungi, and actinomycetes abundance were assessed in Agropyron cristatum L. Gaertn., Elymus dahuricus Turcz., and Medicago sativa L. soils with artificial zeolite (AZ) and microbial fertilizer (MF) applied at T0 (0 g/kg), T1 (5 g/kg), T2 (10 g/kg), and T3 (20 g/kg). Redundancy analysis (RDA) and technique for order preference by similarity to ideal solution (TOPSIS) were used to identify the main factors controlling the variation of biomass. Results showed that chemical indices and microbial content of restored soils were far greater than those of control. The application of AZ significantly increases SOM, AN, and AP by 20.27%, 23.61%, and 40.43%, respectively. AZ significantly increased bacteria, fungi, and actinomycetes abundance by 0.63, 3.12, and 1.93 times of control, respectively. RDA indicated that AN, MBC/MBN ratio, and SOM were dominant predictors for biomass across samples with AZ application, explaining 87.6% of the biomass variance. SOM, MBC/MBN ratio, and AK were dominant predictors with MF application, explaining 82.9% of the biomass variance. TOPSIS indicated that T2 was the best dosage and the three plant species could all be used to repair mining soils. AZ and MF application at T2 concentration in the mining soils with M. sativa was found to be the most appropriate measure.
|
Received: 02 June 2023
Published: 30 September 2023
|
Corresponding Authors:
* SUN Baoping (E-mail: sunbp@163.com)
|
Cite this article:
LI Wenye, ZHANG Jianfeng, SONG Shuangshuang, LIANG Yao, SUN Baoping, WU Yi, MAO Xiao, LIN Yachao. Combination of artificial zeolite and microbial fertilizer to improve mining soils in an arid area of Inner Mongolia, China. Journal of Arid Land, 2023, 15(9): 1067-1083.
URL:
http://jal.xjegi.com/10.1007/s40333-023-0028-1 OR http://jal.xjegi.com/Y2023/V15/I9/1067
|
|
|
[1] |
Adesemoye A, Torbert H, Kloepper J. 2010. Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Applied Soil Ecology, 46(1): 54-58.
doi: 10.1016/j.apsoil.2010.06.010
|
|
|
[2] |
Angst G, Mueller C W, Angst Š, et al. 2018. Fast accrual of C and N in soil organic matter fractions following post-mining reclamation across the USA. Journal of Environmental Management, 209: 216-226.
doi: S0301-4797(17)31229-X
pmid: 29294447
|
|
|
[3] |
Aparna K, Pasha M, Rao D, et al. 2014. Organic amendments as ecosystem engineers: Microbial, biochemical and genomic evidence of soil health improvement in a tropical arid zone field site. Ecological Engineering, 71: 268-277.
doi: 10.1016/j.ecoleng.2014.07.016
|
|
|
[4] |
Bao S. 2000. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 20-25. (in Chinese)
|
|
|
[5] |
Baumann K, Sanaullah M, Chabbi A, et al. 2013. Changes in litter chemistry and soil lignin signature during decomposition and stabilisation of 13C labelled wheat roots in three subsoil horizons. Soil Biology and Biochemistry, 67: 55-61.
doi: 10.1016/j.soilbio.2013.07.012
|
|
|
[6] |
Behzadian M, Khanmohammadi Otaghsara S, Yazdani M, et al. 2012. A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17): 13051-13069.
doi: 10.1016/j.eswa.2012.05.056
|
|
|
[7] |
Brookes P, Landman A, Pruden G, et al. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6): 837-842.
doi: 10.1016/0038-0717(85)90144-0
|
|
|
[8] |
Celestina C, Hunt J R, Sale P W, et al. 2019. Attribution of crop yield responses to application of organic amendments: A critical review. Soil & Tillage Research, 186: 135-145.
|
|
|
[9] |
Chen D, Wang X, Carrión V J, et al. 2022. Acidic amelioration of soil amendments improves soil health by impacting rhizosphere microbial assemblies. Soil Biology and Biochemistry, 167: 108599, doi: 10.1016/j.soilbio.2022.108599.
doi: 10.1016/j.soilbio.2022.108599
|
|
|
[10] |
Dai X, Zhou W, Liu G, et al. 2019. Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments. Geoderma, 337: 1116-1125.
doi: 10.1016/j.geoderma.2018.11.023
|
|
|
[11] |
Dębska B, Długosz J, Piotrowska-Długosz A, et al. 2016. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration-results from a field-scale study. Journal of Soils and Sediments, 16(10): 2335-2343.
doi: 10.1007/s11368-016-1430-5
|
|
|
[12] |
Farzad N, Morteza K K, Saeid E, et al. 2007. The effects of natural zeolite on vegetative growth, flower and physiological characteristics of African marigold (Tagetes erecta L.'Queen'). Horticulture, Environment, and Biotechnology, 48(4): 241-245.
|
|
|
[13] |
Feagley S E, Valdez M S, Hudnall W H. 1994. Papermill sludge, phosphorus, potassium, and lime effect on clover grown on a mine soil. Journal of Environmental Quality, 23(4): 759-765.
|
|
|
[14] |
Franks D M, Boger D V, Côte C M, et al. 2011. Sustainable development principles for the disposal of mining and mineral processing wastes. Resources Policy, 36(2): 114-122.
doi: 10.1016/j.resourpol.2010.12.001
|
|
|
[15] |
Fu L, Penton C R, Ruan Y, et al. 2017. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biology and Biochemistry, 104: 39-48.
doi: 10.1016/j.soilbio.2016.10.008
|
|
|
[16] |
Ge Q, Tian Q, Hou R, et al. 2022. Combing phosphorus-modified hydrochar and zeolite prepared from coal gangue for highly effective immobilization of heavy metals in coal-mining contaminated soil. Chemosphere, 291: 132835, doi: 10.1016/j.chemosphere.2021.132835.
doi: 10.1016/j.chemosphere.2021.132835
|
|
|
[17] |
Gmach M R, Cherubin M R, Kaiser K, et al. 2019. Processes that influence dissolved organic matter in the soil: A review. Scientia Agricola, 77(3): e20180164, doi: 10.1590/1678-992X-2018-0164.
doi: 10.1590/1678-992X-2018-0164
|
|
|
[18] |
Green S, Renault S. 2008. Influence of papermill sludge on growth of Medicago sativa, Festuca rubra and Agropyron trachycaulum in gold mine tailings: A greenhouse study. Environmental Pollution, 151(3): 524-531.
doi: 10.1016/j.envpol.2007.04.016
|
|
|
[19] |
Guo H, Yao J, Cai M, et al. 2012. Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere, 87(11): 1273-1280.
doi: 10.1016/j.chemosphere.2012.01.034
pmid: 22336736
|
|
|
[20] |
Hazrati S, Tahmasebi-Sarvestani Z, Mokhtassi-Bidgoli A, et al. 2017. Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L. Agricultural Water Management, 181: 66-72.
doi: 10.1016/j.agwat.2016.11.026
|
|
|
[21] |
Hoang S A, Sarkar B, Seshadri B, et al. 2021. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. Journal of Hazardous Materials, 416: 125702, doi: 10.1016/j.jhazmat.2021.125702.
doi: 10.1016/j.jhazmat.2021.125702
|
|
|
[22] |
Hou W, Xue X, Li X, et al. 2019. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Research, 236(12): 14-23.
doi: 10.1016/j.fcr.2019.03.006
|
|
|
[23] |
Jiang J, Wang Y P, Yu M, et al. 2018. Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chemical Geology, 501: 86-94.
doi: 10.1016/j.chemgeo.2018.10.009
|
|
|
[24] |
Knox A, Kaplan D, Adriano D, et al. 2003. Apatite and phillipsite as sequestering agents for metals and radionuclides. Journal of Environmental Quality, 32(2): 515-525.
pmid: 12708675
|
|
|
[25] |
Kumari S, Ahirwal J, Maiti S K. 2022. Reclamation of industrial waste dump using grass-legume mixture: An experimental approach to combat land degradation. Ecological Engineering, 174: 106443, doi: 10.1016/j.ecoleng.2021.106443.
doi: 10.1016/j.ecoleng.2021.106443
|
|
|
[26] |
Lahori A H, Mierzwa-Hersztek M, Demiraj E, et al. 2020. Direct and residual impacts of zeolite on the remediation of harmful elements in multiple contaminated soils using cabbage in rotation with corn. Chemosphere, 250: 126317, doi: 10.1016/j.chemosphere.2020.126317.
doi: 10.1016/j.chemosphere.2020.126317
|
|
|
[27] |
Ledin M, Pedersen K. 1996. The environmental impact of mine wastes-roles of microorganisms and their significance in treatment of mine wastes. Earth-Science Reviews, 41(17): 67-108.
doi: 10.1016/0012-8252(96)00016-5
|
|
|
[28] |
Li H, Shi W Y, Shao H B, et al. 2009. The remediation of the lead-polluted garden soil by natural zeolite. Journal of Hazardous Materials, 169(1-3): 1106-1111.
doi: 10.1016/j.jhazmat.2009.04.067
pmid: 19428181
|
|
|
[29] |
Li X, Huang L. 2015. Toward a new paradigm for tailings phytostabilization-nature of the substrates, amendment options, and anthropogenic pedogenesis. Critical Reviews in Environmental Science Technology, 45(8): 813-839.
doi: 10.1080/10643389.2014.921977
|
|
|
[30] |
Li Y, Xia G, Wu Q, et al. 2022. Zeolite increases grain yield and potassium balance in paddy fields. Geoderma, 405: 115397, doi: 10.1016/j.geoderma.2021.115397.
doi: 10.1016/j.geoderma.2021.115397
|
|
|
[31] |
Liu J, Jiang B, Shen J, et al. 2021. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agriculture, Ecosystems & Environment, 311(6): 107286, doi: 10.1016/j.agee.2020.107286.
doi: 10.1016/j.agee.2020.107286
|
|
|
[32] |
Liu Z, Lan J, Li W, et al. 2023. Reseeding improved soil and plant characteristics of degraded alfalfa (Medicago sativa) grassland in loess hilly plateau region, China. Ecological Engineering, 190: 106933, doi: 10.1016/j.ecoleng.2023.106933.
doi: 10.1016/j.ecoleng.2023.106933
|
|
|
[33] |
Marschner B, Brodowski S, Dreves A, et al. 2008. How relevant is recalcitrance for the stabilization of organic matter in soils?. Journal of Plant Nutrition and Soil Science, 171(1): 91-110.
doi: 10.1002/jpln.v171:1
|
|
|
[34] |
Montalvo S, Huiliñir C, Borja R, et al. 2020. Application of zeolites for biological treatment processes of solid wastes and wastewaters-A review. Bioresource Technology, 301: 122808, doi: 10.1016/j.biortech.2020.122808.
doi: 10.1016/j.biortech.2020.122808
|
|
|
[35] |
Moraetis D, Papagiannidou S, Pratikakis A, et al. 2016. Effect of zeolite application on potassium release in sandy soils amended with municipal compost. Desalination Water Treatment, 57(28): 13273-13284.
doi: 10.1080/19443994.2015.1065440
|
|
|
[36] |
Moreau D, Bardgett R D, Finlay R D, et al. 2019. A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 33(4): 540-552.
doi: 10.1111/1365-2435.13303
|
|
|
[37] |
Nisbet A F, Konoplev A V, Shaw G, et al. 1993. Application of fertilisers and ameliorants to reduce soil to plant transfer of radiocaesium and radiostrontium in the medium to long term-a summary. Science of the Total Environment, 137(1): 173-182.
doi: 10.1016/0048-9697(93)90386-K
|
|
|
[38] |
Noli F, Tsamos P. 2016. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Science of the Total Environment, 563-564: 377-385.
doi: 10.1016/j.scitotenv.2016.04.098
|
|
|
[39] |
Palansooriya K N, Shaheen S M, Chen S S, et al. 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 134: 105046, doi: 10.1016/j.envint.2019.105046.
doi: 10.1016/j.envint.2019.105046
|
|
|
[40] |
Rahimi E, Nazari F, Javadi T, et al. 2021. Potassium-enriched clinoptilolite zeolite mitigates the adverse impacts of salinity stress in perennial ryegrass (Lolium perenne L.) by increasing silicon absorption and improving the K/Na ratio. Journal of Environmental Management, 285: 112142, doi: 10.1016/j.jenvman.2021.112142.
doi: 10.1016/j.jenvman.2021.112142
|
|
|
[41] |
Raza T, Qadir M F, Khan K S, et al. 2023. Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. Journal of Environmental Management, 344: 118529, doi: 10.1016/j.jenvman.2023.118529.
doi: 10.1016/j.jenvman.2023.118529
|
|
|
[42] |
Reichert J M, Suzuki L E A S, Reinert D J, et al. 2009. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102(2): 242-254.
doi: 10.1016/j.still.2008.07.002
|
|
|
[43] |
Reynolds W D, Drury C F, Yang X M, et al. 2008. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma, 146(3-4): 466-474.
doi: 10.1016/j.geoderma.2008.06.017
|
|
|
[44] |
Ribeiro S S, Schwartz G, Silva A R, et al. 2021. Soil properties under different supplementary organic fertilizers in a restoration site after kaolin mining in the Eastern Amazon. Ecological Engineering, 170(1): 106352, doi: 10.1016/j.ecoleng.2021.106352.
doi: 10.1016/j.ecoleng.2021.106352
|
|
|
[45] |
Savvas D, Ntatsi G. 2015. Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196: 66-81.
doi: 10.1016/j.scienta.2015.09.010
|
|
|
[46] |
Shrestha R K, Lal R. 2010. Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma, 157(3): 196-205.
doi: 10.1016/j.geoderma.2010.04.013
|
|
|
[47] |
Siebielec G, Siebielec S, Lipski D. 2018. Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity. Journal of Cleaner Production, 187: 372-379.
doi: 10.1016/j.jclepro.2018.03.245
|
|
|
[48] |
Sun T, Mao X, Ma Q, et al. 2023. Response of rice yield to organic amendments was regulated by soil chemical properties, microbial functional genes and bacterial community rather than fungal community. Applied Soil Ecology, 188: 104923. doi: 10.1016/j.apsoil.2023.104923.
doi: 10.1016/j.apsoil.2023.104923
|
|
|
[49] |
Suppes R, Heuss-Aßbichler S. 2021. Resource potential of mine wastes: A conventional and sustainable perspective on a case study tailings mining project. Journal of Cleaner Production, 297(4): 126446, doi: 10.1016/j.jclepro.2021.126446.
doi: 10.1016/j.jclepro.2021.126446
|
|
|
[50] |
Trinchera A, Rivera C M, Rinaldi S, et al. 2010. Granular size effect of clinoptilolite on maize seedlings growth. The Open Agriculture Journal, 4(1): 23-30.
doi: 10.2174/1874331501004010023
|
|
|
[51] |
Urra J, Mijangos I, Epelde L, et al. 2020. Impact of the application of commercial and farm-made fermented liquid organic amendments on corn yield and soil quality. Applied Soil Ecology, 153: 103643, doi: 10.1016/j.apsoil.2020.103643.
doi: 10.1016/j.apsoil.2020.103643
|
|
|
[52] |
Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6): 703-707.
doi: 10.1016/0038-0717(87)90052-6
|
|
|
[53] |
Wang B, Chu C, Wei H, et al. 2020a. Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environmental Pollution, 267(3): 115411, doi: 10.1016/j.envpol.2020.115411.
doi: 10.1016/j.envpol.2020.115411
|
|
|
[54] |
Wang L, Kwok J S H, Tsang D C W, et al. 2015. Mixture design and treatment methods for recycling contaminated sediment. Journal of Hazardous Materials, 283: 623-632.
doi: 10.1016/j.jhazmat.2014.09.056
pmid: 25464304
|
|
|
[55] |
Wang X, Li Y, Wei Y, et al. 2020b. Effects of fertilization and reclamation time on soil bacterial communities in coal mining subsidence areas. Science of the Total Environment, 739(17): 139882, doi: 10.1016/j.scitotenv.2020.139882.
doi: 10.1016/j.scitotenv.2020.139882
|
|
|
[56] |
Wei H, Guenet B, Vicca S, et al. 2014. High clay content accelerates the decomposition of fresh organic matter in artificial soils. Soil Biology and Biochemistry, 77: 100-108.
doi: 10.1016/j.soilbio.2014.06.006
|
|
|
[57] |
Wong M H. 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6): 775-780.
doi: 10.1016/s0045-6535(02)00232-1
pmid: 12688490
|
|
|
[58] |
Wu L, Zheng H, Wang X. 2021. Effects of soil amendments on fractions and stability of soil organic matter in saline-alkaline paddy. Journal of Environmental Management, 294(4): 112993, doi: 10.1016/j.jenvman.2021.112993.
doi: 10.1016/j.jenvman.2021.112993
|
|
|
[59] |
Wu Y J, Zhou H, Zou Z J, et al. 2016. A three-year in-situ study on the persistence of a combined amendment (limestone+sepiolite) for remedying paddy soil polluted with heavy metals. Ecotoxicology Environmental Safety, 130: 163-170.
doi: 10.1016/j.ecoenv.2016.04.018
|
|
|
[60] |
Xiao E, Ning Z, Xiao T, et al. 2021. Soil bacterial community functions and distribution after mining disturbance. Soil Biology and Biochemistry, 157: 108232, doi: 10.1016/j.soilbio.2021.108232.
doi: 10.1016/j.soilbio.2021.108232
|
|
|
[61] |
Xie Z, Yu Z, Li Y, et al. 2022. Soil microbial metabolism on carbon and nitrogen transformation links the crop-residue contribution to soil organic carbon. Npj Biofilms and Microbiomes, 8(1): 14, doi: 10.1038/s41522-022-00277-0.
doi: 10.1038/s41522-022-00277-0
pmid: 35365687
|
|
|
[62] |
Xu R, Li B, Xiao E, et al. 2020. Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage. Environmental Pollution, 261: 114226, doi: 10.1016/j.envpol.2020.114226.
doi: 10.1016/j.envpol.2020.114226
|
|
|
[63] |
Ye Z H, Shu W S, Zhang Z Q, et al. 2002. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere, 47(10): 1103-1111.
pmid: 12137044
|
|
|
[64] |
Zahedi H, Noormohammadi G, Rad A S, et al. 2009. The effects of zeolite and foliar applications of selenium on growth, yield and yield components of three canola cultivars under drought stress. World Applied Sciences Journal, 7(2): 255-262.
|
|
|
[65] |
Zhao H, Zhang J, Wu F, et al. 2022. A 3-year field study on lead immobilisation in paddy soil by a novel active silicate amendment. Environmental Pollution, 292: 118325, doi: 10.1016/j.envpol.2021.118325.
doi: 10.1016/j.envpol.2021.118325
|
|
|
[66] |
Zhao L, Cao X, Zheng W, et al. 2016. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry & Engineering, 4(3): 1630-1636.
|
|
|
[67] |
Zheng T, Zeng H, Zhang X, et al. 2023. Differential responses of soil community to reclamation with legumes versus grasses after an application of blended amendments in mining-disturbed soils. Journal of Cleaner Production, 418: 138113, doi: 10.1016/j.jclepro.2023.138113.
doi: 10.1016/j.jclepro.2023.138113
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|