Please wait a minute...
Journal of Arid Land  2018, Vol. 10 Issue (6): 946-958    DOI: 10.1007/s40333-018-0104-0
Research article     
Evaluating and modeling the spatiotemporal pattern of regional-scale salinized land expansion in highly sensitive shoreline landscape of southeastern Iran
Department of Natural Resources, Isfahan University of Technology, Isfahan 8415683111, Iran
Download: HTML     PDF(2458KB)
Export: BibTeX | EndNote (RIS)      


Taking an area of about 2.3×104 km2 of southeastern Iran, this study aims to detect and predict regional-scale salt-affected lands. Three sets of Landsat images, each set containing 4 images for 1986, 2000, and 2015 were acquired as the main source of data. Radiometric, atmospheric and cutline blending methods were used to improve the quality of images and help better classify salinized land areas under the support vector machine method. A set of landscape metrics was also employed to detect the spatial pattern of salinized land expansion from 1986 to 2015. Four factors including distance to sea, distance to sea water channels, slope, and elevation were identified as the main contributing factors to land salinization. These factors were then integrated using the multi-criteria evaluation (MCE) procedure to generate land sensitivity map to salinization and also to calibrate the cellular-automata (CA) Markov chain (CA-Markov) model for simulation of salt-affected lands up to 2030, 2040 and 2050. The results of this study showed a dramatic dispersive expansion of salinized land from 7.7 % to 12.7% of the total study area from 1986 to 2015. The majority of areas prone to salinization and the highest sensitivity of land to salinization was found to be in the southeastern parts of the region. The result of the MCE-informed CA-Markov model revealed that 20.3% of the study area is likely to be converted to salinized lands by 2050. The findings of this research provided a view of the magnitude and direction of salinized land expansion in a past-to-future time period which should be considered in future land development strategies.

Key wordssoil salinization      remote sensing      CA-Markov      salt land expansion      southeastern Iran     
Received: 30 June 2017      Published: 07 November 2018
Corresponding Authors: MORADI Hossein     E-mail:
Cite this article:

SHAFIEZADEH Mohammad, MORADI Hossein, FAKHERAN Sima. Evaluating and modeling the spatiotemporal pattern of regional-scale salinized land expansion in highly sensitive shoreline landscape of southeastern Iran. Journal of Arid Land, 2018, 10(6): 946-958.

URL:     OR

[1] Arsanjani J J, Helbich M, Kainz W, et al.2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21: 265-275.
[2] Bacon J.2016. The most polluted city is? Hint: It's not in China. USA Today. [2016-12-19].
[3] Benedek C, Szirányi T.2009. Change detection in optical aerial images by a multilayer conditional mixed Markov model. IEEE Transactions on Geoscience and Remote Sensing, 47(10): 3416-3430.
[4] Bhatta B.2010. Analysis of Urban Growth and Sprawl from Remote Sensing Data. Berlin: Springer-Verlag Berlin Heidelberg, 172.
[5] Brémaud P.2013. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. New York: Springer Science & Business Media, 445.
[6] Clarke K C, Hoppen S, Gaydos L.1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B, 24(2): 247-261.
[7] Cooley T, Anderson G P, Felde G W, et al.2002. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In: IEEE, IEEE International Geoscience and Remote Sensing Symposium. Toronto: IEEE.
[8] DeFries R S, Hansen M C, Townshend J R G, et al.2000. A new global 1‐km dataset of percentage tree cover derived from remote sensing. Global Change Biology, 6(2): 247-254.
[9] Eastman J R.2012. IDRISI Selva. Worcester: Clark University, 354.
[10] El-Hallaq M A, Habboub M O.2015. Using Cellular Automata-Markov Analysis and Multi Criteria Evaluation for Predicting the Shape of the Dead Sea. Advances in Remote Sensing, 4(1): 83.
[11] Foley J A, DeFries R, Asner G P, et al.2005. Global consequences of land use. Science, 309(5734): 570-574.
[12] Foltz R C.2002. Iran's water crisis: cultural, political, and ethical dimensions. Journal of Agricultural & Environmental Ethics, 15(4): 357-380.
[13] Hanin M, Ebel C, Ngom M, et al.2016. New Insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science, 7.
[14] Herman J R, Bergen J R, Peleg S, et al.2000. Method and apparatus for mosaic image construction: Google Patents. [2000-06-13].
[15] Houghton R A, Nassikas A A.2017. Global and regional fluxes of carbon from land use and land cover change 1850-2015. Global Biogeochemical Cycles, 31(3): 456-470.
[16] Hurskainen P, Pellikka P.2004. Change detection of informal settlements using multi-temporal aerial photographs-the case of Voi, SE-Kenya. In: Proceedings of the 5th African Association of Remote Sensing of the Environment Conference, 18-21 October 2004. Nairobi: African Association of Remote Sensing of the Environment.
[17] Hyandye C, Martz L W.2017. A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. International Journal of Remote Sensing, 38(1): 64-81.
[18] Jamil A, Riaz S, Ashraf M, et al.2011. Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, 30(5): 435-458.
[19] Kaufman Y J, Wald A E, Remer L A, et al.1997. The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1286-1298.
[20] Kim D-H, Sexton J O, Noojipady P, et al.2014. Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sensing of Environment, 155: 178-193.
[21] Lambin E F, Geist H J.2008. Land-Use and Land-Cover Change: Local Processes and Global Impacts. Berlin: Springer Science & Business Media, 221.
[22] Lillesand T, Kiefer R W, Chipman J.2014. Remote Sensing and Image Interpretation. New York: John Wiley & Sons, 721.
[23] Lin Z, Zhou D, Liu L.2006. Regional-Scale Assessment and Simulation of Land Salinization Using Cellular Automata-Markov Model. In: ASABE/CSBE North Central Intersectional Meeting. Michigan: American Society of Agricultural and Biological Engineers, RRV12110.
[24] Lunetta R S, Lyon J G.2004. Remote sensing and GIS accuracy assessment. Florida: CRC Press, 394.
[25] Mahiny A S, Clarke K C.2012. Guiding SLEUTH land-use/land-cover change modeling using multicriteria evaluation: towards dynamic sustainable land-use planning. Environment and Planning B, 39(5): 925-944.
[26] McDowell N G, Coops N C, Beck P S, et al.2015. Global satellite monitoring of climate-induced vegetation disturbances. Trends in Plant Science, 20(2): 114-123.
[27] McGarigal K, Marks B J.1995. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. General Technical Report. PNW-GTR-351. Portland, USA.
[28] Metternicht G I., Zinck J A.2003. Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 85(1): 1-20.
[29] Meyfroidt P, Lambin E F, Erb K-H, et al.2013. Globalization of land use: distant drivers of land change and geographic displacement of land use. Current Opinion in Environmental Sustainability, 5(5): 438-444.
[30] Module F.2009. Atmospheric Correction Module: QUAC and FLAASH User's Guide (ver. 4). Boulder: Harris Geospatial Co., 44.
[31] Moradi H.2016. Identification of Environmental Resources and Spatial zoning of Makran Coastal Area, Southeastern Iran. In: Landuse & Land Cover Change Report (1st ed.). Department of Environment, Iran.
[32] Mountrakis G, Im J, Ogole C.2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3): 247-259.
[33] Palmate S S, Pandey A, Mishra S K.2017. Modelling spatiotemporal land dynamics for a trans-boundary river basin using integrated Cellular Automata and Markov Chain approach. Applied Geography, 82: 11-23.
[34] Pontius R G, Schneider L C.2001. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1-3): 239-248.
[35] Roy D P, Wulder M A, Loveland T R, et al.2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145: 154-172.
[36] Rozema J, Flowers T.2008. Crops for a salinized world. Science, 322(5907): 1478-1480.
[37] Saaty T L.2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1): 83-98.
[38] Shahbaz M, Ashraf M.2013. Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32(4): 237-249.
[39] Shalaby A, Tateishi R.2007. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27(1): 28-41.
[40] Shrivastava P, Kumar R.2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2): 123-131.
[41] Thenkabail P S, Biradar C M, Noojipady P, et al.2009. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. International Journal of Remote Sensing, 30(14): 3679-3733.
[42] Tutorial E-Z.2010. ENVI user guide. Colorado Springs, CO: ITT, 590.
[43] Wu K Y, Ye X Y, Qi Z F, et al.2013. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China. Cities, 31: 276-284.
[44] Wu W, Mhaimeed A S, Al-Shafie W M, et al.2014. Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Regional, 2-3: 21-31.
[45] Xu J, Grumbine R E.2014. Building ecosystem resilience for climate change adaptation in the Asian highlands. Wiley Interdisciplinary Reviews: Climate Change, 5(6): 709-718.
[46] Zahed M A, Rouhani F, Mohajeri S, et al.2010. An overview of Iranian mangrove ecosystems, northern part of the Persian Gulf and Oman Sea. Acta Ecologica Sinica, 30(4): 240-244.
[47] Zhou D, Lin Z, Liu L.2012. Regional land salinization assessment and simulation through cellular automaton-Markov modeling and spatial pattern analysis. Science of the Total Environment, 439: 260-274.
[48] Zhu Z, Woodcock C E, Holden C, et al.2015. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sensing of Environment, 162: 67-83.
[1] CHEN Shumin, JIN Zhao, ZHANG Jing, YANG Siqi. Soil quality assessment in different dammed-valley farmlands in the hilly-gully mountain areas of the northern Loess Plateau, China[J]. Journal of Arid Land, 2021, 13(8): 777-789.
[2] LIN En, LIU Hongguang, LI Xinxin, LI Ling, Sumera ANWAR. Promoting the production of salinized cotton field by optimizing water and nitrogen use efficiency under drip irrigation[J]. Journal of Arid Land, 2021, 13(7): 699-716.
[3] WANG Jie, LIU Dongwei, MA Jiali, CHENG Yingnan, WANG Lixin. Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin[J]. Journal of Arid Land, 2021, 13(1): 40-55.
[4] DING Jinchen, CHEN Yunzhi, WANG Xiaoqin, CAO Meiqin. Land degradation sensitivity assessment and convergence analysis in Korla of Xinjiang, China[J]. Journal of Arid Land, 2020, 12(4): 594-608.
[5] ZHOU Zuhao, HAN Ning, LIU Jiajia, YAN Ziqi, XU Chongyu, CAI Jingya, SHANG Yizi, ZHU Jiasong. Glacier variations and their response to climate change in an arid inland river basin of Northwest China[J]. Journal of Arid Land, 2020, 12(3): 357-373.
[6] Rashid KULMATOV, Jasur MIRZAEV, Jilili ABUDUWAILI, Bakhtiyor KARIMOV. Challenges for the sustainable use of water and land resources under a changing climate and increasing salinization in the Jizzakh irrigation zone of Uzbekistan[J]. Journal of Arid Land, 2020, 12(1): 90-103.
[7] ZERAATPISHEH Mojtaba, AYOUBI Shamsollah, SULIEMAN Magboul, RODRIGO-COMINO Jesús. Determining the spatial distribution of soil properties using the environmental covariates and multivariate statistical analysis: a case study in semi-arid regions of Iran[J]. Journal of Arid Land, 2019, 11(4): 551-566.
[8] MATIN Shafique, GHOSH Sujit, D BEHERA Mukunda. Assessing land transformation and associated degradation of the west part of Ganga River Basin using forest cover land use mapping and residual trend analysis[J]. Journal of Arid Land, 2019, 11(1): 29-42.
[9] MAIMAITI Bumairiyemu, Jianli DING, SIMAYI Zibibula, KASIMU Alimujiang. Characterizing urban expansion of Korla City and its spatial-temporal patterns using remote sensing and GIS methods[J]. Journal of Arid Land, 2017, 9(3): 458-470.
[10] ZHOU Lei, LYU Aifeng. Investigating natural drivers of vegetation coverage variation using MODIS imagery in Qinghai, China[J]. Journal of Arid Land, 2016, 8(1): 109-124.
[11] Lei YANG, YunGang CAO, XiaoHua ZHU, ShengHe ZENG, GuoJiang YANG, JiangYong HE, XiuChun YANG. Land surface temperature retrieval for arid regions based on Landsat-8 TIRS data: a case study in Shihezi, Northwest China[J]. Journal of Arid Land, 2014, 6(6): 704-716.
[12] YanYun LUO, TingXi LIU, XiXi WANG, LiMin DUAN. Influences of landform as a confounding variable on SOM-NDVI association in semiarid Ordos Plateau[J]. Journal of Arid Land, 2012, 4(4): 450-456.
[13] Xi CHEN, BaiLian LI, Qin LI, JunLi LI, Saparnov ABDULLA. Spatio-temporal pattern and changes of evapotranspiration in arid Central Asia and Xinjiang of China[J]. Journal of Arid Land, 2012, 4(1): 105-112.
[14] YongQin CUI, JianYing MA, Wei SUN. Application of stable isotope techniques to the study of soil salinization[J]. Journal of Arid Land, 2011, 3(4): 285-291.
[15] DeCheng ZHOU, GePing LUO, Lei LU. Processes and trends of the land use change in Aksu watershed in the central Asia from 1960 to 2008[J]. Journal of Arid Land, 2010, 2(3): 157-166.