Please wait a minute...
Journal of Arid Land  2017, Vol. 9 Issue (4): 622-634    DOI: 10.1007/s40333-017-0100-9
Orginal Article     
Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging
Jing YANG1,2,*(), Gonghuan FANG1,3,4, Yaning CHEN1, DE-MAEYER Philippe3,4
1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2 National Institute of Water and Atmospheric Research, Christchurch 8011, New Zealand
3 Department of Geography, Ghent University, Ghent 9000, Belgium
4 Sino-Belgian Joint Laboratory for Geo-Information, Urumqi 830011, China
Download: HTML     PDF(1353KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21st century for the Tianshan and northern Kunlun Mountains (TKM) based on the general circulation model (GCM) simulation ensemble from the coupled model intercomparison project phase 5 (CMIP5) under the representative concentration pathway (RCP) lower emission scenario RCP4.5 and higher emission scenario RCP8.5 using the Bayesian model averaging (BMA) technique. Results show that (1) BMA significantly outperformed the simple ensemble analysis and BMA mean matches all the three observed climate variables; (2) at the end of the 21st century (2070-2099) under RCP8.5, compared to the control period (1976-2005), annual mean temperature and mean annual precipitation will rise considerably by 4.8°C and 5.2%, respectively, while mean annual snowfall will dramatically decrease by 26.5%; (3) precipitation will increase in the northern Tianshan region while decrease in the Amu Darya Basin. Snowfall will significantly decrease in the western TKM. Mean annual snowfall fraction will also decrease from 0.56 of 1976-2005 to 0.42 of 2070-2099 under RCP8.5; and (4) snowfall shows a high sensitivity to temperature in autumn and spring while a low sensitivity in winter, with the highest sensitivity values occurring at the edge areas of TKM. The projections mean that flood risk will increase and solid water storage will decrease.



Key wordsclimate change      GCM ensemble      Bayesian model averaging      Tianshan and northern Kunlun Mountains     
Received: 03 September 2016      Published: 10 August 2017
Fund:  National Science Foundation, Department of Energy, National Center for Atmospheric Research
Corresponding Authors: Jing YANG     E-mail: yangjing@ms.xjb.ac.cn
Cite this article:

Jing YANG, Gonghuan FANG, Yaning CHEN, DE-MAEYER Philippe. Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging. Journal of Arid Land, 2017, 9(4): 622-634.

URL:

http://jal.xjegi.com/10.1007/s40333-017-0100-9     OR     http://jal.xjegi.com/Y2017/V9/I4/622

1 Aguirre-Salado C A, Trevi?o-Garza E J, Aguirre-Calderón O A, et al.2014. Mapping aboveground biomass by integrating geospatial and forest inventory data through a k-nearest neighbor strategy in North Central Mexico. Journal of Arid Land, 6(1): 80-96.
2 Aizen V B, Aizen E M, Melack J M, et al.1997. Climatic and hydrologic changes in the Tien Shan, central Asia. Journal of Climate, 10(6): 1393-1404.
3 Berghuijs W R, Woods R A, Hrachowitz M.2014. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nature Climate Change, 4(7): 583-586.
4 Bocchiola D.2014. Long term (1921-2011) hydrological regime of Alpine catchments in Northern Italy. Advances in Water Resources, 70: 51-64.
5 Chen Y N.2014. Water Resources Research in Northwest China. Dordrecht, Netherlands: Springer, 1-440.
6 Chen Y N, Li W H, Deng H J, et al.2016. Changes in central Asia’s water tower: past, present and future. Scientific Reports, 6: 35458, doi: 10.1038/srep35458.
7 Davis R E, Lowit M B, Knappenberger P C, et al.1999. A climatology of snowfall-temperature relationships in Canada. Journal of Geophysical Research: Atmospheres, 104(D10): 11985-11994.
8 Dedieu J P, Lessard-Fontaine A, Ravazzani G, et al.2014. Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Science of the Total Environment, 493: 1267-1279.
9 Dietz A, Conrad C, Kuenzer C, et al.2014. Identifying changing snow cover characteristics in central Asia between 1986 and 2014 from remote sensing data. Remote Sensing, 6(12): 12752-12775.
10 Duan Q Y, Ajami N K, Gao X G, et al.2007. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources, 30(5): 1371-1386.
11 Feng S, Hu Q.2007. Changes in winter snowfall/precipitation ratio in the contiguous United States. Journal of Geophysical Research: Atmospheres, 112(D15): D15109.
12 Fraley C, Raftery A E, Gneiting T.2010. Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging. Monthly Weather Review, 138(1): 190-202.
13 Guo L P, Li L H.2015. Variation of the proportion of precipitation occurring as snow in the Tian Shan Mountains, China. International Journal of Climatology, 35(7): 1379-1393.
14 Hagg W, Hoelzle M, Wagner S, et al.2013. Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Global and Planetary Change, 110: 62-73.
15 Hersbach H.2000. Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather and Forecasting, 15(5): 559-570.
16 Hezel P J, Zhang X, Bitz C M, et al.2012. Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze-up this century. Geophysical Research Letters, 39(17): L17505.
17 Hoeting J A, Madigan D, Raftery A E, et al.1999. Bayesian model averaging: a tutorial. Statistical Science, 14(4): 382-401.
18 IPCC. 2013. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom, New York, NY, USA: Cambridge University Press.
19 Kapnick S B, Delworth T L, Ashfaq M, et al.2014. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nature Geoscience, 7(11): 834-840.
20 Kawase H, Nagashima T, Sudo K, et al.2011. Future changes in tropospheric ozone under Representative Concentration Pathways (RCPs). Geophysical Research Letters, 38(5): L05801.
21 Kure S, Jang S, Ohara N, et al.2013. Hydrologic impact of regional climate change for the snow-fed and glacier-fed river basins in the Republic of Tajikistan: statistical downscaling of global climate model projections. Hydrological Processes, 27(26): 4071-4090.
22 Li B F, Chen Y N, Chen Z S, et al.2013. Variations of temperature and precipitation of snowmelt period and its effect on runoff in the mountainous areas of Northwest China. Journal of Geographical Sciences, 23(1): 17-30.
23 Li P Y, Qian H, Howard K W F, et al.2015. Building a new and sustainable “Silk Road economic belt”. Environmental Earth Sciences, 74(10): 7267-7270.
24 Liu J G, Xie Z H.2014. BMA probabilistic quantitative precipitation forecasting over the Huaihe basin using TIGGE multimodel ensemble forecasts. Monthly Weather Review, 142(4): 1542-1555.
25 Mir R A, Jain S K, Saraf A K, et al.2015. Decline in snowfall in response to temperature in Satluj basin, western Himalaya. Journal of Earth System Science, 124(2): 365-382.
26 Monaghan A J, Bromwich D H, Schneider D P.2008. Twentieth century Antarctic air temperature and snowfall simulations by IPCC climate models. Geophysical Research Letters, 35(7): L07502.
27 Najafi M R, Moradkhani H.2015. Multi-model ensemble analysis of runoff extremes for climate change impact assessments. Journal of Hydrology, 525(0):352-361.
28 Najafi M R, Moradkhani H, Jung I W.2011. Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrological Processes, 25(18):2814-2826.
29 O'Gorman P A.2014. Contrasting responses of mean and extreme snowfall to climate change. Nature, 512(7515): 416-418.
30 Ososkova T, Gorelkin N, Chub V.2000. Water resources of central Asia and adaptation measures for climate change. Environmental Monitoring and Assessment, 61(1): 161-166.
31 Piazza M, Boé J, Terray L, et al.2014. Projected 21st century snowfall changes over the French Alps and related uncertainties. Climatic Change, 122(4): 583-594.
32 Raftery A E, Gneiting T, Balabdaoui F, et al.2005. Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review, 133(5): 1155-1174.
33 Schmeits M J, Kok K J.2010. A comparison between raw ensemble output, (Modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Monthly Weather Review, 138(11): 4199-4211.
34 Serquet G, Marty C, Dulex J P, et al.2011. Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. Geophysical Research Letters, 38(7): L07703.
35 Shi Y F, Shen Y P, Kang E S, et al.2007. Recent and future climate change in northwest China. Climatic Change, 80(3): 379-393.
36 Sloughter J M, Raftery A E, Gneiting T, et al.2007. Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Monthly Weather Review, 135(9): 3209-3220.
37 Sloughter J M, Gneiting T, Raftery A E, 2010. Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. Journal of the American Statistical Association, 105(489): 25-35.
38 Tebaldi C, Mearns L O, Nychka D, et al.2004. Regional probabilities of precipitation change: A Bayesian analysis of multimodel simulations. Geophysical Research Letters, 31(24): L24213, doi:10.1029/2004GL021276.
39 van Vuuren D P, Edmonds J, Kainuma M, et al.2011. The representative concentration pathways: an overview. Climatic Change, 109(1-2): 5-31.
40 Winkelmann R, Levermann A, Martin M A, et al.2012. Increased future ice discharge from Antarctica owing to higher snowfall. Nature, 492(7428): 239-242.
41 Yang T, Hao X B, Shao Q X, et al.2012. Multi-model ensemble projections in temperature and precipitation extremes of the Tibetan Plateau in the 21st century. Global and Planetary Change, 80-81: 1-13.
42 Yasutomi N, Hamada A, Yatagai A.2011. Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation. Global Environmental Research, 15: 165-172.
43 Yatagai A, Kamiguchi K, Arakawa O, et al.2012. APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93(9): 1401-1415.
[1] BAI Jie, LI Junli, BAO Anmin, CHANG Cun. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(8): 814-834.
[2] WU Jun, DENG Guoning, ZHOU Dongmei, ZHU Xiaoyan, MA Jing, CEN Guozhang, JIN Yinli, ZHANG Jun. Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China[J]. Journal of Arid Land, 2021, 13(7): 674-687.
[3] WANG Yuejian, GU Xinchen, YANG Guang, YAO Junqiang, LIAO Na. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(6): 581-598.
[4] SA Chula, MENG Fanhao, LUO Min, LI Chenhao, WANG Mulan, ADIYA Saruulzaya, BAO Yuhai. Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau[J]. Journal of Arid Land, 2021, 13(4): 332-349.
[5] Ayad M F AL-QURAISHI, Heman A GAZNAYEE, Mattia CRESPI. Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index[J]. Journal of Arid Land, 2021, 13(4): 413-430.
[6] Adilov BEKZOD, Shomurodov HABIBULLO, FAN Lianlian, LI Kaihui, MA Xuexi, LI Yaoming. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage[J]. Journal of Arid Land, 2021, 13(1): 71-87.
[7] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[8] Farzaneh KHAJOEI NASAB, Ahmadreza MEHRABIAN, Hossein MOSTAFAVI. Mapping the current and future distributions of Onosma species endemic to Iran[J]. Journal of Arid Land, 2020, 12(6): 1031-1045.
[9] Mahsa MIRDASHTVAN, Mohsen MOHSENI SARAVI. Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran[J]. Journal of Arid Land, 2020, 12(6): 964-983.
[10] XU Bo, HUGJILTU Minggagud, BAOYIN Taogetao, ZHONG Yankai, BAO Qinghai, ZHOU Yanlin, LIU Zhiying. Rapid loss of leguminous species in the semi-arid grasslands of northern China under climate change and mowing from 1982 to 2011[J]. Journal of Arid Land, 2020, 12(5): 752-765.
[11] FENG Jian, ZHAO Lingdi, ZHANG Yibo, SUN Lingxiao, YU Xiang, YU Yang. Can climate change influence agricultural GTFP in arid and semi-arid regions of Northwest China?[J]. Journal of Arid Land, 2020, 12(5): 837-853.
[12] ZHOU Zuhao, HAN Ning, LIU Jiajia, YAN Ziqi, XU Chongyu, CAI Jingya, SHANG Yizi, ZHU Jiasong. Glacier variations and their response to climate change in an arid inland river basin of Northwest China[J]. Journal of Arid Land, 2020, 12(3): 357-373.
[13] LI Xuemei, Slobodan P SIMONOVIC, LI Lanhai, ZHANG Xueting, QIN Qirui. Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China[J]. Journal of Arid Land, 2020, 12(3): 374-396.
[14] BAI Haihua, YIN Yanting, Jane ADDISON, HOU Yulu, WANG Linhe, HOU Xiangyang. Market opportunities do not explain the ability of herders to meet livelihood objectives over winter on the Mongolian Plateau[J]. Journal of Arid Land, 2020, 12(3): 522-537.
[15] QIAO Xianguo, GUO Ke, LI Guoqing, ZHAO Liqing, LI Frank Yonghong, GAO Chenguang. Assessing the collapse risk of Stipa bungeana grassland in China based on its distribution changes[J]. Journal of Arid Land, 2020, 12(2): 303-317.