Please wait a minute...
Journal of Arid Land  2018, Vol. 10 Issue (6): 946-958    DOI: 10.1007/s40333-018-0104-0     CSTR: 32276.14.s40333-018-0104-0
Research article     
Evaluating and modeling the spatiotemporal pattern of regional-scale salinized land expansion in highly sensitive shoreline landscape of southeastern Iran
SHAFIEZADEH Mohammad, MORADI Hossein*(), FAKHERAN Sima
Department of Natural Resources, Isfahan University of Technology, Isfahan 8415683111, Iran
Download: HTML     PDF(2458KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Taking an area of about 2.3×104 km2 of southeastern Iran, this study aims to detect and predict regional-scale salt-affected lands. Three sets of Landsat images, each set containing 4 images for 1986, 2000, and 2015 were acquired as the main source of data. Radiometric, atmospheric and cutline blending methods were used to improve the quality of images and help better classify salinized land areas under the support vector machine method. A set of landscape metrics was also employed to detect the spatial pattern of salinized land expansion from 1986 to 2015. Four factors including distance to sea, distance to sea water channels, slope, and elevation were identified as the main contributing factors to land salinization. These factors were then integrated using the multi-criteria evaluation (MCE) procedure to generate land sensitivity map to salinization and also to calibrate the cellular-automata (CA) Markov chain (CA-Markov) model for simulation of salt-affected lands up to 2030, 2040 and 2050. The results of this study showed a dramatic dispersive expansion of salinized land from 7.7 % to 12.7% of the total study area from 1986 to 2015. The majority of areas prone to salinization and the highest sensitivity of land to salinization was found to be in the southeastern parts of the region. The result of the MCE-informed CA-Markov model revealed that 20.3% of the study area is likely to be converted to salinized lands by 2050. The findings of this research provided a view of the magnitude and direction of salinized land expansion in a past-to-future time period which should be considered in future land development strategies.



Key wordssoil salinization      remote sensing      CA-Markov      salt land expansion      southeastern Iran     
Received: 30 June 2017      Published: 07 November 2018
Corresponding Authors:
Cite this article:

SHAFIEZADEH Mohammad, MORADI Hossein, FAKHERAN Sima. Evaluating and modeling the spatiotemporal pattern of regional-scale salinized land expansion in highly sensitive shoreline landscape of southeastern Iran. Journal of Arid Land, 2018, 10(6): 946-958.

URL:

http://jal.xjegi.com/10.1007/s40333-018-0104-0     OR     http://jal.xjegi.com/Y2018/V10/I6/946

[1] Arsanjani J J, Helbich M, Kainz W, et al.2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21: 265-275.
[2] Bacon J.2016. The most polluted city is? Hint: It's not in China. USA Today. [2016-12-19].
[3] Benedek C, Szirányi T.2009. Change detection in optical aerial images by a multilayer conditional mixed Markov model. IEEE Transactions on Geoscience and Remote Sensing, 47(10): 3416-3430.
[4] Bhatta B.2010. Analysis of Urban Growth and Sprawl from Remote Sensing Data. Berlin: Springer-Verlag Berlin Heidelberg, 172.
[5] Brémaud P.2013. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. New York: Springer Science & Business Media, 445.
[6] Clarke K C, Hoppen S, Gaydos L.1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B, 24(2): 247-261.
[7] Cooley T, Anderson G P, Felde G W, et al.2002. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In: IEEE, IEEE International Geoscience and Remote Sensing Symposium. Toronto: IEEE.
[8] DeFries R S, Hansen M C, Townshend J R G, et al.2000. A new global 1‐km dataset of percentage tree cover derived from remote sensing. Global Change Biology, 6(2): 247-254.
[9] Eastman J R.2012. IDRISI Selva. Worcester: Clark University, 354.
[10] El-Hallaq M A, Habboub M O.2015. Using Cellular Automata-Markov Analysis and Multi Criteria Evaluation for Predicting the Shape of the Dead Sea. Advances in Remote Sensing, 4(1): 83.
[11] Foley J A, DeFries R, Asner G P, et al.2005. Global consequences of land use. Science, 309(5734): 570-574.
[12] Foltz R C.2002. Iran's water crisis: cultural, political, and ethical dimensions. Journal of Agricultural & Environmental Ethics, 15(4): 357-380.
[13] Hanin M, Ebel C, Ngom M, et al.2016. New Insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science, 7.
[14] Herman J R, Bergen J R, Peleg S, et al.2000. Method and apparatus for mosaic image construction: Google Patents. [2000-06-13]. https://www.google.com/patents/US6075905.
[15] Houghton R A, Nassikas A A.2017. Global and regional fluxes of carbon from land use and land cover change 1850-2015. Global Biogeochemical Cycles, 31(3): 456-470.
[16] Hurskainen P, Pellikka P.2004. Change detection of informal settlements using multi-temporal aerial photographs-the case of Voi, SE-Kenya. In: Proceedings of the 5th African Association of Remote Sensing of the Environment Conference, 18-21 October 2004. Nairobi: African Association of Remote Sensing of the Environment.
[17] Hyandye C, Martz L W.2017. A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. International Journal of Remote Sensing, 38(1): 64-81.
[18] Jamil A, Riaz S, Ashraf M, et al.2011. Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, 30(5): 435-458.
[19] Kaufman Y J, Wald A E, Remer L A, et al.1997. The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1286-1298.
[20] Kim D-H, Sexton J O, Noojipady P, et al.2014. Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sensing of Environment, 155: 178-193.
[21] Lambin E F, Geist H J.2008. Land-Use and Land-Cover Change: Local Processes and Global Impacts. Berlin: Springer Science & Business Media, 221.
[22] Lillesand T, Kiefer R W, Chipman J.2014. Remote Sensing and Image Interpretation. New York: John Wiley & Sons, 721.
[23] Lin Z, Zhou D, Liu L.2006. Regional-Scale Assessment and Simulation of Land Salinization Using Cellular Automata-Markov Model. In: ASABE/CSBE North Central Intersectional Meeting. Michigan: American Society of Agricultural and Biological Engineers, RRV12110.
[24] Lunetta R S, Lyon J G.2004. Remote sensing and GIS accuracy assessment. Florida: CRC Press, 394.
[25] Mahiny A S, Clarke K C.2012. Guiding SLEUTH land-use/land-cover change modeling using multicriteria evaluation: towards dynamic sustainable land-use planning. Environment and Planning B, 39(5): 925-944.
[26] McDowell N G, Coops N C, Beck P S, et al.2015. Global satellite monitoring of climate-induced vegetation disturbances. Trends in Plant Science, 20(2): 114-123.
[27] McGarigal K, Marks B J.1995. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. General Technical Report. PNW-GTR-351. Portland, USA.
[28] Metternicht G I., Zinck J A.2003. Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 85(1): 1-20.
[29] Meyfroidt P, Lambin E F, Erb K-H, et al.2013. Globalization of land use: distant drivers of land change and geographic displacement of land use. Current Opinion in Environmental Sustainability, 5(5): 438-444.
[30] Module F.2009. Atmospheric Correction Module: QUAC and FLAASH User's Guide (ver. 4). Boulder: Harris Geospatial Co., 44.
[31] Moradi H.2016. Identification of Environmental Resources and Spatial zoning of Makran Coastal Area, Southeastern Iran. In: Landuse & Land Cover Change Report (1st ed.). Department of Environment, Iran.
[32] Mountrakis G, Im J, Ogole C.2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3): 247-259.
[33] Palmate S S, Pandey A, Mishra S K.2017. Modelling spatiotemporal land dynamics for a trans-boundary river basin using integrated Cellular Automata and Markov Chain approach. Applied Geography, 82: 11-23.
[34] Pontius R G, Schneider L C.2001. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1-3): 239-248.
[35] Roy D P, Wulder M A, Loveland T R, et al.2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145: 154-172.
[36] Rozema J, Flowers T.2008. Crops for a salinized world. Science, 322(5907): 1478-1480.
[37] Saaty T L.2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1): 83-98.
[38] Shahbaz M, Ashraf M.2013. Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32(4): 237-249.
[39] Shalaby A, Tateishi R.2007. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27(1): 28-41.
[40] Shrivastava P, Kumar R.2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2): 123-131.
[41] Thenkabail P S, Biradar C M, Noojipady P, et al.2009. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. International Journal of Remote Sensing, 30(14): 3679-3733.
[42] Tutorial E-Z.2010. ENVI user guide. Colorado Springs, CO: ITT, 590.
[43] Wu K Y, Ye X Y, Qi Z F, et al.2013. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China. Cities, 31: 276-284.
[44] Wu W, Mhaimeed A S, Al-Shafie W M, et al.2014. Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Regional, 2-3: 21-31.
[45] Xu J, Grumbine R E.2014. Building ecosystem resilience for climate change adaptation in the Asian highlands. Wiley Interdisciplinary Reviews: Climate Change, 5(6): 709-718.
[46] Zahed M A, Rouhani F, Mohajeri S, et al.2010. An overview of Iranian mangrove ecosystems, northern part of the Persian Gulf and Oman Sea. Acta Ecologica Sinica, 30(4): 240-244.
[47] Zhou D, Lin Z, Liu L.2012. Regional land salinization assessment and simulation through cellular automaton-Markov modeling and spatial pattern analysis. Science of the Total Environment, 439: 260-274.
[48] Zhu Z, Woodcock C E, Holden C, et al.2015. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sensing of Environment, 162: 67-83.
[1] Suzan ISMAIL, Hamid MALIKI. Spatiotemporal landscape pattern changes and their effects on land surface temperature in greenbelt with semi-arid climate: A case study of the Erbil City, Iraq[J]. Journal of Arid Land, 2024, 16(9): 1214-1231.
[2] DU Lan, TIAN Shengchuan, ZHAO Nan, ZHANG Bin, MU Xiaohan, TANG Lisong, ZHENG Xinjun, LI Yan. Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China[J]. Journal of Arid Land, 2024, 16(7): 925-942.
[3] BAO Anming, YU Tao, XU Wenqiang, LEI Jiaqiang, JIAPAER Guli, CHEN Xi, Tojibaev KOMILJON, Shomurodov KHABIBULLO, Xabibullaev B SAGIDULLAEVICH, Idirisov KAMALATDIN. Ecological problems and ecological restoration zoning of the Aral Sea[J]. Journal of Arid Land, 2024, 16(3): 315-330.
[4] LIU Yufang, YANG Qingwen, PEI Xiangjun, LI Jingji, WANG Shuangcheng, HUANG Zhenfu, HAN Wei, ZHENG Tianliang. Spatial distribution of soil salinization under the influence of human activities in arid areas, China[J]. Journal of Arid Land, 2024, 16(10): 1344-1364.
[5] YANG Ao, TU Wenqin, YIN Benfeng, ZHANG Shujun, ZHANG Xinyu, ZHANG Qing, HUANG Yunjie, HAN Zhili, YANG Ziyue, ZHOU Xiaobing, ZHUANG Weiwei, ZHANG Yuanming. Predicting changes in the suitable habitats of six halophytic plant species in the arid areas of Northwest China[J]. Journal of Arid Land, 2024, 16(10): 1380-1408.
[6] MAO Zhengjun, WANG Munan, CHU Jiwei, SUN Jiewen, LIANG Wei, YU Haiyong. Feature extraction and analysis of reclaimed vegetation in ecological restoration area of abandoned mines based on hyperspectral remote sensing images[J]. Journal of Arid Land, 2024, 16(10): 1409-1425.
[7] ZHAO Xiaohan, HAN Dianchen, LU Qi, LI Yunpeng, ZHANG Fangmin. Spatiotemporal variations in ecological quality of Otindag Sandy Land based on a new modified remote sensing ecological index[J]. Journal of Arid Land, 2023, 15(8): 920-939.
[8] Orhan DENGİZ, İnci DEMİRAĞ TURAN. Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem[J]. Journal of Arid Land, 2023, 15(7): 779-796.
[9] LONG Yi, JIANG Fugen, DENG Muli, WANG Tianhong, SUN Hua. Spatial-temporal changes and driving factors of eco- environmental quality in the Three-North region of China[J]. Journal of Arid Land, 2023, 15(3): 231-252.
[10] LUAN Yongfei, HUANG Guohe, ZHENG Guanghui. Spatiotemporal evolution and prediction of habitat quality in Hohhot City of China based on the InVEST and CA-Markov models[J]. Journal of Arid Land, 2023, 15(1): 20-33.
[11] SUN Liquan, GUO Huili, CHEN Ziyu, YIN Ziming, FENG Hao, WU Shufang, Kadambot H M SIDDIQUE. Check dam extraction from remote sensing images using deep learning and geospatial analysis: A case study in the Yanhe River Basin of the Loess Plateau, China[J]. Journal of Arid Land, 2023, 15(1): 34-51.
[12] HUANG Xiaoran, BAO Anming, GUO Hao, MENG Fanhao, ZHANG Pengfei, ZHENG Guoxiong, YU Tao, QI Peng, Vincent NZABARINDA, DU Weibing. Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China[J]. Journal of Arid Land, 2022, 14(5): 502-520.
[13] YAO Kaixuan, Abudureheman HALIKE, CHEN Limei, WEI Qianqian. Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang[J]. Journal of Arid Land, 2022, 14(3): 262-283.
[14] YU Xiang, LEI Jiaqiang, GAO Xin. An over review of desertification in Xinjiang, Northwest China[J]. Journal of Arid Land, 2022, 14(11): 1181-1195.
[15] WANG Jinjie, DING Jianli, GE Xiangyu, QIN Shaofeng, ZHANG Zhe. Assessment of ecological quality in Northwest China (2000-2020) using the Google Earth Engine platform: Climate factors and land use/land cover contribute to ecological quality[J]. Journal of Arid Land, 2022, 14(11): 1196-1211.