Please wait a minute...
Journal of Arid Land  2020, Vol. 12 Issue (2): 215-226    DOI: 10.1007/s40333-020-0009-6
Research article     
Responses of plant community to the linkages in plant-soil C:N:P stoichiometry during secondary succession of abandoned farmlands, China
LIU Weichao1,2, FU Shuyue1,2, YAN Shengji1, REN Chengjie1,2, WU Shaojun1,2, DENG Jian3, LI Boyong1, HAN Xinhui1,2,*(), YANG Gaihe1,2
1 College of Agronomy, Northwest A&F University, Yangling 712100, China
2 Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100, China
3 School of Life Science, Yan'an University, Yan'an 716000, China
Download: HTML     PDF(385KB)
Export: BibTeX | EndNote (RIS)      


Succession is one of the central themes of ecology; however, the relationship between aboveground plant communities and underground soils during secondary succession remains unclear. In this study, we investigated the composition of plant community, plant-soil C:N:P stoichiometry and their relationships during secondary succession after the abandonment of farmlands for 0, 10, 20, 30, 40 and 50 a in China, 2016. Results showed that the composition of plant communities was most diverse in the farmlands after secondary succession for 20 and 50 a. Soil organic carbon and total nitrogen contents slightly decreased after secondary succession for 30 a, but both were significantly higher than those of control farmland (31.21%-139.10% and 24.24%-121.21%, respectively). Moreover, C:N ratios of soil and microbe greatly contributed to the changes in plant community composition during secondary succession of abandoned farmlands, explaining 35.70% of the total variation. Particularly, soil C:N ratio was significantly and positively related with the Shannon-Wiener index. This study provides the evidence of synchronous evolution between plant community and soil during secondary succession and C:N ratio is an important linkage between them.

Key wordsC:N ratio      soil nutrient      plant community      restoration      loess hilly region     
Received: 12 January 2019      Published: 10 March 2020
Corresponding Authors: Xinhui HAN     E-mail:
About author: *Corresponding author: HAN Xinhui (E-mail:

The first and second authors contributed equally to this work.

Cite this article:

LIU Weichao, FU Shuyue, YAN Shengji, REN Chengjie, WU Shaojun, DENG Jian, LI Boyong, HAN Xinhui, YANG Gaihe. Responses of plant community to the linkages in plant-soil C:N:P stoichiometry during secondary succession of abandoned farmlands, China. Journal of Arid Land, 2020, 12(2): 215-226.

URL:     OR

Parameter FL AL10 AL20 AL30 AL40 AL50
Location 36.86°N,
Elevation (m) 1205.40 1239.10 1095.60 1290.80 1103.10 1251.20
Slope aspect (°) - 290 200 319 70 237
pH 8.55±0.11a 8.59±0.05a 8.62±0.02a 8.56±0.04a 8.58±0.05a 8.50±0.03a
BD (g/cm3) 1.26±0.03a 1.04±0.01b 1.02±0.01b 1.07±0.06a 1.08±0.03b 1.06±0.03b
SMC (%) 9.05±0.38c 9.29±0.49c 14.18±0.31a 9.60±0.20c 11.57±0.15b 10.78±0.02b
Setaria italica Setaria
- 1.84±0.06c 2.41±0.02ab 2.12±0.16bc 2.27±0.13ab 2.58±0.02a
Margalef index - 3.20±0.18b 3.96±0.24a 3.27±0.06ab 2.99±0.30b 3.64±0.21ab
Table 1 Information of farmland with different restored ages
Family AL10 AL20 AL30 AL40 AL50
Valerianaceae 0.00 5.23 0.00 0.00 1.23
Labiatae 0.28 0.00 3.53 1.07 1.74
Euphorbiaceae 4.21 0.00 1.82 0.00 0.00
Leguminosae 12.86 17.13 6.54 26.80 18.95
Gramineae 55.91 25.39 59.77 16.51 28.90
Violaceae 0.00 2.65 0.00 2.60 0.27
Compositae 10.21 32.20 16.53 27.07 39.87
Chenopodiaceae 2.25 0.00 6.21 0.45 0.00
Orobanchaceae 0.00 0.00 0.00 0.00 0.70
Asclepiadaceae 0.00 0.00 0.00 5.87 0.00
Geraniaceae 6.36 0.47 0.63 0.00 0.00
Ranunculaceae 0.00 0.80 0.00 1.35 0.00
Rubiaceae 0.00 0.00 0.00 0.00 0.65
Rosaceae 0.00 7.24 0.00 8.04 5.96
Umbelliferae 0.00 1.72 0.00 0.00 0.80
Cyperaceae 0.00 5.75 0.00 8.98 0.24
Cruciferae 0.99 0.00 2.80 0.64 0.00
Convolvulaceae 2.19 0.00 0.00 0.00 0.00
Polygalaceae 0.00 1.42 0.64 0.63 0.71
Bignoniaceae 4.73 0.00 1.52 0.00 0.00
Table 2 Changes of important value in different plant families and farmlands with different abandoned ages
Fig. 1 Plant community comparisons by nonmetric multidimensional scaling (NMDS) analysis plots based on the Bray-Curtis dissimilarity under farmlands with different abandoned ages. AL10, AL20, AL30, AL40 and AL50 mean abandoned farmlands for 10, 20, 30, 40 and 50 a, respectively.
Parameter FL AL10 AL20 AL30 AL40 AL50
Plant C (g/kg) 0.00±0.00 356.29±16.40b 385.65±6.72ab 422.47±14.88a 390.66±9.26ab 381.78±11.88ab
Plant N (g/kg) 0.00±0.00 10.92±0.60c 10.54±0.45c 17.37±0.25a 13.30±1.20b 6.56±0.51d
Plant P (g/kg) 0.00±0.00 1.83±0.10a 1.61±0.07a 1.27±0.01b 1.81±0.11a 1.71±0.01a
SOC (g/kg) 2.98±0.05e 3.91±0.19d 4.11±0.10cd 5.35±0.16a 4.89±0.08b 4.31±0.08c
Soil N (g/kg) 0.33±0.01e 0.41±0.02d 0.50±0.03d 0.73±0.03a 0.62±0.01b 0.59±0.01b
Soil P (g/kg) 0.46±0.02a 0.52±0.03a 0.49±0.05a 0.51±0.04a 0.52±0.03a 0.56±0.02a
Microbe C (mg/kg) 71.69±2.61d 103.94±8.76c 123.35±6.08c 171.41±6.38b 194.78±5.36a 195.98±9.01a
Microbe N (mg/kg) 10.82±0.10e 13.82±0.88c 16.84±0.88c 23.90±0.99a 21.48±0.58b 17.42±0.55d
Microbe P (mg/kg) 4.90±0.18c 7.75±0.92b 7.93±0.49b 8.29±0.37b 9.07±0.39ab 10.64±0.72a
Table 3 C, N and P contents in plant, soil and microbe
Fig. 2 Plant-microbe-soil C:N:P stoichiometric ratios under farmlands with different abandoned ages. Different lowercase letters indicate significant difference among farmlands with different abandoned ages at P<0.05 level. Bars are standard errors. FL, farmland. AL10, AL20, AL30, AL40 and AL50 mean abandoned farmlands for 10, 20, 30, 40 and 50 a, respectively.
Fig. 3 Relationships among plant-microbe-soil C:N:P stoichiometric ratios
Index C:N ratio of
C:P ratio of
N:P ratio of
C:N ratio of microbe C:P ratio of microbe N:P ratio of
Shannon-Wiener -0.552* -0.230 -0.009 0.535* 0.164 -0.218
Margelef -0.063 -0.240 -0.177 0.083 -0.305 -0.332
ED -0.069 -0.190 -0.096 0.403 0.085 -0.227
Table 4 Pearson's correlation coefficient between plant diversity index and C:N:P stoichiometry
Fig. 4 Redundancy analysis (RDA) ordination biplot of plant communities (blue arrows) and C:N:P stoichiometric ratios (red arrows). MCN, C:N ratio of microbe; MCP, C:P ratio of microbe; MNP, N:P ratio of microbe; BCN, C:N ratio of plant; BCP, C:P ratio of plant; BNP, N:P ratio of plant; SCN, SOC:N ratio of soil; SCP, SOC:P ratio of soil; SNP, N:P ratio of soil; Val, Valerianaceae; Lab, Labiatae; Eup, Euphorbiaceae; Leg, Leguminosae; Gra, Gramineae; Vio, Violaceae; Com, Compositae; Che, Chenopodiaceae; Oro, Orobanchaceae; Asc, Asclepiadaceae; Ger, Geraniaceae; Ran, Ranunculaceae; Rub, Rubiaceae; Ros, Rosaceae; Umb, Umbelliferae; Cyp, Cyperaceae; Cru, Cruciferae; Con, Convolvulaceae; Pol, Polygalaceae; Big, Bignoniaceae.
[1]   Bazzaz F A. 1975. Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology, 56(2): 485-488.
doi: 10.2307/1934981
[2]   Bonanomi G, Rietkerk M, Dekker S C, et al. 2005. Negative plant-soil feedback and positive species interaction in a herbaceous plant community. Plant Ecology, 181: 269-278.
doi: 10.1007/s11258-005-7221-5
[3]   Brookes P C, Landman A, Pruden G, et al. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6): 837-842.
doi: 10.1016/0038-0717(85)90144-0
[4]   Busch V, Klaus V H, Penone C, et al. 2018. Nutrient stoichiometry and land use rather than species richness determine plant functional diversity. Ecology and Evolution, 8(1): 601-616.
doi: 10.1002/ece3.3609 pmid: 29321897
[5]   Chen X L, Chen H Y. 2018. Global effects of plant litter alterations on soil CO2 to the atmosphere. Global Change Biology, 24(8): 3462-3471.
doi: 10.1111/gcb.14147 pmid: 29575583
[6]   Clements F E. 1936. Nature and structure of the climax. Journal of Ecology, 24(1): 252-284.
doi: 10.2307/2256278
[7]   Couic E, Grimaldi M, Alphonse V, et al. 2018. Mercury behaviour and C, N, and P biogeochemical cycles during ecological restoration processes of old mining sites in French Guiana. Environmental Science: Processes and Impacts, 20: 657-672.
doi: 10.1039/c8em00016f pmid: 29504006
[8]   Cruz-Martinez K, Rosling A, Zhang Y, et al. 2012. Effect of rainfall-induced soil geochemistry dynamics on grassland soil microbial communities. Applied and Environmental Microbiology, 78(21): 7587-7595.
doi: 10.1128/AEM.00203-12 pmid: 22904056
[9]   Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19: 703-707.
doi: 10.1016/0038-0717(87)90052-6
[10]   Elser J J, Acharya K, Kyle M, et al. 2003. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6(10): 936-943.
doi: 10.1046/j.1461-0248.2003.00518.x
[11]   Erktan A, Cecillon L, Graf F, et al. 2016. Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics. Plant and Soil, 398: 121-137.
doi: 10.1007/s11104-015-2647-6
[12]   Godron M, Daget P, Poissonet J, et al.1971. Some Aspects of Heterogeneity in Grasslands of Cantal. State College: Pennsylvania State University Press, 397-415.
[13]   Grigulis K, Lavorel S, Krainer U, et al. 2013. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology, 101(1): 47-57.
doi: 10.1111/jec.2012.101.issue-1
[14]   Guo S J, Han X H, Li H, et al. 2018. Evaluation of soil quality along two revegetation chronosequences on the loess hilly region of China. Science of the Total Environment, 633: 808-815.
doi: 10.1016/j.scitotenv.2018.03.210 pmid: 29758912
[15]   Han F, Miao B L, Guo R Q, et al. 2010. Spatial-temporal evolvement characteristics of climate productivity for the plants on Inner Mongolia desert steppe. Journal of Anhui Agricultural Sciences, 1(5): 76-79. (in Chinese)
[16]   Hao J H, Liu Q Q, Qiang S. 2009. Reproductive traits associated with invasiveness in Bidens pilosa (Asteraceae). Chinese Bulletin of Botany, 44(6): 656-665. (in Chinese)
[17]   Haripal K, Sahoo S. 2011. Vegetational dynamics in some tropical abandoned rice fields in the western part of Orissa, India. African Journal of Environmental Science and Technology, 5: 37-44.
[18]   Hessen D O, Ågren G I, Anderson T R, et al. 2004. Carbon, sequestration in ecosystems: The role of stoichiometry. Ecology, 85(5): 1179-1192.
doi: 10.1890/02-0251
[19]   Hu Y K, Li K H, Gong Y M, et al. 2009. Plant diversity-productivity patterns in the alpine steppe environment of the Central Tianshan Mountains. Journal of Arid Land, 1(1): 43-48.
doi: 10.3724/SP.J.1227.00043
[20]   Jaeger C H, Monson R K, Fisk M C, et al. 1999. Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem. Ecology, 80(6): 1883-1891.
doi: 10.2307/176666
[21]   Jiao F, Wen Z M, Jiao J Y, et al. 2006. Reciprocal effects among vegetation, soil moisture and nutrients of cropland to forest and grassland in the loess hilly region. Acta Prataculturae Sinica, 15(2): 79-84. (in Chinese)
[22]   Jose Fernandez-Alonso M, Curiel Y J, Kitzler B, et al. 2018. Changes in litter chemistry associated with global change-driven forest succession resulted in time-decoupled responses of soil carbon and nitrogen cycles. Soil Biology and Biochemistry, 120: 200-211.
doi: 10.1016/j.soilbio.2018.02.013
[23]   Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2(8): 17105.
doi: 10.1038/nmicrobiol.2017.105
[24]   Liu Y, Fu B J. 2013. Topographical variation of vegetation cover evolution and the impact of land use/cover change in the Loess Plateau. Arid Land Geography, 36(6): 1097-1102. (in Chinese)
[25]   Luo Y Q, Su B, Currie W S, et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 54(8): 731-739.
doi: 10.1890/04-1724 pmid: 16634296
[26]   Ma J M, Man D Q, Li D L, et al. 2018. Characteristics of vegetation succession and soil moisture in abandoned cropland of arid desert region. Journal of Desert Research, 38(4): 800-807. (in Chinese)
[27]   Margalef R. 1963. On certain unifying principles in ecology. American Naturalist, 97: 357-374.
doi: 10.1086/282286
[28]   Marriott C A, Hudson G, Hamilton D, et al. 1997. Spatial variability of soil total C and N and their stable isotopes in an upland Scottish grassland. Plant and Soil, 196(1): 151-162.
doi: 10.1023/A:1004288610550
[29]   Martiny A C, Talarmin A, Mouginot C, et al. 2016. Biogeochemical interactions control a temporal succession in the elemental composition of marine communities. Limnology and Oceanography, 61(2): 531-542.
doi: 10.1002/lno.10233
[30]   Ning Z Y, Li Y L, Yang H L, et al. 2017. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land. Chinese Journal of Plant Ecology, 41(10): 1069-1080. (in Chinese)
doi: 10.17521/cjpe.2017.0048
[31]   Odum E P. 1969. The strategy of ecosystem development. Science, 164(3877): 262-270.
doi: 10.1126/science.164.3877.262 pmid: 5776636
[32]   Ratnam J, Sankaran M, Hanan N P, et al. 2008. Nutrient resorption patterns of plant functional groups in a tropical savanna: variation and functional significance. Oecologia, 157: 141-151.
doi: 10.1007/s00442-008-1047-5 pmid: 18488252
[33]   Ren C J, Kang D, Wu J P, et al. 2016. Temporal variation in soil enzyme activities after afforestation in the Loess Plateau, China. Geoderma, 282: 103-111.
doi: 10.1016/j.geoderma.2016.07.018
[34]   Ren C J, Chen J, Lu X J, et al. 2018. Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biology and Biochemistry, 116: 4-10.
doi: 10.1016/j.soilbio.2017.09.028
[35]   Rundel P W. 1997. Plants in changing environments: Linking physiological, population and community ecology. Tree Physiology, 17(7): 489-489.
[36]   Sterner R W, Elser J J.2002. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press, 46-54.
[37]   Sutherland S. 2004. What makes a weed a weed: life history traits of native and exotic plants in the USA. Oecologia, 141: 24-39.
doi: 10.1007/s00442-004-1628-x
[38]   Thuille A, Schulze E D. 2006. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biology, 12(2): 325-342.
doi: 10.1111/gcb.2006.12.issue-2
[39]   Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6): 703-707.
doi: 10.1016/0038-0717(87)90052-6
[40]   Vos B D, Meirvenne M V, Quataert P, et al. 2005. Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Science Society of America Journal, 69(2): 500-510.
doi: 10.2136/sssaj2005.0500
[41]   Wall D H, Moore J C. 1999. Interactions underground: Soil biodiversity, mutualism, and ecosystem processes. Bioscience, 49(2): 109-117.
doi: 10.2307/1313536
[42]   Wang S Q, Yu G R. 2008. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28(8): 3937-3947. (in Chinese)
[43]   Wang X N, Xiang J P, Zhao T N, et al. 2009. A study of vegetation succession in the loess hill and gully area of western Shanxi Province. Bulletin of Soil and Water Conservation, 23(3): 103-107. (in Chinese)
[44]   Yao Y B, Wang R Y, Yang J H, et al. 2013. Changes in terrestrial surface dry and wet conditions on the Loess Plateau (China) during the last half century. Journal of Arid Land, 5(1): 15-24.
doi: 10.1007/s40333-013-0137-3
[45]   Zechmeister-Boltenstern S, Keiblinger K M, Mooshammer M, et al. 2015. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs, 85(2): 133-155.
doi: 10.1890/14-0777.1
[46]   Zhang C, Liu G B, Xue S, et al. 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biology and Biochemistry, 97: 40-49.
doi: 10.1016/j.soilbio.2016.02.013
[47]   Zhang W, Ren C J, Deng J, et al. 2018a. Plant functional composition and species diversity affect soil C, N, and P during secondary succession of abandoned farmland on the Loess Plateau. Ecological Engineering, 122: 91-99.
doi: 10.1016/j.ecoleng.2018.07.031
[48]   Zhang W, Gao D X, Chen Z X, et al. 2018b. Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China. Geoderma, 325: 152-161.
doi: 10.1016/j.geoderma.2018.03.027
[49]   Zhang W, Liu W C, Xu M P, et al. 2019. Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma, 337: 280-289.
doi: 10.1016/j.geoderma.2018.09.042
[50]   Zhao F Z, Kang D, Han X H, et al. 2015. Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity. Ecological Engineering, 74: 415-422.
doi: 10.1016/j.ecoleng.2014.11.010
[51]   Zhao F Z, Ren C J, Han X H, et al. 2018. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems. Forest Ecology and Management, 427: 289-295.
doi: 10.1016/j.foreco.2018.06.011
[52]   Zhao F Z, Bai L, Wang J Y, et al. 2019. Change in soil bacterial community during secondary succession depend on plant and soil characteristics. Catena, 173: 246-252.
doi: 10.1016/j.catena.2018.10.024
[53]   Zhao G, Mu X, Wen Z, et al. 2013. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation and Development, 24(5): 499-510.
doi: 10.1038/s41598-018-31036-x pmid: 30140034
[54]   Zhao Y Y, Hu X. 2008. Review on mechanism of succession of degenerating meadow community during resuming process in Loess Plateau. Research of Soil and Water Conservation, 15(6): 274-276. (in Chinese)
[55]   Zheng Y R. 2000. Comparison of methods for studying stability of forest community. Scientia Silvae Sinicae, 36(5): 28-32. (in Chinese)
doi: 10.11707/j.1001-7488.20000513
[56]   Zhou K, Guo W M, Xu Y C. 2004. Advances of research on allelopathic potential in Compositae. Acta Ecologica Sinica, 24(8): 1776-1784. (in Chinese)
[57]   Zhou Y, Boutton T W, Wu X B. 2018. Soil phosphorus does not keep pace with soil carbon and nitrogen accumulation following woody encroachment. Global Change Biology, 24(5): 1992-2007.
doi: 10.1111/gcb.14048 pmid: 29323781
[1] HUANG Laiming, ZHAO Wen, SHAO Ming'an. Response of plant physiological parameters to soil water availability during prolonged drought is affected by soil texture[J]. Journal of Arid Land, 2021, 13(7): 688-698.
[2] ZHOU Siyuan, DUAN Yufeng, ZHANG Yuxiu, GUO Jinjin. Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019[J]. Journal of Arid Land, 2021, 13(5): 534-547.
[3] SU Yuanyi, LI Peng, REN Zongping, XIAO Lie, ZHANG Hui. Freeze-thaw effects on erosion process in loess slope under simulated rainfall[J]. Journal of Arid Land, 2020, 12(6): 937-949.
[4] ZHANG Zhenchao, LIU Miao, SUN Jian, WEI Tianxing. Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China[J]. Journal of Arid Land, 2020, 12(5): 806-818.
[5] Masoud BAZGIR, Reza OMIDIPOUR, Mehdi HEYDARI, Nasim ZAINALI, Masoud HAMIDI, Daniel C DEY. Prioritizing woody species for the rehabilitation of arid lands in western Iran based on soil properties and carbon sequestration[J]. Journal of Arid Land, 2020, 12(4): 640-652.
[6] Zahra JAFARI, SayedHamid MATINKHAH, Mohammad R MOSADDEGHI, Mostafa TARKESH. Evaluation of the efficiency of irrigation methods on the growth and survival of tree seedlings in an arid climate[J]. Journal of Arid Land, 2020, 12(3): 495-507.
[7] DONG Yiqiang, SUN Zongjiu, AN Shazhou, JIANG Shasha, WEI Peng. Community structure and carbon and nitrogen storage of sagebrush desert under grazing exclusion in Northwest China[J]. Journal of Arid Land, 2020, 12(2): 239-251.
[8] Rentao LIU, STEINBERGER Yosef, Jingwei HOU, Juan ZHAO, Jianan LIU, Haitao CHANG, Jing ZHANG, Yaxi LUO. Conversion of cropland into agroforestry land versus naturally-restored grassland alters soil macro-faunal diversity and trophic structure in the semi-arid agro-pasture zone of northern China[J]. Journal of Arid Land, 2019, 11(2): 306-317.
[9] Guohua HE, Yong ZHAO, Jianhua WANG, Qingming WANG, Yongnan ZHU. Impact of large-scale vegetation restoration project on summer land surface temperature on the Loess Plateau, China[J]. Journal of Arid Land, 2018, 10(6): 892-904.
[10] Qingyin ZHANG, Xiaoxu JIA, Chunlei ZHAO, Ming'an SHAO. Revegetation with artificial plants improves topsoil hydrological properties but intensifies deep-soil drying in northern Loess Plateau, China[J]. Journal of Arid Land, 2018, 10(3): 335-346.
[11] Xiaobo GU, Yuannong LI, Yadan DU. Film-mulched continuous ridge-furrow planting improves soil temperature, nutrient content and enzymatic activity in a winter oilseed rape field, Northwest China[J]. Journal of Arid Land, 2018, 10(3): 362-374.
[12] Xiaona Yu, Yongmei Huang, Engui Li, Xiaoyan Li, Weihua Guo. Effects of vegetation types on soil water dynamics during vegetation restoration in the Mu Us Sandy Land, northwestern China[J]. Journal of Arid Land, 2017, 9(2): 188-199.
[13] Ning AI, Tianxing WEI, Qingke ZHU, Fangfang QIANG, Huan MA, Wei QIN. Impacts of land disturbance and restoration on runoff production and sediment yield inthe Chinese Loess Plateau[J]. Journal of Arid Land, 2017, 9(1): 76-86.
[14] Yinan ZHAO, Hongqing YU, Tao ZHANG, Jixun GUO. Mycorrhizal colonization of chenopods and its influencing factors in different saline habitats, China[J]. Journal of Arid Land, 2017, 9(1): 143-152.
[15] Raafat H ABD EL-WAHAB. Plant assemblage and diversity variation with human disturbances in coastal habitats of the western Arabian Gulf[J]. Journal of Arid Land, 2016, 8(5): 787-798.