Please wait a minute...
Journal of Arid Land  2020, Vol. 12 Issue (1): 130-143    DOI: 10.1007/s40333-019-0018-5
Research article     
Profiling soil free-living nematodes in the Namib Desert, Namibia
Eugene MARAIS1, Gillian MAGGS-KÖLLING1, Chen SHERMAN2, Tirza DONIGER2, LIU Rentao3, Binu M TRIPATHI4, Yosef STEINBERGER2,*()
1 Gobabeb Research and Training Centre, Walvis Bay, Gobabeb 953, Namibia
2 The Mina & Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan 5290002, Israel;
3 Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China
4 Korea Polar Research Institute, Incheon 21990, Korea
Download: HTML     PDF(325KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Functional structure and diversity of soil free-living nematodes in a desert environment depend on plant gender and sampling site. The objective of this study was to compare the composition, abundance and tropic group of soil free-living nematodes in the upper 0-10 cm soil layer under the male and female Acanthosicyos horridus Welw. ex Hook. f. plants and in the inter-shrub open areas (control) in the Namib Desert, Namibia in April 2015. Soil moisture, organic matter (OM) and pH was also analyzed. Free-living nematodes were extracted from 100 g soil using the Baermann funnel procedure, and total number of nematodes was counted under a microscope. Community composition and diversity of soil free-living nematodes were analyzed using 18S rDNA sequences. Results indicated that a total of 67 groups, including 64 species, 2 genera and 1 family were identified. Feeding behavior of 58 species were identified as follows: 15 bacteria-feeding species, 12 fungi-feeding species, 10 plant-parasite species, 5 omnivorous-predator species, 8 animal-parasite species, 5 invertebrate-parasite species and 3 non-free-living nematodes, known as marine species. Moreover, soil free-living nematodes were found to be affected by sampling locations and plant gender, and community composition and density of these nematodes were strongly influenced by soil OM content. Result confirmed that spatial location and plant cover were main factors influencing the diversity of soil free-living nematodes. Moreover, molecular tools were found to be very useful in defining the richness of soil non-free-living nematodes. In conclusion, the results elucidated the importance of biotic variables in determining the composition and abundance of soil free-living nematodes in the Namib Desert, Namibia.



Key wordsplant gender      plant cover      nematodes      trophic group      diversity      18S rDNA     
Received: 27 June 2018      Published: 10 February 2020
Corresponding Authors:
About author: *Corresponding author: Yosef STEINBERGER (E-mail: yosef.steinberger@biu.ac.il)
Cite this article:

Eugene MARAIS, Gillian MAGGS-KÖLLING, Chen SHERMAN, Tirza DONIGER, LIU Rentao, Binu M TRIPATHI, Yosef STEINBERGER. Profiling soil free-living nematodes in the Namib Desert, Namibia. Journal of Arid Land, 2020, 12(1): 130-143.

URL:

http://jal.xjegi.com/10.1007/s40333-019-0018-5     OR     http://jal.xjegi.com/Y2020/V12/I1/130

Site Location SM (%) OM (%) BD (g/cm3) WHC (%)
Delta Cont. 0.29±0.06a 0.22±0.05b 1.54±0.02a 0.22±0.005c
Fem. 0.21±0.10a 0.35±0.07a 1.38±0.02b 0.26±0.01b
Male 0.22±0.22a 0.44±0.03a 1.31±0.03c 0.28±0.01a
Mean 0.24±0.13B 0.33±0.10B 1.41±0.10B 0.25±0.02A
Gobabeb Cont. 0.24±0.04a 0.53±0.02a 1.51±0.02a 0.21±0.005b
Fem. 0.21±0.09a 0.45±0.04a 1.51±0.04a 0.23±0.01ab
Male 0.38±0.14a 0.65±0.05a 1.49±0.02a 0.24±0.01a
Mean 0.26±0.10B 0.52±0.08A 1.46±0.14A 0.22±0.01B
Far East (FE)
sand dunes
Cont. 0.53±0.12a 0.26±0.18a 1.41±0.03a 0.26±0.01a
Fem. 0.47±0.11a 0.23±0.04a 1.40±0.02a 0.26±0.005a
Male 0.46±0.05a 0.29±0.02a 1.36±0.03a 0.27±0.01a
Mean 0.49±0.09A 0.26±0.10B 1.39±0.03B 0.26±0.01A
Table 1 ANOVA results for soil physical-chemical characteristics at different sites and locations
Fig. 1 Density of soil free-living nematodes at different sites (Delta, Gobabeb and Far East (FE) sand dunes) and locations. Fem., female A. horridus plants; Cont., control (inter-shrub open areas). Different lowercase letters indicate significant differences among three locations at P<0.05 level.
Fig. 2 Relative abundances of metazoa, fungi, algae and protista groups at different sites and locations based on 18S rDNA sequences. Fem., female A. horridus plants; Cont., control (inter-shrub open areas).
Location Delta (%) Gobabeb (%) Far East sand dunes (%)
Male 17 50 0
Female 33 0 13
Control 33 0 37
Male and female 0 0 37
Male and control 0 25 0
Female and control 0 13 13
Male, female and control 17 13 0
Table 2 Percentages of soil free-living nematodes at different sites and locations, and overlap percentage among plant gender and control locations
Nematode species Delta Gobabeb Far East sand dunes Trophic
group
Cont. Fem. Male Cont. Fem. Male Cont. Fem. Male
Ditylenchus destructor _ _ + FF
Number of species _ _ 1
Acrobeles ciliatus + _ + BF
Amblydorylaimus isokaryon _ _ + OP
Anisakis simplex _ _ +++ AP
Aphelenchoides (genus) _ _ + FF
Aphelenchoides sp. US02 _ + + FF
Brugia timori _ _ +++ TM
Bursaphelenchus abruptus _ _ + FF
Caenorhabditis elegans _ _ + BF
Cephalobus cubaensis _ _ + BF
Cooperia oncophora _ _ + AP
Echinocephalus overstreeti _ _ ++
Enchodelus longispiculus _ _ + PF
Enterobius vermicularis _ _ + AP
Fergusobia sp. 281 _ _ + FF
Fergusobia sp. 469 _ _ + FF
Halalaimus sp. TCR26 _ _ + MS
Halalaimus sp. TCR93 _ _ + MS
Isolaimium multistriatum _ _ + MS
Krefftascaris sharpiloi _ _ + AP
Longidorus jonesi _ + +++ PP
Meloidogyne javanica _ _ + PP
Meloidogyne sp. Pak.P.R.m2 _ _ + PP
Meloidogyne sp. VO-2014 _ _ +





PP
Panagrolaimidae sp. NK-2011b _ _ + BF
Parastrongyloides trichosuri _ + +++ OP, AP
Passalurus ambiguus _ _ +++ OP
Pseudhalenchus minutus _ _ +
Rhyssocolpus paradoxus _ + OP
Rhyssocolpus vinciguerrae _ _ + OP
Robustodorus megadorus _ _ +
Romanomermis culicivorax + + +
Schistonchus caprifici _ _ + PP
Steinernema feltiae _ _ + PI
Steinernema sp. T51 _ _ + PI
Syphacia muris _ _ +
Tricoma sp. 2 CYC-2009 _ _ +
Trophotylenchulus sp. TSH-2009 _ _ +
Xiphinema krugi _ _ ++
Xiphinema setariae _ _ +++ PP
Number of species 2 5 39 PP
Ditylenchus sp. 5 JH-2014 _ + _ FF
Number of species 0 1 0
Acrobeles sp. _ + + + _ + _ + + BF
To be continued
Continued
Nematode species Delta Gobabeb Far East sand dunes Trophic
group
Cont. Fem. Male Cont. Fem. Male Cont. Fem. Male
Acrobeles sp. MA-2012 + + + + + + + _ + BF
Acrobeloides cf. buetschlii 1 JH-2012 +++ +++ - + - ++ + + + BF
Acrobeloides maximus +++ +++ + +++ _ +++ _ + ++ BF
Aphelenchus avenae _ + _ _ _ + _ + ++ FF
Aporcelaimellus sp. JH-2004 + + + ++ +++ + + + +
Bursaphelenchus anatolius _ + _ _ + ++ _ + + FF
Bursaphelenchus penai + + _ + + + _ + + FF
Cephalobidae (family) + ++ _ +++ +++ +++ + +++ +++ BF
Cylicostephanus goldi + _ _ + + + +++ _ + AP
Deladenus proximus _ + _ + + +++ _ + + PW
Haemonchus placei ++ + + +++ +++ +++ +++ + + PPR
Hexamermis albicans + + + + + + + _ _ EA
Hexatylus sp. 1 JH-2014 _ + _ + + + _ + + FF
Malenchus pressulus _ + + _ + + _ + + PPR
Meloidogyne incognita _ _ + _ _ + _ + + PP
Panagrolaimus paetzoldi _ _ + _ _ ++ _ + + BF
Panagrolaimus sp. AS01 + +++ +++ ++ +++ +++ + +++ +++ BF
Panagrolaimus sp. AS03 + +++ +++ _ _ + _ + + BF
Panagrolaimus sp. SN103 _ + ++ + + + _ + + BF
Paratylenchus goldeni PP +++ +++ + +++ + +++ + ++ ++ PP
Paratylenchus labiosus _ + _ _ _ + _ + + PP
Turbatrix aceti _ _ + + + + _ + + AP
Tylenchulus semipenetrans + ++ + + + + _ + + FF
Uncultured Rhabdolaimus (genus) + _ + ++ + +++ +++ + + BF
Number of species 14 20 16 20 18 25 10 22 24
Total number of species 14 20 17 22 23 64 10 23 24
Table 3 Taxa and trophic groups of soil free-living nematodes using 18S rDNA sequences and BLAST similarity analysis at different sites and locations
Species/genus Family Habitat Reference
Alaninema Aphrophridae Intestinal parasites in slugs Ivanova et al. (2013)
Amblydorylamus Dorylaimidae Nematode from Antarctica Elshishka et al. (2015)
Brugia-B. malayi Filariidae Present only in Southeast Asia Triteeraprapab et al. (2001)
Bursaphelenchus Parasitaphelenchidae Obligate mycrophages Ryss et al. (2005)
Cooperia Cooperiidae Intestinal parasites in cattle Dorny et al. (1997)
Cylicostephanus-C. goldi Strongylidae Intestinal parasites of horses Bucknell et al. (1995)
Deladnus Neotylenchidae Parasitic nematodes Bedding (2009)
Deladenus siricidicola Neotylenchidae Biological control agent of woodwasp Bedding (2009)
Dicelis Drilonematoidea Parasitic earthworm Spiridonov (1992)
Drasico nemoralis Endemic earthworm from far East Russia Ivanova et al. (2014)
Enerobius Oxyuridae Intestinal parasite in humans Brown (2006)
Epsilonema Epsilonematidae Marine species Gourbault and Decraemer (1994)
Eubosrichus Desmodoridae Marine species Polz et al. (1999)
Gongylongema Gongylonematidae Bird and mammal parasites Soulsby (1982)
Greeffiella Desmoscolecoidea Free-living marine nematode Abolafia and Pena-Santiago (2016)
Haemonchus Trichostronylidae Pathogenic nematodes of ruminants Fleming et al. (2006)
Halalaimus Oxystominidae Marine species Turpeenniemi (1998)
Halomonhystera Monhysteridae Marine species Tchesunov et al. (2015)
Table 4 Family and habitat of these species of soil free-living nematodes in this study
Fig. 3 Relative abundance of genera of soil free-living nematodes using 18S rDNA sequences and BLAST similarity analysis at three sites and locations
Fig. 4 Venn diagram showing similarity and dissimilarity of soil free-living nematodes at each locations and possible relationship in plant gender. Number of 0-4 means groups of soil free-living nematodes at the phylum level.
Type Variable Initial conditional effect MCR (%) F P
Sampling site OM 0.09 9 2.78 0.034*
WHC 0.08 8 2.23 0.086
Cond 0.08 8 2.23 0.078
pH 0.07 7 2.20 0.114
SM 0.01 1 0.35 0.824
Total 33
Plant gender OM 0.09 9 2.78 0.028*
WHC 0.08 8 2.23 0.092
Cond 0.08 8 2.23 0.092
pH 0.07 7 2.20 0.104
SM 0.01 1 0.35 0.770
Total 33
Table 5 Redundancy analysis (RDA) of environmental variables based on sampling site and plant gender
Fig. 5 Redundancy analysis (RDA) elucidating effects of sampling sites (D, Delta; E, Far East sand dunes; G, Gobabeb) on soil free-living nematodes. The number 1-23 means the replicates for sampling sites.
Fig. 6 Redundancy analysis (RDA) elucidating effects of plant gender and control (F, female; M, male; C, control) on soil free-living nematodes. The number 1-23 means the replicates for plant gender and control.
[1]   Abolafia J, Peña-Santiago R. 2016. Protorhabditis hortulana sp. n. (Rhabditida, Protorhabditidae) from southern Iberian Peninsula, one of the smallest free-living soil nematodes known, with a compendium of the genus. Zootaxa, 4144(3): 397-410.
[2]   Adl S M. 2003. The Ecology of Soil Decomposition. Wallingford: CABI Publishing, 335.
[3]   Barrett J E, Virginia R A, Parsons A N, et al. 2005. Potential soil organic matter turnover in Taylor Valley, Antarctica. Arctic, Antarctic, and Alpine Research, 37(1): 108-117.
[4]   Beare M H, Coleman D C, Crossley D A J, et al. 1995. A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. In: Collins H P, Robertson G P, Klug M J. The Significance and Regulation of Soil Biodiversity. Dordrecht: Kluwer Academic Publishers, 5-22.
[5]   Bedding R A. 2009. Controlling the pine-killing woodwasp, Sirex noctilio, with nematodes. In: Hajek A E, Glare T R, O'Callaghan M. Use of Microbes for Control and Eradication of Invasive Arthropods. Netherlands: Springer, 213-235.
[6]   Black C A. 1965. Methods of Soil Analysis: Part 1. Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling. Madison: American Society of Agronomy, 1-1188.
[7]   Bongers T, Bongers M. 1998. Functional diversity of nematodes. Applied Soil Ecology, 10(3): 239-251.
[8]   Brown M D. 2006. Images in clinical medicine: Enterobius vermicularis. New England Journal of Medicine, 354(13): e12.
[9]   Bucknell D G, Gasser R B, Beveridge I. 1995. The prevalence and epidemiology of gastrointestinal parasites of horses in Victoria, Australia. International Journal for Parasitology, 25(6): 711-724.
[10]   Cairns E J. 1960. Methods in nematology. In: Sasser J N, Jenkins W R. Nematology, Fundamentals and Recent Advances with Emphasis on Plant Parasitic and Soil Forms. Chapel Hill: University of North Carolina Press, 33-84.
[11]   Caporaso J G, Bittinger K, Bushman F D, et al. 2010a. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics, 26(2): 266-267.
[12]   Caporaso J G, Kuczynski J, Stombaugh J, et al. 2010b. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335-336.
[13]   Coleman D C, Crossley D A. 1996. Fundamentals of Soil Ecology. London: Academic Press, 205.
[14]   Crawford C S. 1981. Biology of Desert Invertebrates. Berlin, Heidelberg, New York: Springer-Verlag, 292.
[15]   Dorny P, Claerebout E, Vercruysse J, et al. 1997. The influence of a Cooperia oncophora priming on a concurrent challenge with Ostertagia ostertagi and C. oncophora in calves. Veterinary Parasitology, 70(1-3): 143-151.
[16]   Eckardt F D, Soderberg K, Coop L J, et al. 2013. The nature of moisture at Gobabeb, in the central Namib Desert. Journal of Arid Environments, 93: 7-19.
[17]   Elshishka M, Lazarova S, Radoslavov G, et al. 2015. New data on two remarkable Antarctic species Amblydorylaimus isokaryon (Loof, 1975) Andrassy, 1998 and Pararhyssocolpus paradoxus (Loof, 1975), gen. n., comb. n. (Nematoda, Dorylaimida). ZooKeys, (511): 25-68.
[18]   Ettema C H, Coleman D C, Vellidis G, et al. 1998. Spatiotemporal distributions of bacterivorous nematodes and soil resources in a restored riparian wetland. Ecology, 79(8): 2721-2734.
[19]   Evenari M E, Shanan L, Tadmor W. 1982. The Negev: The Challenge of a Desert (2nd ed.). Cambridge: Harvard University Press, 345.
[20]   Fitoussi N, Pen-Mouratov S, Steinberger Y. 2016. Soil free-living nematodes as bio-indicators for assaying the invasive effect of the alien plant Heterotheca subaxillaris in a coastal dune ecosystem. Applied Soil Ecology, 102: 1-9.
[21]   Fleming S A, Craig T, Kaplan R M, et al. 2006. Anthelmintic resistance of gastrointestinal parasites in small ruminants. Journal of Veterinary Internal Medicine, 20(2): 435-444.
[22]   Freckman D W, Mankau R. 1977. Distribution and trophic structure of nematodes in desert soils. Ecological Bulletin, 25: 511-514.
[23]   Freckman D W, Whitford W G, Steinberger Y. 1987. Effect of irrigation on nematode population dynamics and activity in desert soils. Biology and Fertility of Soils, 3(1-2): 3-10.
[24]   Frossard A, Ramond J B, Seely M, et al. 2015. Water regime history drives responses of soil Namib Desert microbial communities to wetting events. Scientific Reports, 5: 12263.
[25]   Gourbault N, Decraemer W. 1994. Two new species of Epsilonema from South indopacific (Nemata, epsilonematidae). Journal of Nematology, 26(4): 384-391.
[26]   Holsback L, Cardoso M J L, Fagnani R, et al. 2013. Natural infection by endoparasites among free-living wild animals. Revista Brasileira De Parasitologia Veterinária, 22(2): 302-306.
[27]   Ivanova E S, Spiridonov S E, Clark W C, et al. 2013. Description and systematic affinity of Alaninema ngata n. sp. (Alaninematidae: Panagrolaimorpha) parasitising leaf-veined slugs (Athoracophoridae: Pulmonata) in New Zealand. Nematology, 15(7): 859-870.
[28]   Ivanova E S, Ganin G N, Spiridonov S E. 2014. A new genus and two new nematode species (Drilonematoidea: Ungellidae: Synoecneminae) parasitic in two morphs of Drawida ghilarovi Gates, endemic earthworm from the Russian Far East. Systematic Parasitology, 87(3): 231-248.
[29]   Jasmer D P, Goverse A, Smart G. 2003. Parasitic nematode interactions with mammals and plants. Annual Review of Phytopathology, 41: 245-270.
[30]   Laity J L. 2008. Deserts and Desert Environments. USA: Wiley-Blackwell Publications, 360.
[31]   Lambshead P J D. 2004. Marine nematode biodiversity. In: Chen Z X, Chen S Y, Dickson D W. Nematology: Advances and Perspectives, Vol. 1. Wallingford: CABI Publishing, 438-468.
[32]   Leung T L F, Koprivnikar J. 2016. Nematode parasite diversity in birds: the role of host ecology, life history and migration. Journal of Animal Ecology, 85(6): 1471-1480.
[33]   Levi T, Sherman C, Pen-Mouratov S, et al. 2012. Changes in soil free-living nematode communities and their trophic composition along a climatic gradient. Open Journal of Ecology, 2(2): 79-89.
[34]   Liu J L, Li F R, Liu C A, et al. 2012. Influences of shrub vegetation on distribution and diversity of a ground beetle community in a Gobi desert ecosystem. Biodiversity and Conservation, 21(10): 2601-2619.
[35]   Louw G N, Seely M K. 1982. Ecology of Desert Organisms. London and New York: Longman Group Ltd., 194.
[36]   Pen-Mouratov S, He X L, Steinberger Y. 2004. Spatial distribution and trophic diversity of nematode populations under Acacia raddiana along a temperature gradient in the Negev Desert ecosystem. Journal of Arid Environments, 56(2): 339-355.
[37]   Pen-Mouratov S, Hu C, Hindin E, et al. 2010. Effect of sand-dune slope orientation on soil free-living nematode abundance and diversity. Helminthologia, 47(3): 179-188.
[38]   Rodriguez-Zaragoza S, Mayzlish E, Steinberger Y. 2005. Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microbial Ecology, 49(1): 134-141.
[39]   Polz M F, Harbison C, Cavanaugh C M. 1999. Diversity and heterogeneity of epibiotic bacterial communities on the marine nematode Eubostrichus dianae. Applied and Environmental Microbiology, 65(9): 4271-4275.
[40]   Porazinska D L, Giblin-Davis R M, Faller L, et al. 2009. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources, 9(6): 1439-1450.
[41]   Ryss A, Vieira P, Mota M, et al. 2005. A synopsis of the genus Bursaphelenchus Fuchs, 1937 (Aphelenchida: Parasitaphelenchidae) with keys to species. Nematology, 7(3): 393-458.
[42]   Seely M, Henschel J R, Hamilton W J. 2005. Long-term data show behavioural fog collection adaptations determine Namib Desert beetle abundance. South African Journal of Science, 101: 570-572.
[43]   Seely M K, Louw G N. 1980. First approximation of the effects of rainfall on the ecology and energetics of a Namib Desert dune ecosystem. Journal of Arid Environments, 3(1): 25-54.
[44]   Soulsby E. 1982. Helminths, Arthropods and Protozoa of Domesticated Animals. London: Bailliere and Tindall, 809.
[45]   Spiridonov S E. 1992. Mbanema nigeriense n. gen., n.sp. (Drilonematidae: Nematoda) from Eudrilus eugeniae (Eudrilidae: Oligochaeta) in Nigeria. Fundamental and Applied Nematology, 15(5): 443-447.
[46]   Steinberger Y, Orion D, Whitford W G. 1988. Population dynamics of nematodes in the Negev Desert soil. Pedobiologia, 31(3): 223-228.
[47]   Steinberger Y, Loboda I, Garner W. 1989. The influence of autumn dewfall on spatial and temporal distribution of nematodes in the desert ecosystem. Journal of Arid Environments, 16(2): 177-183.
[48]   Stomeo F, Makhalanyane T P, Valverde A, et al. 2012. Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiology Ecology, 82(2): 326-340.
[49]   Tchesunov A V, Portnova D A, van Campenhout J. 2015. Description of two free-living nematode species of Halomonhystera disjuncta complex (Nematoda: Monhysterida) from two peculiar habitats in the sea. Helgoland Marine Research, 69: 57-85.
[50]   Treonis A M, Wall D H. 2005. Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys. Integrative & Comparative Biology, 45(5): 741-750.
[51]   Triteeraprapab S, Karnjanopas K, Porksakorn C, et al. 2001. Lymphatic filariasis caused by Brugia malayi in an endemic area of Narathiwat Province, southern of Thailand. Journal of the Medical Association of Thailand, 84(Suppl. 1): 182-188.
[52]   Turpeenniemi T A. 1998. Ultrastructure of spermatozoa in the nematode Halalaimus dimorphus (Nemata: Oxystominidae). Journal of Nematology, 30(4): 391-403.
[53]   Wardle D A. 2002. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton: Princeton University Press, 408.
[54]   Whitford W G. 2002. Ecology of Desert Systems. New York, London: Academic Press, 343.
[55]   Yeates G W. 1971. Feeding types and feeding groups in plant and soil nematodes. Pedobiologia, 8: 173-179.
[56]   Yeates G W, Bongers T, De Goede R G M, et al. 1993. Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of Nematology, 25(3): 315-331.
[57]   Yeates G W, King K L. 1997. Soil nematodes as indicators of the effect of management on grasslands in the New England Tablelands (NSW): Comparison of native and improved grasslands. Pedobiologia, 41: 526-536.
[58]   Yeates G W, Bongers T. 1999. Nematode diversity in agroecosystems. Agriculture, Ecosystems & Environment, 74(1-3): 113-135.
[59]   Yeates G W. 2003. Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils, 37(4): 199-210.
[60]   Yilmaz P, Parfrey L W, Yarza P, et al. 2014. The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Research, 42: 643-648.
[61]   Yu J, Guan P, Zhang X, et al. 2016. Biocrusts beneath replanted shrubs account for the enrichment of macro and micronutrients in semi-arid sandy land. Journal of Arid Environments, 128: 1-7.
[1] SUN Lin, YU Zhouchang, TIAN Xingfang, ZHANG Ying, SHI Jiayi, FU Rong, LIANG Yujie, ZHANG Wei. Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau, China[J]. Journal of Arid Land, 2023, 15(9): 1107-1128.
[2] M'hammed BOUALLALA, Souad NEFFAR, Lyès BRADAI, Haroun CHENCHOUNI. Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?[J]. Journal of Arid Land, 2023, 15(6): 667-694.
[3] ZHANG Lihua, GAO Han, WANG Junfeng, ZHAO Ruifeng, WANG Mengmeng, HAO Lianyi, GUO Yafei, JIANG Xiaoyu, ZHONG Lingfei. Plant property regulates soil bacterial community structure under altered precipitation regimes in a semi-arid desert grassland, China[J]. Journal of Arid Land, 2023, 15(5): 602-619.
[4] KUDURETI Ayijiamali, ZHAO Shuai, Dina ZHAKYP, TIAN Changyan. Responses of soil fauna community under changing environmental conditions[J]. Journal of Arid Land, 2023, 15(5): 620-636.
[5] TONG Shan, CAO Guangchao, ZHANG Zhuo, ZHANG Jinhu, YAN Xin. Soil microbial community diversity and distribution characteristics under three vegetation types in the Qilian Mountains, China[J]. Journal of Arid Land, 2023, 15(3): 359-376.
[6] GOU Qianqian, MA Gailing, QU Jianjun, WANG Guohua. Diversity of soil bacteria and fungi communities in artificial forests of the sandy-hilly region of Northwest China[J]. Journal of Arid Land, 2023, 15(1): 109-126.
[7] WANG Kun, WANG Xiaoxia, FEI Hongyan, WAN Chuanyu, HAN Fengpeng. Changes in diversity, composition and assembly processes of soil microbial communities during Robinia pseudoacacia L. restoration on the Loess Plateau, China[J]. Journal of Arid Land, 2022, 14(5): 561-575.
[8] HE Bing, CHANG Jianxia, GUO Aijun, WANG Yimin, WANG Yan, LI Zhehao. Assessment of river basin habitat quality and its relationship with disturbance factors: A case study of the Tarim River Basin in Northwest China[J]. Journal of Arid Land, 2022, 14(2): 167-185.
[9] LI Li, GAO Lei, LIU Yonghong, FANG Baozhu, HUANG Yin, Osama A A MOHAMAD, Dilfuza EGAMBERDIEVA, LI Wenjun, MA Jinbiao. Diversity of cultivable endophytic bacteria associated with halophytes in Xinjiang of China and their plant beneficial traits[J]. Journal of Arid Land, 2021, 13(8): 790-800.
[10] ZHOU Siyuan, DUAN Yufeng, ZHANG Yuxiu, GUO Jinjin. Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019[J]. Journal of Arid Land, 2021, 13(5): 534-547.
[11] ZHANG Bingchang, ZHANG Yongqing, ZHOU Xiaobing, LI Xiangzhen, ZHANG Yuanming. Snowpack shifts cyanobacterial community in biological soil crusts[J]. Journal of Arid Land, 2021, 13(3): 239-256.
[12] TENG Zeyu, XIAO Shengchun, CHEN Xiaohong, HAN Chao. Soil bacterial characteristics between surface and subsurface soils along a precipitation gradient in the Alxa Desert, China[J]. Journal of Arid Land, 2021, 13(3): 257-273.
[13] MA Gailing, GOU Qianqian, WANG Guohua, QU Jianjun. Succession of soil bacterial and fungal communities of Caragana korshinskii plantation in a typical agro-pastoral ecotone in northern China over a 50-a period[J]. Journal of Arid Land, 2021, 13(10): 1071-1086.
[14] Adilov BEKZOD, Shomurodov HABIBULLO, FAN Lianlian, LI Kaihui, MA Xuexi, LI Yaoming. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage[J]. Journal of Arid Land, 2021, 13(1): 71-87.
[15] XU Bo, HUGJILTU Minggagud, BAOYIN Taogetao, ZHONG Yankai, BAO Qinghai, ZHOU Yanlin, LIU Zhiying. Rapid loss of leguminous species in the semi-arid grasslands of northern China under climate change and mowing from 1982 to 2011[J]. Journal of Arid Land, 2020, 12(5): 752-765.