Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (4): 441-454    DOI: 10.1007/s40333-022-0014-z
Research article     
Spatial variability between glacier mass balance and environmental factors in the High Mountain Asia
ZHANG Zhen1,2,*(), GU Zhengnan1, Hu Kehong1, XU Yangyang1, ZHAO Jinbiao1
1School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China
2State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Download: HTML     PDF(757KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

High Mountain Asia (HMA) region contains the world's highest peaks and the largest concentration of glaciers except for the polar regions, making it sensitive to global climate change. In the context of global warming, most glaciers in the HMA show various degrees of negative mass balance, while some show positive or near-neutral balance. Many studies have reported that spatial heterogeneity in glacier mass balance is strongly related to a combination of climate parameters. However, this spatial heterogeneity may vary according to the dynamic patterns of climate change at regional or continental scale. The reasons for this may be related to non-climatic factors. To understand the mechanisms by which spatial heterogeneity forms, it is necessary to establish the relationships between glacier mass balance and environmental factors related to topography and morphology. In this study, climate, topography, morphology, and other environmental factors are investigated. Geodetector and linear regression analysis were used to explore the driving factors of spatial variability of glacier mass balance in the HMA by using elevation change data during 2000-2016. The results show that the coverage of supraglacial debris is an essential factor affecting the spatial heterogeneity of glacier mass balance, followed by climatic factors and topographic factors, especially the median elevation and slope in the HMA. There are some differences among mountain regions and the explanatory power of climatic factors on the spatial differentiation of glacier mass balance in each mountain region is weak, indicating that climatic background of each mountain region is similar. Therefore, under similar climatic backgrounds, the median elevation and slope are most correlated with glacier mass balance. The interaction of various factors is enhanced, but no unified interaction factor plays a primary role. Topographic and morphological factors also control the spatial heterogeneity of glacier mass balance by influencing its sensitivity to climate change. In conclusion, geodetector method provides an objective framework for revealing the factors controlling glacier mass balance.



Key wordsgeodetector      glacier change      mass balance      climate change      High Mountain Asia     
Received: 30 December 2021      Published: 30 April 2022
Corresponding Authors: *ZHANG Zhen (E-mail: zhangzhen@aust.edu.cn)
Cite this article:

ZHANG Zhen, GU Zhengnan, Hu Kehong, XU Yangyang, ZHAO Jinbiao. Spatial variability between glacier mass balance and environmental factors in the High Mountain Asia. Journal of Arid Land, 2022, 14(4): 441-454.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0014-z     OR     http://jal.xjegi.com/Y2022/V14/I4/441

Fig. 1 Principle of geodetector. x, independent variable; y, dependent variable; h, the strata of x or y (classification or partition); ${{\bar{Y}}_{h}}$, the mean value of strata h; σ2h, the variance of y at strata h; σ2, the variance of y at the whole region.
Fig. 2 Spatial distribution of the glacier mass balance change in the High Mountain Asia. Mts, Mountains.
Region Factors arranged from the largest to the smallest by the q value Dominant interaction (q)
West Himalaya S (0.20), NDG (0.08), Zmax (0.07), DG (0.06), P (0.05), Pc (0.03), Tc (0.03), Zmed (0.03), PDG (0.03), T (0.03), Lmax (0.02), HI (0.02), A (0.02) SP (0.25)
Central Himalaya NDG (0.18), S (0.18), DG (0.10), DCR (0.08), Zmed (0.08), HI (0.07), Zmax (0.07), Zmin (0.07), Tc (0.04), PDG (0.03), T (0.03), A (0.02), Lmax (0.02), Pc (0.02) NDG∩DCR (0.33)
East Himalaya S (0.25), Zmed (0.17), Zmax (0.17), DCR (0.16), NDG (0.16), Zmin (0.15), P (0.13), DG (0.12), T (0.11), PDG (0.09) SZmed (0.45)
Karakoram DCR (0.05), Zmed (0.04), Zmax (0.04), Tc (0.04), Zmin (0.04), P (0.03), T (0.03), S (0.03), Lmax (0.02), HI (0.02), A (0.02), NDG (0.01), Pc (0.01), DG (0.01) DCR∩Zmed (0.13)
Pamir Plateau S (0.13), Zmed (0.09), DCR (0.07), Pc (0.06), NDG (0.06), As (0.06), P (0.05), Zmax (0.05), DG (0.04), T (0.03), HI (0.03), Tc (0.03), Zmin (0.03), PDG (0.02) SPc (0.22)
Hissar Alay P (0.16), HI (0.15), Tc (0.15), S (0.14), T (0.12), Zmin (0.11), Pc (0.10), Lmax (0.09) TcT (0.41)
Hindu Kush S (0.41), DG (0.35), NDG (0.35), Zmax (0.24), PDG (0.17), Zmed (0.13), P (0.11), Pc (0.10), Zmin (0.09), Tc (0.08), T (0.08), Lmax (0.07), HI (0.06) S∩NDG (0.55)
Western Tianshan S (0.18), Zmed (0.17), Zmax (0.16), T (0.15), NDG (0.13), P (0.12), DG (0.11), Tc (0.09), PDG (0.05), DCR (0.04), Zmin (0.04), Pc (0.04), As (0.04), HI (0.03) ZmedT (0.28)
Eastern Tianshan Zmed (0.30), S (0.28), Zmax (0.27), NDG (0.25), DG (0.22), HI (0.15), Pc (0.11), T (0.08), Zmin (0.06) S∩HI (0.46)
Western Kunlun P (0.09), Lmax (0.07), A (0.07), Zmed (0.05), DCR (0.04), Zmin (0.03), Tc (0.03), Zmax (0.03), As (0.02), S (0.02) PLmax (0.18)
Eastern Kunlun Zmed (0.28), Zmax (0.28), Zmin (0.26), T (0.23), Pc (0.23), P (0.15), DG (0.11), S (0.09), NDG (0.08), DCR (0.06) ZmedPc (0.52)
Tibetan Interior Mountains S (0.22), Zmed (0.21), Pc (0.21), P (0.20), Zmin (0.18), DCR (0.18), T (0.13),
Lmax (0.09)
S∩DCR (0.46)
Tanggula Zmed (0.44), P (0.28), DCR (0.26), Zmin (0.25), Zmax (0.24), NDG (0.23), Tc (0.22), T (0.18), Pc (0.18) ZmedA (0.61)
Qilian Tc (0.17), P (0.15), T (0.14), Zmed (0.14), Zmax (0.08) ZmedT (0.34)
Eastern Tibetan Plateau Zmed (0.75), Zmax (0.72), PDG (0.71), DG (0.65) ZmedT (0.99)
Gangdise Mountains Zmed (0.52), Zmax (0.50), S (0.44), Pc (0.43), Zmin (0.38) ZminT (0.79)
Nyainqêntanglha S (0.12), Lmax (0.10), P (0.08), Tc (0.08), A (0.08), Zmed (0.07), T (0.05), Zmax (0.04), PDG (0.04), Zmin (0.04), Pc (0.04), As (0.04), HI (0.03), DG (0.03), DCR (0.02) SLmax (0.23)
Hengduan DG (0.49), Zmin (0.49), S (0.46), PDG (0.45), NDG (0.44), Zmax (0.38), Pc (0.29), Tc (0.21), T (0.18), Zmed (0.18), HI (0.18), DCR (0.17), Lmax (0.16) ZminAs (0.68)
HMA DCR (0.14), T (0.10), Pc (0.10), P (0.08), S (0.08), Zmed (0.06), Zmax (0.05), NDG (0.05), DG (0.03), HI (0.03), Tc (0.02), Zmin (0.02), PDG (0.02), Lmax (0.01) DCR∩S (0.30)
Table 1 Geodetector's results for different mountain regions
Region A Zmin Zmax Zmed S As Lmax DCR
West Himalaya -0.11** -0.04 0.21** 0.11** 0.45** 0.03 -0.11** -0.07
Central Himalaya -0.09* -0.09* 0.22** 0.20** 0.43** 0.02 -0.13** -0.15**
East Himalaya -0.00 0.03 0.34** 0.25** 0.48** -0.02 -0.03 -0.08
Karakoram -0.10** -0.06* -0.08** -0.05* 0.14** 0.04 -0.13** -0.12**
Pamir Plateau -0.01 0.08* 0.22** 0.25** 0.34** 0.11** -0.03 -0.06
Hissar Alay -0.20* -0.13 -0.07 0.03 0.21* 0.06 -0.22** -0.17*
Hindu Kush 0.05 -0.19** 0.43** 0.27** 0.63** 0.02 0.12 -0.09
Western Tianshan -0.04 0.06 0.31** 0.40** 0.42** -0.05 -0.05 0.05
Eastern Tianshan 0.03 0.25** 0.49** 0.54** 0.52** 0.08 0.07 0.12
Western Kunlun -0.24** -0.10* -0.17** -0.14** 0.10** 0.16** -0.24** -0.10*
Eastern Kunlun -0.13 0.39** 0.37** 0.53** 0.28** -0.06 -0.05 0.19**
Tibetan Interior Mountains -0.01 -0.30** -0.16 -0.18 -0.10 0.04 -0.02 -0.16
Tanggula -0.02 0.19* 0.44** 0.64** 0.20* 0.03 -0.01 -0.31**
Qilian -0.04 0.02 0.26** 0.28** 0.21* 0.05 0.02 -0.03
Eastern Tibetan Plateau 0.18 -0.04 0.82** 0.85** 0.17 0.24 0.30 -0.24
Gangdise Mountains 0.01 0.52** 0.60** 0.70** 0.59** 0.26 -0.16 -0.35*
Nyainqêntanglha -0.24** 0.01 -0.06 0.06 0.34** -0.01 -0.31** 0.02
Hengduan Shan 0.26** -0.58** 0.47** -0.02 0.63** 0.14 0.32** 0.32**
HMA -0.00 0.11** 0.19** 0.20** 0.27** 0.01 -0.01 -0.19**
Table 2 Correlation matrix analyzing glacier mass changes and environmental factors
Region DG PDG NDG HI P T Pc Tc
West Himalaya 0.23** 0.15** 0.25** -0.10** 0.03 0.07* 0.06 -0.09*
Central Himalaya 0.26** 0.10* 0.38** -0.25** -0.03 0.06 0.04 0.00
East Himalaya 0.29** 0.19** 0.31** -0.13* 0.21** 0.04 0.05 -0.07
Karakoram -0.00 -0.03 0.03 -0.09** 0.05* -0.07** -0.03 -0.11**
Pamir Plateau 0.12** 0.05 0.17** -0.14** -0.13** -0.12** -0.17** 0.11**
Hissar Alay 0.04 -0.10 0.21* -0.37** -0.32** -0.26** -0.20* -0.29**
Hindu Kush 0.47** 0.35** 0.50** -0.20** 0.24** 0.16* 0.25** 0.08
Western Tianshan 0.22** 0.15** 0.27** -0.17** -0.21** -0.31** 0.11** -0.04
Eastern Tianshan 0.40** 0.17* 0.50** -0.33** 0.02 -0.09 0.33** 0.06
Western Kunlun -0.04 -0.03 -0.04 0.01 -0.12** -0.08* -0.03 0.10*
Eastern Kunlun 0.15* 0.07 0.20** -0.02 -0.10 -0.21** -0.23** 0.05
Tibetan Interior Mountains 0.13 0.04 0.16 -0.09 -0.30** -0.17 -0.16 -0.11
Tanggula 0.18* 0.14 0.18* -0.16 0.23** -0.20* 0.10 -0.00
Qilian 0.17 0.08 0.23* -0.10 0.10 0.05 0.08 -0.20*
Eastern Tibetan Plateau 0.65** 0.62** 0.56* 0.11 0.12 -0.24 0.22 0.06
Gangdise Mountains 0.18 0.10 0.22 -0.06 0.14 -0.18 0.33* -0.32*
Nyainqêntanglha -0.05 -0.14** 0.06 -0.15** 0.09* 0.06 0.14** 0.14**
Hengduan 0.61** 0.55** 0.58** -0.11 0.04 0.20* 0.46** -0.28**
HMA 0.08** 0.01 0.14** -0.15** -0.23** -0.29** 0.10** -0.05**
Table 3 Correlation matrix analyzing glacier mass changes and environmental factors
[1]   Anderson B, Mackintosh A, Stumm D, et al. 2010. Climate sensitivity of a high-precipitation glacier in New Zealand. Journal of Glaciology, 56(195): 114-128.
doi: 10.3189/002214310791190929
[2]   Anderson B, Mackintosh A. 2012. Controls on mass balance sensitivity of maritime glaciers in the Southern Alps, New Zealand: the role of debris cover. Journal of Geophysical Research: Earth Surface, 117(F1): 1-15.
[3]   Benn D, Bolch T, Hands K, et al. 2012. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews, 114(1-2): 156-174.
doi: 10.1016/j.earscirev.2012.03.008
[4]   Brun F, Berthier E, Wagnon P, et al. 2017. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000-2016. Nature Geoscience, 10(9): 668-673.
doi: 10.1038/ngeo2999
[5]   Brun F, Wagnon P, Berthier E, et al. 2019. Heterogeneous influence of glacier morphology on the mass balance variability in High Mountain Asia. Journal of Geophysical Research: Earth Surface, 124(6): 1331-1345.
doi: 10.1029/2018JF004838
[6]   Farinotti D. 2017. Cryospheric science: Asia's glacier changes. Nature Geoscience, 10(9): 621-622.
doi: 10.1038/ngeo2995
[7]   Farinotti D, Immerzeel W, de Kok R, et al. 2020. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nature Geoscience, 13(1): 8-16.
doi: 10.1038/s41561-019-0513-5 pmid: 31915463
[8]   Fischer M, Huss M, Hoelzle M. 2015. Surface elevation and mass changes of all Swiss glaciers 1980-2010. The Cryosphere, 9(2): 525-540.
doi: 10.5194/tc-9-525-2015
[9]   Fujita K. 2008. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth and Planetary Science Letters, 276(1-2): 14-19.
doi: 10.1016/j.epsl.2008.08.028
[10]   Fyffe C, Reid T, Brock B, et al. 2014. A distributed energy-balance melt model of an alpine debris-covered glacier. Journal of Glaciology, 60(221): 587-602.
doi: 10.3189/2014JoG13J148
[11]   Hewitt K. 2005. The Karakoram anomaly? Glacier expansion and the elevation effect, Karakoram Himalaya. Mountain Research and Development, 25(4): 332-340.
doi: 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2
[12]   Huang L, Li Z, Han H, et al. 2018. Analysis of thickness changes and the associated driving factors on a debris-covered glacier in the Tienshan Mountain. Remote Sensing of Environment, 206: 63-71.
doi: 10.1016/j.rse.2017.12.028
[13]   Hugonnet R, McNabb R, Berthier E, et al. 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature, 592(7856): 726-731.
doi: 10.1038/s41586-021-03436-z
[14]   Huss M. 2012. Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900-2100. The Cryosphere, 6(4): 713-727.
doi: 10.5194/tc-6-713-2012
[15]   Kapnick S, Delworth T, Ashfaq M, et al. 2014. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nature Geoscience, 7(11): 834-840.
doi: 10.1038/ngeo2269
[16]   Kraaijenbrink P, Bierkens M, Lutz A, et al. 2017. Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. Nature, 549(7671): 257-260.
doi: 10.1038/nature23878
[17]   Li Y, Ding Y, Shangguan D, et al. 2019. Regional differences in global glacier retreat from 1980 to 2015. Advances in Climate Change Research, 10(4): 203-213.
doi: 10.1016/j.accre.2020.03.003
[18]   Lin H, Li G, Cuo L, et al. 2017. A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000-2014. Scientific Reports, 7(1): 6712, doi: 10.1038/s41598-017-07133-8.
doi: 10.1038/s41598-017-07133-8
[19]   Liu Q, Liu S. 2016. Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Climate Dynamics, 46(1-2): 303-316.
doi: 10.1007/s00382-015-2585-2
[20]   Loibl D, Lehmkuhl F, Grießinger J. 2014. Reconstructing glacier retreat since the Little Ice Age in SE Tibet by glacier mapping and equilibrium line altitude calculation. Geomorphology, 214: 22-39.
doi: 10.1016/j.geomorph.2014.03.018
[21]   Marzeion B, Kaser G, Maussion F, et al. 2018. Limited influence of climate change mitigation on short-term glacier mass loss. Nature Climate Change, 8(4): 305-308.
doi: 10.1038/s41558-018-0093-1
[22]   Mattson L E, Gardner J S, Young G J. 1993. Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. IAHS Publication, 218: 289-296.
[23]   Mölg T, Hardy D R. 2007. Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. Journal of Geophysical Research, 109(D16): 1-13.
[24]   Nicholson L, Benn D I. 2006. Calculating ice melt beneath a debris layer using meteorological data. Journal of Glaciology, 52(178): 463-470.
doi: 10.3189/172756506781828584
[25]   Oerlemans J, Fortuin J P F. 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science, 258(5079): 115-117.
pmid: 17835895
[26]   Oerlemans J, Reichert B. 2000. Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. Journal of Glaciology, 46(152): 1-6.
doi: 10.3189/172756500781833269
[27]   Paul F, Barrand N, Baumann S, et al. 2013. On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology, 54(63): 171-182.
doi: 10.3189/2013AoG63A296
[28]   Sakai A, Nuimura T, Fujita K, et al. 2015. Climate regime of Asian glaciers revealed by GAMDAM glacier inventory. The Cryosphere, 9(3): 865-880.
doi: 10.5194/tc-9-865-2015
[29]   Sakai A, Fujita K. 2017. Contrasting glacier responses to recent climate change in high-mountain Asia. Scientific Reports, 7(1): 13717, doi: 10.1038/s41598-017-14256-5.
doi: 10.1038/s41598-017-14256-5
[30]   Salerno F, Gambelli S, Viviano G, et al. 2014. High alpine ponds shift upwards as average temperatures increase: A case study of the Ortles-Cevedale mountain group (Southern Alps, Italy) over the last 50 years. Global and Planetary Change, 120: 81-91.
doi: 10.1016/j.gloplacha.2014.06.003
[31]   Salerno F, Thakuri S, Tartari G, et al. 2017. Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers. Earth and Planetary Science Letters, 471: 19-31.
doi: 10.1016/j.epsl.2017.04.039
[32]   Scherler D, Bookhagen B, Strecker M. 2011. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4(3): 156-159.
doi: 10.1038/ngeo1068
[33]   Scherler D, Wulf H, Gorelick N. 2018. Global assessment of supraglacial debris-cover extents. Geophysical Research Letters, 45(21): 11798-11805.
doi: 10.1029/2018GL080158
[34]   Stefaniak A, Robson B, Cook S, et al. 2021. Mass balance and surface evolution of the debris-covered Miage Glacier, 1990-2018. Geomorphology, 373: 107474, doi: 10.1016/j.geomorph.2020.107474.
doi: 10.1016/j.geomorph.2020.107474
[35]   Steiner J, Buri P, Miles E, et al. 2019. Supraglacial ice cliffs and ponds on debris-covered glaciers: spatio-temporal distribution and characteristics. Journal of Glaciology, 65(252): 617-632.
doi: 10.1017/jog.2019.40
[36]   Wang J, Li X, Christakos G, et al. 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. International Journal of Geographical Information Science, 24(1): 107-127.
doi: 10.1080/13658810802443457
[37]   Wang R, Liu S, Shangguan D, et al. 2019. Spatial heterogeneity in glacier mass-balance sensitivity across High Mountain Asia. Water, 11(4): 776, doi: 10.3390/w11040776.
doi: 10.3390/w11040776
[38]   Wang X, Xie Z, Li Q, et al. 2008. Sensitivity analysis of glacier systems to climate warming in China. Journal of Geographical Sciences, 18(2): 190-200.
doi: 10.1007/s11442-008-0190-6
[39]   Yao T, Thompson L, Yang W, et al. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667.
doi: 10.1038/nclimate1580
[40]   Yao T, Wu F, Ding L, et al. 2015. Multispherical interactions and their effects on the Tibetan Plateau's Earth system: a review of the recent years researches. National Science Review, 2(4): 468-488.
doi: 10.1093/nsr/nwv070
[1] LIN Yanmin, HU Zhirui, LI Wenhui, CHEN Haonan, WANG Fang, NAN Xiongxiong, YANG Xuelong, ZHANG Wenjun. Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 110-130.
[2] ZHAO Xuqin, LUO Min, MENG Fanhao, SA Chula, BAO Shanhu, BAO Yuhai. Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change[J]. Journal of Arid Land, 2024, 16(1): 46-70.
[3] WANG Yinping, JIANG Rengui, YANG Mingxiang, XIE Jiancang, ZHAO Yong, LI Fawen, LU Xixi. Spatiotemporal characteristics and driving mechanisms of land use/land cover (LULC) changes in the Jinghe River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 91-109.
[4] Mitiku A WORKU, Gudina L FEYISA, Kassahun T BEKETIE, Emmanuel GARBOLINO. Projecting future precipitation change across the semi-arid Borana lowland, southern Ethiopia[J]. Journal of Arid Land, 2023, 15(9): 1023-1036.
[5] QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo. Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021[J]. Journal of Arid Land, 2023, 15(9): 1037-1051.
[6] MA Jinpeng, PANG Danbo, HE Wenqiang, ZHANG Yaqi, WU Mengyao, LI Xuebin, CHEN Lin. Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe[J]. Journal of Arid Land, 2023, 15(9): 1084-1106.
[7] ZHANG Hui, Giri R KATTEL, WANG Guojie, CHUAI Xiaowei, ZHANG Yuyang, MIAO Lijuan. Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China[J]. Journal of Arid Land, 2023, 15(7): 871-885.
[8] ZHANG Zhen, XU Yangyang, LIU Shiyin, DING Jing, ZHAO Jinbiao. Seasonal variations in glacier velocity in the High Mountain Asia region during 2015-2020[J]. Journal of Arid Land, 2023, 15(6): 637-648.
[9] GAO Xiang, WEN Ruiyang, Kevin LO, LI Jie, YAN An. Heterogeneity and non-linearity of ecosystem responses to climate change in the Qilian Mountains National Park, China[J]. Journal of Arid Land, 2023, 15(5): 508-522.
[10] Reza DEIHIMFARD, Sajjad RAHIMI-MOGHADDAM, Farshid JAVANSHIR, Alireza PAZOKI. Quantifying major sources of uncertainty in projecting the impact of climate change on wheat grain yield in dryland environments[J]. Journal of Arid Land, 2023, 15(5): 545-561.
[11] Sakine KOOHI, Hadi RAMEZANI ETEDALI. Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset[J]. Journal of Arid Land, 2023, 15(4): 377-392.
[12] Mehri SHAMS GHAHFAROKHI, Sogol MORADIAN. Investigating the causes of Lake Urmia shrinkage: climate change or anthropogenic factors?[J]. Journal of Arid Land, 2023, 15(4): 424-438.
[13] ZHANG Yixin, LI Peng, XU Guoce, MIN Zhiqiang, LI Qingshun, LI Zhanbin, WANG Bin, CHEN Yiting. Temporal and spatial variation characteristics of extreme precipitation on the Loess Plateau of China facing the precipitation process[J]. Journal of Arid Land, 2023, 15(4): 439-459.
[14] WU Jingyan, LUO Jungang, ZHANG Han, YU Mengjie. Driving forces behind the spatiotemporal heterogeneity of land-use and land-cover change: A case study of the Weihe River Basin, China[J]. Journal of Arid Land, 2023, 15(3): 253-273.
[15] Adnan ABBAS, Asher S BHATTI, Safi ULLAH, Waheed ULLAH, Muhammad WASEEM, ZHAO Chengyi, DOU Xin, Gohar ALI. Projection of precipitation extremes over South Asia from CMIP6 GCMs[J]. Journal of Arid Land, 2023, 15(3): 274-296.