Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China
LI Xuemei1,2,3,*(), Slobodan P SIMONOVIC4, LI Lanhai5, ZHANG Xueting6,7, QIN Qirui1,3
1 Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China 2 National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China 3 Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China 4 Facility for Intelligent Decision Support, Department of Civil and Environmental Engineering, Western University, London N6A 3K7, Canada 5 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 6 Qilian Alpine Ecology & Hydrology Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China 7 University of Chinese Academy of Sciences, Beijing 100049, China
Short-term climate reconstruction, i.e., the reproduction of short-term (several decades) historical climatic time series based on the relationship between observed data and available longer-term reference data in a certain area, can extend the length of climatic time series and offset the shortage of observations. This can be used to assess regional climate change over a much longer time scale. Based on monthly grid climate data from a Coupled Model Inter-comparison Project phase 5 (CMIP5) dataset for the period of 1850-2000, the Climatic Research Unit (CRU) dataset for the period of 1901-2000 and the observed data from 53 meteorological stations located in the Tianshan Mountains region (TMR) of China during the period of 1961-2011, we calibrated and validated monthly average temperature (MAT) and monthly accumulated precipitation (MAP) in the TMR using the delta, physical scaling (SP) and artificial neural network (ANN) methods. Performance and uncertainty during the calibration (1971-1999) and verification (1961-1970) periods were assessed and compared using traditional performance indices and a revised set pair analysis (RSPA) method. The calibration and verification processes were subjected to various sources of uncertainty due to the influence of different reconstructed variables, different data sources, and/or different methods used. According to traditional performance indices, both the CRU and CMIP5 datasets resulted in satisfactory calibrated and verified MAT time series at 53 meteorological stations and MAP time series at 20 meteorological stations using the delta and SP methods for the period of 1961-1999. However, the results differed from those obtained by the RSPA method. This showed that the CRU dataset produced a low degree of uncertainty (positive connection degree) during the calibration and verification of MAT using the delta and SP methods compared to the CMIP5 dataset. Overall, the calibrated and verified MAP had a high degree of uncertainty (negative connection degree) regardless of the dataset or reconstruction method used. Therefore, the reconstructed time series of MAT for the period of 1850 (or 1901)-1960 based on the CRU and CMIP5 datasets using the delta and SP methods could be used for further study. The results of this study will be useful for short-term (several decades) regional climate reconstruction and longer-term (100 a or more) assessments of regional climate change.
LI Xuemei, Slobodan P SIMONOVIC, LI Lanhai, ZHANG Xueting, QIN Qirui. Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China. Journal of Arid Land, 2020, 12(3): 374-396.
Fig. 1 Distribution of the meteorological stations in the Tianshan Mountains region (TMR) of China. The full name and descriptive information of all meteorological stations can be seen in Table S1 in the Appendix.
Fig. 2 Flow chart of methods and approaches used in this study. MAT, monthly average temperature; MAP, monthly accumulated precipitation; CRU, Climate Research Unit; CMIP5, Coupled Model Inter-comparison Project phase 5; TMR, Tianshan Mountains region; SP, physical scaling; ANN, artificial neural network; RSPA, revised set pair analysis.
Performance rating
Grade
NSC
PBLAS
Very good
A
NSC≥0.75
PBIAS≤ ±15%
Good
B
0.65≤NSC<0.75
PBIAS≤ ±20%
Satisfactory
C
0.50≤NSC<0.65
PBIAS≤ ±25%
Unsatisfactory
D
NSC<0.50
Any value
Table 1 Climate reconstruction performance criteria (revised from Moriasi et al. (2007))
Grade
0-s1
s1-s2
s2-s3
s3-s4
s4-s5
Range of MAT (°C)
0.0-0.5
0.5-1.0
1.0-1.5
1.5-2.0
2.0-+∞
Range of MAP (mm)
0.0-2.0
2.0-4.0
4.0-6.0
6.0-8.0
8.0-+∞
Performance
Very good
Good
Normal
Bad
Very bad
Degree
G1
G2
G3
G4
G5
Table 2 Assessment of grade standards for the calibration and verification of monthly average temperature (MAT) and monthly accumulated precipitation (MAP) time series in the Tianshan Mountains region (TMR) of China
Fig. 3 The 128 satisfactory calibrated, verified and observed monthly average temperature (MAT) time series at Zhaosu station. Obs, observed data; SP, physical scaling; ANN, artificial neural network. Delta.ACCESS1-0, the reconstructed data based on ACCESS1-0 data using the delta method; the others all follow this nomenclature scheme.
Fig. 4 Distribution of numbers of satisfactory calibrated and verified MAT time series in the TMR. The value at each station represents the number of satisfactory calibrated and verified MAT time series based on the CMIP5 and CRU datasets using the delta, SP and ANN methods.
Fig. 5 The 26 satisfactory calibrated, verified and observed monthly accumulated precipitation (MAP) time series at Zhaosu station. Obs, the observed data; SP, physical scaling. Delta.ACCESS1.0, the reconstructed data based on ACCESS1.0 data using the delta method; the others all follow this nomenclature scheme.
Fig. 6 Distribution of numbers of satisfactory calibrated and verified MAP time series in the TMR. The value at each station represents the number of satisfactory calibrated and verified MAT time series based on the CMIP5 and CRU datasets using the delta, SP and ANN methods.
No.
Station name
Station code
Latitude
Longitude
Elevation (m)
Time period
1
Akqi
AKQ
78.45°N
40.93°E
1985.700
1961-2011
2
Aksu
AKS
80.23°N
41.17°E
1104.730
1961-2011
3
Baicheng
BCH
81.90°N
41.78°E
1230.000
1961-2011
4
Balguntay
BLGT
86.30°N
42.73°E
1739.470
1961-2011
5
Barkol
BKL
93.05°N
43.60°E
1675.370
1961-2011
6
Bayanbulak
BYBLK
84.15°N
43.03°E
2459.270
1961-2011
7
Bole
BL
82.07°N
44.90°E
532.567
1961-2011
8
Caijiahu
CJH
87.53°N
44.20°E
440.967
1961-2011
9
Dabancheng
DBCH
88.32°N
43.35°E
1104.770
1961-2011
10
Daxigou
DXG
86.83°N
43.10°E
3539.000
1961-2011
11
Gongliu
GL
82.23°N
43.47°E
775.970
1961-2011
12
Hami
HM
93.52°N
42.82°E
738.200
1961-2011
13
Hejing
HJ
86.40°N
42.32°E
1102.370
1961-2011
14
Hoxud
HX
86.80°N
42.25°E
1086.130
1961-2011
15
Hutubi
HTB
86.82°N
44.13°E
522.970
1961-2011
16
Jiashi
JSH
76.73°N
39.50°E
1208.600
1961-2011
17
Jimsar
JMS
89.17°N
44.02°E
735.570
1961-2011
18
Jinghe
JH
82.90°N
44.60°E
320.870
1961-2011
19
Kalpin
KP
79.05°N
40.50°E
1162.630
1961-2011
20
Kashi
KSH
75.99°N
39.27°E
1291.200
1961-2011
21
Khorgas
KG
80.42°N
44.20°E
772.970
1961-2011
22
Korla
KL
86.13°N
41.25°E
932.433
1961-2011
23
Kumux
KM
88.22°N
42.23°E
923.470
1961-2011
24
Kuqa
KQ
82.97°N
41.73°E
1082.930
1961-2011
25
Manas
MNS
86.20°N
44.32°E
471.400
1961-2011
26
Mori
MR
90.28°N
43.83°E
1271.970
1961-2011
27
Mosuowan
MSW
86.10°N
45.02°E
347.230
1961-2011
28
Naomaohu
NMH
95.13°N
43.77°E
479.030
1961-2011
29
Nilka
NLK
82.62°N
43.80°E
1106.130
1961-2011
30
Paotai
PT
85.25°N
44.85°E
337.100
1961-2011
31
Qapqal
QPQ
81.15°N
43.83°E
603.800
1961-2011
32
Qitai
QT
89.57°N
44.02°E
794.100
1961-2011
33
Shanshan
SHSH
90.23°N
42.85°E
398.930
1961-2011
34
Shawan
SHW
85.62°N
44.33°E
522.200
1961-2011
35
Shihezi
SHHZ
86.05°N
44.32°E
443.730
1961-2011
36
Shisanjianfang
SHSJF
91.73°N
43.22°E
722.900
1961-2011
37
Tekes
TKS
81.77°N
43.18°E
1210.530
1961-2011
38
Tianchi
TCH
88.12°N
43.88°E
1942.170
1961-2011
39
Toksun
TKS
88.63°N
42.80°E
1.670
1961-2011
40
Tuergate
TEGT
75.40°N
40.52°E
3506.400
1961-2011
41
Turpan
TP
89.20°N
42.93°E
34.970
1961-2011
42
Urumqi
URMQ
87.65°N
43.78°E
935.670
1961-2011
43
Usu
US
84.67°N
44.43°E
478.970
1961-2011
44
Wenquan
WEQ
81.02°N
44.97°E
1358.600
1961-2011
45
Wuqia
WUQ
75.25°N
39.72°E
2176.900
1961-2011
46
Wushi
WSH
79.23°N
41.22°E
1396.470
1961-2011
47
Xiaoquzi
XQZ
87.10°N
43.49°E
1873.800
1961-2011
48
Xinhe
XH
82.61°N
41.53°E
1014.200
1961-2011
49
Xinyuan
XY
83.30°N
43.45°E
929.200
1961-2011
50
Yanqi
YQ
86.57°N
42.08°E
1056.600
1961-2011
51
Yining
YN
81.33°N
43.95°E
663.200
1961-2011
52
Yiwu
YW
94.70°N
43.27°E
1728.600
1961-2011
53
Zhaosu
ZHS
81.13°N
43.15°E
1853.400
1961-2011
Table S1 Descriptive information of the meteorological stations selected in the Tianshan Mountains region (TMR)
No.
Model name
Source and country
Resolution
Historical period
1
ACCESS1-0
CSIRO-BOM, Australia
192×145
Jan 1850-Dec 2005
2
ACCESS1-3
CSIRO-BOM, Australia
192×145
Jan 1850-Dec 2005
3
BCC-CSM1-1
BCC, China
128×64
Jan 1850-Dec 2012
4
BCC-CSM1-1-M
BCC, China
320×160
Jan 1850-Dec 2012
5
BNU-ESM
GCESS, China
128×64
Jan 1850-Dec 2005
6
CanCM4
CCCMA, Canada
128×64
Jan 1850-Dec 2005
7
CanESM2
CCCMA, Canada
128×64
Jan 1850-Dec 2005
8
CCSM4
NCAR, U.S.
288×192
Jan 1850-Dec 2005
9
CESM1-BGC
NSF-DOE-NCAR, U.S.
288×192
Jan 1850-Dec 2005
10
CESM1-CAM5
NSF-DOE-NCAR, U.S.
288×192
Jan 1850-Dec 2005
11
CESM1-FASTCHEM
NSF-DOE-NCAR, U.S.
288×192
Jan 1850-Dec 2005
12
CESM1-WACCM
NSF-DOE-NCAR, U.S.
144×96
Jan 1850-Dec 2005
13
CMCC-CESM
CMCC, Italy
96×48
Jan 1850-Dec 2005
14
CMCC-CM
CMCC, Italy
480×240
Jan 1850-Dec 2005
15
CMCC-CMS
CMCC, Italy
192×96
Jan 1850-Dec 2005
16
CNRM-CM5
CNRM-CERFACS, French
256×128
Jan 1850-Dec 2005
17
CSIRO-Mk3-6-0
CSIRO-QCCCE, Australia
192×96
Jan 1850-Dec 2005
18
EC-EARTH
EC-EARTH, 10-European nations
320×160
Jan 1950-Dec 2012
19
FGOALS-g2
FGOALS, China
128×60
Jan 1960-Jan 1999
20
FGOALS-s2
FGOALS, China
128×108
Jan 1850-Dec 2005
21
FIO-ESM
FIO, China
128×64
Jan 1850-Dec 2005
22
GFDL-ESM2G
NOAA GFDL, U.S.
144×90
Jan 1961-Dec 2000
23
GFDL-ESM2M
NOAA GFDL, U.S.
144×90
Jan 1961-Dec 2000
24
GISS-E2-H
NASA GISS, U.S.
144×90
Jan 1951-Dec 2005
25
GISS-E2-H-CC
NASA GISS, U.S.
144×90
Jan 1951-Dec 2010
26
GISS-E2-R
NASA GISS, U.S.
144×90
Jan 1951-Dec 2005
27
GISS-E2-R-CC
NASA GISS, U.S.
144×90
Jan 1951-Dec 2005
28
HadCM3
MOHC, England
96×73
Jan 1959-Dec 2005
29
HadGEM2-AO
NIMR/KMA, SK/England
192×145
Jan 1860-Dec 2005
30
HadGEM2-CC
MOHC, England
192×145
Dec 1959-Nov 2005
31
HadGEM2-ES
MOHC, England
192×145
Dec 1959-Nov 2005
32
INMCM4
INM, Russia
180×120
Jan 1850-Dec 2005
33
IPSL-CM5A-LR
IPSL, French
96×96
Jan 1850-Dec 2005
34
IPSL-CM5A-MR
IPSL, French
144×143
Jan 1850-Dec 2005
35
IPSL-CM5B-LR
IPSL, French
96×96
Jan 1850-Dec 2005
36
MIROC4h
MIROC, Japan
640×320
Jan 1961-Dec 2000
37
MIROC5
MIROC, Japan
256×128
Jan 1850-Dec 2012
38
MIROC-ESM
MIROC, Japan
128×64
Jan 1950-Dec 2005
39
MIROC-ESM-CHEM
MIROC, Japan
128×64
Jan 1850-Dec 2005
40
MRI-CGCM3
MRI, Japan
320×160
Jan 1850-Dec 2005
41
NorESM1-M
NCC, Norway
144×96
Jan 1850-Dec 2005
42
NorESM1-ME
NCC, Norway
144×96
Jan 1850-Dec 2005
Table S2 Basic information of the CMIP5 (Coupled Model Inter-comparison Project phase 5) models
No.
Station name
Number of satisfactory calibrated and verified MAT time series
Total
A (very good)
Delta method
SP method
ANN method
No method
CRU
CMIP5
1
Akqi
88
87
41
42
0
5
2
86
2
Aksu
90
85
41
42
0
7
3
87
3
Baicheng
91
86
41
42
0
8
2
89
4
Balguntay
102
89
41
42
0
19
2
100
5
Barkol
69
55
41
27
0
1
2
67
6
Bayanbulak
82
82
41
41
0
0
2
80
7
Bole
91
84
41
42
0
8
2
89
8
Caijiahu
92
84
41
41
0
10
2
90
9
Dabancheng
93
87
41
42
0
10
3
90
10
Daxigou
83
83
41
42
0
0
2
81
11
Gongliu
90
88
41
42
0
7
2
88
12
Hami
91
86
41
42
0
8
3
88
13
Hejing
93
91
41
42
0
10
3
90
14
Hoxud
93
90
41
42
0
10
3
90
15
Hutubi
91
85
41
42
0
8
3
88
16
Jiashi
86
83
41
42
0
3
2
84
17
Jimsar
92
86
41
42
0
9
2
90
18
Jinghe
102
93
41
42
0
19
2
100
19
Kalpin
86
83
41
42
0
3
2
84
20
Kashi
102
93
41
42
0
19
2
100
21
Khorgas
99
89
41
42
0
16
3
96
22
Korla
102
93
41
42
0
19
3
99
23
Kumux
101
90
41
42
0
18
3
98
24
Kuqa
91
85
41
42
0
8
3
88
25
Manas
101
90
41
42
0
18
2
99
26
Mori
100
90
41
42
0
17
3
97
27
Mosuowan
102
90
41
42
0
19
2
100
28
Naomaohu
85
84
41
42
0
2
3
82
29
Nilka
91
89
41
42
0
8
2
89
30
Paotai
101
91
41
42
0
18
2
99
31
Qapqal
102
98
41
42
0
19
3
99
32
Qitai
99
90
41
42
0
16
3
96
33
Shanshan
83
83
41
42
0
0
2
81
34
Shawan
105
99
41
42
0
22
2
103
35
Shihezi
109
91
41
42
0
26
2
107
36
Shisanjianfang
97
87
41
42
0
14
3
94
37
Tekes
87
87
41
42
0
4
2
85
38
Tianchi
82
75
41
40
0
1
1
81
39
Toksun
85
83
41
42
0
2
3
82
40
Tuergate
87
85
41
42
0
4
2
85
41
Turpan
84
83
41
42
0
1
2
82
42
Urumqi
100
89
41
42
0
17
2
98
43
Usu
101
90
41
42
0
18
3
98
44
Wenquan
127
94
41
41
35
10
2
125
45
Wuqia
83
83
41
42
0
0
2
81
46
Wushi
85
83
41
41
0
3
1
84
47
Xiaoquzi
91
79
41
41
1
8
2
89
48
Xinhe
95
91
41
42
0
12
3
92
49
Xinyuan
90
88
41
42
0
7
2
88
50
Yanqi
98
90
41
42
0
15
3
95
51
Yining
89
86
41
42
0
6
2
87
52
Yiwu
135
106
41
42
37
15
3
132
53
Zhaosu
128
119
41
42
42
3
3
125
Table S3 Numbers of satisfactory calibrated and verified monthly average temperature (MAT) time series based on the CMIP5 and Climatic Research Unit (CRU) datasets using the delta, physical scaling (SP), artificial neural network (ANN) and No methods
No.
Station name
Number of satisfactory calibrated and verified MAP time series
Total
C/B
C/C
Delta method
SP method
ANN method
No method
CRU
CMIP5
1
Bayanbulak
13
0
12
12
1
0
0
0
13
2
Daxigou
8
5
2
8
0
0
0
0
8
3
Kashi
3
0
0
1
1
1
0
3
0
4
Korla
3
0
0
1
1
1
0
3
0
5
Kuqa
1
0
0
1
0
0
0
1
0
6
Manas
3
1
2
1
1
1
0
3
0
7
Mori
2
2
0
0
1
1
0
2
0
8
Qitai
3
0
0
1
1
1
0
3
0
9
Tekes
1
0
1
0
1
0
0
0
1
10
Tianchi
3
0
0
1
1
1
0
3
0
11
Tuergate
1
0
0
1
0
0
0
1
0
12
Turpan
1
0
0
1
0
0
0
1
0
13
Urumqi
2
0
0
0
1
1
0
2
0
14
Usu
4
0
0
1
1
1
1
4
0
15
Xiaoquzi
7
0
5
2
3
2
0
3
4
16
Xinyuan
1
0
1
0
1
0
0
1
0
17
Yanqi
1
0
1
1
0
0
0
1
0
18
Yining
4
0
0
1
1
1
1
4
0
19
Yiwu
4
0
0
1
1
1
1
4
0
20
Zhaosu
26
6
20
9
9
6
2
0
26
Table S4 Numbers of satisfactory calibrated and verified monthly accumulated precipitation (MAP) time series based on the CRU and CMIP5 datasets using the delta, SP, ANN and No methods
No.
Connection degree
a
b1
b2
b3
c
C
V
C
V
C
V
C
V
C
V
1
μ(Rdelta CRU, T)
0.58
0.59
0.24
0.26
0.11
0.06
0.04
0.06
0.03
0.03
2
μ(RSP CRU, T)
0.53
0.56
0.28
0.28
0.13
0.08
0.04
0.06
0.03
0.03
3
μ(RANN cru, T)
0.51
0.56
0.31
0.27
0.13
0.10
0.03
0.05
0.02
0.03
4
μ(RANN CanCM4, T)
0.26
0.25
0.15
0.13
0.17
0.10
0.10
0.13
0.32
0.39
5
μ(RSP FGOALS-g2, T)
0.26
0.19
0.16
0.24
0.13
0.14
0.14
0.13
0.32
0.30
6
μ(RSP BNU-ESM, T)
0.25
0.14
0.15
0.27
0.16
0.13
0.11
0.13
0.33
0.33
7
μ(RSP CESM1-BGC, T)
0.25
0.26
0.19
0.16
0.14
0.15
0.10
0.15
0.32
0.28
8
μ(RSP CESM1-WACCM, T)
0.25
0.23
0.16
0.14
0.14
0.16
0.11
0.14
0.34
0.33
9
μ(Rdelta CSIRO-Mk3-6-0, T)
0.24
0.20
0.16
0.16
0.14
0.19
0.11
0.15
0.35
0.30
10
μ(RSP MIROC-ESM-CHEM, T)
0.24
0.15
0.16
0.25
0.14
0.17
0.11
0.09
0.36
0.34
11
μ(RSP GISS-E2-R, T)
0.24
0.19
0.20
0.19
0.13
0.11
0.11
0.18
0.32
0.33
12
μ (RANN CESM1-BGC, T)
0.24
0.23
0.22
0.20
0.14
0.15
0.11
0.13
0.30
0.28
13
μ(RANN CESM1-FASTCHEM, T)
0.24
0.22
0.17
0.24
0.14
0.11
0.10
0.11
0.35
0.33
14
μ(RANN GISS-E2-R, T)
0.24
0.23
0.19
0.18
0.14
0.15
0.12
0.14
0.32
0.30
15
μ(RSP CESM1-FASTCHEM, T)
0.23
0.23
0.21
0.18
0.11
0.10
0.11
0.11
0.34
0.35
16
μ(RSP FGOALS-g2, T)
0.23
0.23
0.15
0.19
0.17
0.17
0.10
0.12
0.35
0.30
17
μ(RSP GISS-E2-H, T)
0.23
0.17
0.18
0.24
0.13
0.18
0.12
0.08
0.34
0.33
18
μ(RSP CMCC-CM, T)
0.23
0.21
0.18
0.15
0.14
0.18
0.12
0.12
0.34
0.35
19
μ(RANN MIROC5, T)
0.23
0.21
0.21
0.19
0.15
0.18
0.11
0.09
0.29
0.33
20
μ(RANN HanGEM2-ES, T)
0.23
0.18
0.18
0.21
0.15
0.14
0.12
0.13
0.32
0.34
Table S5 Connection degree expressions between calibrated (verified) and observed MAT time series (first 20 entries) at Zhaosu station
No.
Connection degree
a
b1
b2
b3
c
C
V
C
V
C
V
C
V
C
V
1
μ(Rdelta CRU, P)
0.22
0.23
0.16
0.10
0.10
0.07
0.06
0.08
0.46
0.53
2
μ(Rdelta MIROC4h, P)
0.18
0.13
0.11
0.09
0.11
0.13
0.08
0.06
0.53
0.58
3
μ(Rdelta bcc-csm1-1-m, P)
0.16
0.13
0.12
0.09
0.10
0.13
0.06
0.08
0.57
0.56
4
μ(Rdelta inmcm4, P)
0.16
0.12
0.14
0.13
0.09
0.11
0.07
0.05
0.54
0.60
5
μ(RANN MIROC4h, P)
0.16
0.10
0.08
0.08
0.11
0.10
0.07
0.11
0.57
0.62
6
μ(Rdelta MIROC5, P)
0.15
0.12
0.13
0.13
0.10
0.08
0.08
0.08
0.55
0.59
7
μ(Rdelta CCSM4, P)
0.15
0.17
0.14
0.13
0.11
0.06
0.07
0.07
0.53
0.58
8
μ(Rdelta CESM1-FASTCHEM, P)
0.15
0.13
0.11
0.13
0.10
0.11
0.11
0.04
0.53
0.60
9
μ(Rdelta CSIRO-Mk3-6-0, P)
0.15
0.13
0.13
0.13
0.07
0.08
0.09
0.10
0.56
0.57
10
μ(Rdelta MRI-CGCM3, P)
0.15
0.18
0.12
0.13
0.11
0.10
0.07
0.07
0.55
0.53
11
μ(Rdelta NorESM1-M, P)
0.15
0.13
0.11
0.10
0.10
0.09
0.08
0.11
0.56
0.57
12
μ(Rdelta CMCC-CM, P)
0.15
0.14
0.11
0.08
0.11
0.10
0.09
0.10
0.54
0.58
13
μ(RNo ACCESS1-0, P)
0.14
0.13
0.11
0.10
0.08
0.11
0.08
0.08
0.59
0.58
14
μ(RNo HadGEM2-CC, P)
0.14
0.12
0.09
0.06
0.06
0.08
0.06
0.10
0.66
0.64
15
μ(RNo HadGEM2-ES, P)
0.14
0.11
0.09
0.08
0.08
0.09
0.07
0.07
0.61
0.65
16
μ(Rdelta ACCESS1-0, P)
0.14
0.08
0.13
0.14
0.11
0.12
0.08
0.09
0.54
0.58
17
μ(Rdelta CESM1-BGC, P)
0.14
0.13
0.14
0.15
0.12
0.12
0.08
0.07
0.53
0.53
18
μ(Rdelta IPSL-CM5A-MR, P)
0.14
0.14
0.13
0.11
0.09
0.13
0.08
0.07
0.56
0.55
19
μ(Rdelta MIROC-ESM, P)
0.14
0.1
0.13
0.16
0.09
0.08
0.09
0.06
0.56
0.60
20
μ(Rdelta CNRM-CM5, P)
0.14
0.15
0.14
0.08
0.09
0.12
0.07
0.05
0.56
0.60
Table S6 Connection degree expressions between calibrated (verified) and observed MAP (first 20 entries) at Zhaosu station
No.
Station name
Number of positive connection degrees for calibrated and verified MAT time series
Total
Delta method
SP method
ANN method
No method
CRU
CMIP5
1
Akqi
4
2
2
0
0
2
2
2
Aksu
19
8
10
0
1
3
16
3
Baicheng
2
1
1
0
0
2
0
4
Barkol
2
1
1
0
0
2
0
5
Balguntay
19
1
18
0
0
2
17
6
Bayanbulak
2
1
1
0
0
2
0
7
Bole
2
1
1
0
0
2
0
8
Caijiahu
2
1
1
0
0
2
0
9
Dabancheng
3
1
1
0
1
3
0
10
Daxigou
14
1
13
0
0
2
12
11
Gongliu
2
1
1
0
0
2
0
12
Hami
3
1
1
0
1
3
0
13
Hejing
3
1
2
0
0
2
1
14
Hoxud
2
1
1
0
0
2
0
15
Hutubi
2
1
1
0
0
2
0
16
Jiashi
4
1
3
0
0
2
2
17
Jinghe
2
1
1
0
0
2
0
18
Kalpin
3
2
1
0
0
2
1
19
Khorgas
2
1
1
0
0
2
0
20
Korla
10
4
6
0
0
2
8
21
Kuqa
5
3
1
0
1
3
2
22
Kumux
4
2
2
0
0
2
2
23
Manas
2
1
1
0
0
2
0
24
Mori
3
1
1
0
1
3
0
25
Mosuowan
2
1
1
0
0
2
0
26
Naomaohu
2
1
1
0
0
2
0
27
Nilka
2
1
1
0
0
2
0
28
Paotai
2
1
1
0
0
2
0
29
Qapqal
2
1
1
0
0
2
0
30
Qitai
3
1
1
0
1
3
0
31
Shanshan
1
1
0
0
0
1
0
No.
Station name
Number of positive connection degrees for calibrated and verified MAT time series
Total
Delta method
SP method
ANN method
No method
CRU
CMIP5
32
Shawan
2
1
1
0
0
2
0
33
Shihezi
2
1
1
0
0
2
0
34
Shisanjianfang
3
1
1
0
1
3
0
35
Tekes
2
1
1
0
0
2
0
36
Tianchi
3
1
1
1
0
3
0
37
Toksun
2
1
1
0
0
2
0
38
Tuergate
5
2
3
0
0
2
3
39
Turpan
2
1
1
0
0
2
0
40
Urumqi
2
1
1
0
0
2
0
41
Usu
2
1
1
0
0
2
0
42
Wenquan
1
1
0
0
0
1
0
43
Wuqia
2
1
1
0
0
2
0
44
Wushi
3
2
1
0
0
3
0
45
Xiaoquzi
4
1
1
1
1
4
0
46
Xinhe
22
10
11
0
1
3
19
47
Xinyuan
2
1
1
0
0
2
0
48
Yanqi
15
6
8
0
1
3
12
49
Yining
2
1
1
0
0
2
0
50
Yiwu
3
1
2
0
0
2
1
51
Zhaosu
3
1
1
1
0
3
0
Table S7 Number of positive connection degrees for calibrated and verified MAT time series based on the CMIP5 and CRU datasets using the delta, SP, ANN and No methods
No.
Station name
Number of positive connection degrees for calibrated and verified MAP time series
Total
Delta method
SP method
ANN method
No method
CRU
CMIP5
1
Aksu
101
43
30
28
0
3
98
2
Balguntay
48
43
0
0
5
2
46
3
Bayanbulak
7
7
0
0
0
0
7
4
Caijiahu
3
1
1
1
0
3
0
5
Dabancheng
97
43
30
24
0
3
94
6
Hami
137
43
41
36
17
3
134
7
Hejing
121
43
38
34
6
4
117
8
Hoxud
61
43
4
10
4
3
58
9
Jiashi
110
43
34
28
5
3
107
10
Jinghe
54
34
3
8
9
3
51
11
Kalpin
53
43
3
4
3
4
49
12
Kashi
127
43
43
40
1
4
123
13
Korla
135
43
41
34
17
4
131
14
Kuqa
105
43
29
29
4
4
101
15
Kumux
129
43
39
37
10
4
125
16
Manas
4
1
1
1
1
4
0
17
Mosuowan
4
1
1
1
1
4
0
18
Naomaohu
137
43
43
42
9
4
133
19
Paotai
3
1
1
0
1
3
0
20
Qitai
4
1
1
1
1
4
0
21
Shanshan
132
43
43
43
3
3
129
22
Shisanjianfang
131
43
43
43
2
3
128
23
Toksun
63
0
42
21
0
1
62
24
Tuergate
1
1
0
0
0
1
0
25
Turpan
63
1
41
21
0
1
62
26
Urumqi
3
1
1
1
0
3
0
27
Usu
4
1
1
1
1
4
0
28
Wuqia
1
1
0
0
0
1
0
29
Wushi
10
9
1
0
0
2
8
30
Xinhe
61
43
3
10
5
4
57
31
Yanqi
59
43
4
7
5
4
55
32
Yining
4
1
1
1
1
4
0
33
Yiwu
58
43
1
3
11
4
54
Table S8 Number of positive connection degrees for calibrated and verified MAP time series based on the CMIP5 and CRU datasets using the delta, SP, ANN and No methods
[1]
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology.2000. Artificial neural networks in hydrology I: hydrology application. Journal of Hydrologic Engineering, 5(2): 124-137.
doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
[2]
Beale M H, Hagan M T, Demuth H B.2015. Neural Network Toolbox User's Guide. Natick: The Mathworks Press, 1-906.
[3]
Bradley R S, Jones P D.1994. Climate Since A.D. 1500. London: Routledge Press, 511-537.
[4]
Cannas B, Fanni A, See L, et al.2006. Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning. Physics and Chemistry of the Earth, 31(18): 1164-1171.
[5]
Chen H, Xu C Y, Guo S.2012. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of Hydrology, 434-435: 36-45.
[6]
Esper J, Cook E R, Schweingruber F H.2002. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295(5563): 2250-2253.
doi: 10.1126/science.1066208
[7]
Fang K Y, Gou X H, Chen F H.2012. Large-scale precipitation variability over Northwest China inferred from tree rings. Journal of Climate, 25: 1357-1357.
doi: 10.1175/JCLI-D-11-00584.1
[8]
Gaur A, Simonovic S P.2017a. Accessing vulnerability of land-cover types to climate change using physical scaling downscaling model. International Journal of Climatology, 37(6): 2901-2912.
doi: 10.1002/joc.2017.37.issue-6
[9]
Gaur A, Simonovic S P.2017b. Extension of physical scaling method and its application towards downscaling climate model based near surface air temperature. International Journal of Climatology, 37(8): 3353-3366.
doi: 10.1002/joc.2017.37.issue-8
[10]
Ghosh K G.2018. Analysis of rainfall trends and its spatial patterns during the last century over the Gangetic West Bengal, Eastern India. Journal of Geovisualization and Spatial Analysis, 2: 15, doi: 10.1007/s41651-018-0022-x.
doi: 10.1007/s41651-018-0022-x
[11]
Gupta H V, Sorooshian S, Yapo P O.1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2): 135-143.
doi: 10.1061/(ASCE)1084-0699(1999)4:2(135)
[12]
Hao Z H, Li L, Xu Y.2009. Study on Delta-DCSI downscaling method of GCM output. Journal of Sichuan University (Engineering Science Edition), 41(5): 1-7. (in Chinese)
[13]
Harris I, Jones P D, Osborn T J, et al.2014. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 dataset. International Journal of Climatology, 34(3): 623-642.
doi: 10.1002/joc.3711
[14]
Hauduc H, Neumann M B, Muschalla D, et al.2015. Efficiency criteria for environmental model quality assessment: A review and its application to wastewater treatment. Environmental Modelling & Software, 68: 196-204.
[15]
Hay L E, Wilby I L, Leavesley G H.2000. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. Journal of the American Water Resource Association, 36(2): 387-397.
doi: 10.1111/jawr.2000.36.issue-2
[16]
Hu R J.2004. Physical Geography of the Tianshan Mountains in China. Beijing: China Environmental Science Press, 139-142. (in Chinese)
[17]
Huang Y, Yan Q, Zhang C.2018. Spatial-temporal distribution characteristics of PM 2.5, in China in 2016. Journal of Geovisualization and Spatial Analysis, 2(2): 1-18.
doi: 10.1007/s41651-017-0008-0
[18]
Klippel L, Krusic P J, Brandes R, et al.2018. A 1286-year hydro-climate reconstruction for the Balkan Peninsula. Boreas, 47(4): 1218-1229.
doi: 10.1111/bor.2018.47.issue-4
[19]
Levenberg K.1944. A method for the solution of certain non-linear problems in least squares. The Quarterly of Applied Mathematics, 2: 164-168.
doi: 10.1090/qam/1944-02-02
[20]
Li X M, Li L H, Wang X X, et al.2013. Reconstruction of hydrometeorological time series and its uncertainties for the Kaidu River Basin using multiple data sources. Theoretical and applied climatology, 113: 45-62.
doi: 10.1007/s00704-012-0771-2
[21]
Li X M, Gao P, Li Q, Tang H.2016. Muti-paths impact from climate change on snow cover in Tianshan Mountainous area of China. Advance in Climate Change Research, 12(4): 303-312. (in Chinese)
[22]
Liu X K, Rao Z G, Zhang X J, et al.2015. Variations in the oxygen isotopic composition of precipitation in the Tianshan Mountains region and their significance for the Westerly circulation. Journal of Geographical Sciences, 25(7): 801-816.
doi: 10.1007/s11442-015-1203-x
[23]
Marquardt D.1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11(2): 431-441.
[24]
Misra V, DiNapoli S M, Bastola S.2012. Dynamic downscaling of the twentieth-century reanalysis over the southeastern United States. Regional Environment Change, 13: 15-23.
doi: 10.1007/s10113-012-0372-8
[25]
Moriasi D N, Arnold J G, van Liew M W, et al.2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural and Biological Engineers, 50(3): 885-900.
[26]
Nash J E, Sutcliffe J V.1970. River fiow forecasting through conceptual models Part 1: A discussion of principles. Journal of Hydrology, 10(3): 282-290.
doi: 10.1016/0022-1694(70)90255-6
[27]
Nourani V, Komasi M, Mano A.2009. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resources Management, 23: 2877-2894.
doi: 10.1007/s11269-009-9414-5
[28]
Pi H, Sharratt B, Feng G, et al.2017. Evaluation of two empirical wind erosion models in arid and semi-arid regions of China and the USA. Environmental Modelling & Software, 91: 28-46.
[29]
Schimek M G, Turlach B A.2000. Additive and generalized additive models. In: Schimek M G. Smoothing and Regression: Approaches, Computation, and Application. New York: Wiley Press, 277-327.
[30]
Shen J, Zhang E L, Xia W L.2001. Records from lake sediments of the Qinghai Lake to mirror climatic and environmental changes of the past about 1000 years. Quaternary Sciences, 21(6): 508-514.
[31]
Shen S S P, Clarke G, Shen B W, et al.2019. Spatiotemporal variations of the twentieth century Tibetan Plateau precipitation based on the monthly 2.5° reconstructed data. Theoretical and Applied Climatology, 135: 71-83.
doi: 10.1007/s00704-017-2357-5
[32]
Shi Y, Shen Y, Kang E, et al.2007. Recent and future climate change in northwest China. Climate Change, 80: 379-393.
doi: 10.1007/s10584-006-9121-7
[33]
Srinivasulu S, Jain A.2006. A comparative analysis of training methods for artificial neural network rainfall-runoff models. Applied Soft Computing, 6: 295-306.
doi: 10.1016/j.asoc.2005.02.002
[34]
Su M R, Yang Z F, Chen B, et al.2009. Urban ecosystem health assessment based on energy and set pair analysis—a comparative study of typical Chinese cities. Ecological Modelling, 220(18): 2341-2348.
doi: 10.1016/j.ecolmodel.2009.06.010
[35]
Taylor K E, Stouffer R J, Meehl G A.2012. A summary of the CMIP5 experiment design. Bulletin of the American Meteorological Society, 93(4): 485-498.
doi: 10.1175/BAMS-D-11-00094.1
[36]
University of East Anglia Climatic Research Unit, Harris I C, Jones P D.2020. CRU TS4.03: Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901-Dec. 2018). [2020-01-22]. Centre for Environmental Data Analysis, doi: 10.5285/10d3e3640f004c578403419aac167d82.
[37]
Wang G Q, Zhao K Q, Zhen X J.2004. Application of set pair analysis to fuzzy predictors of multiple regression weather forecast models. Bulletin of Science and Technology, 20(2): 151-155. (in Chinese)
[38]
Wang H Q, Chen F, Ermenbaev B, et al.2017. Comparison of drought-sensitive tree-ring records from the Tien Shan of Kyrgyzstan and Xinjiang (China) during the last six centuries. Advances in Climate Change Research, 8(1): 18-25.
doi: 10.1016/j.accre.2017.03.004
[39]
Wang M W, Wei D F, Li J, et al.2014. A novel clustering model based on set pair analysis for the energy consumption forecast in China. Mathematical Problems in Engineering, 2014(1): 1-8, doi: 10.1155/2014/191242.
[40]
Wang W S, Xiang H L, Li Y Q, et al.2008. A new approach to annual runoff classification based on set pair analysis. Journal of Sichuan University (Engineering Science Edition), 40(5): 1-6. (in Chinese)
[41]
Wang W S, Jin J L, Ding J, et al.2009. A new approach to water resources system assessment-set pair analysis method. Science in China Series E: Technological Sciences, 52(10): 3017-3023.
doi: 10.1007/s11431-009-0099-z
[42]
Wang W S, Li Y Q.2012. Hazard degree assessment of landslide using set pair analysis method. Natural Hazards, 60(2): 367-379.
doi: 10.1007/s11069-011-0017-0
[43]
Wei W S, Yuan Y J, Yu S L, et al.2008. Climate change in recent 235 years and trend prediction in Tianshan Mountainous area. Journal of Desert Research, 28(5): 803-808. (in Chinese)
[44]
Wood S N.2000. Modelling and smoothing parameter estimation with multiple quadratic penalties. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(2): 413-428.
doi: 10.1111/rssb.2000.62.issue-2
[45]
Wu Z T, Zhang H J, Krause C M, et al.2010. Climate change and human activities: a case study in Xinjiang, China. Climatic Change, 99: 457-472.
doi: 10.1007/s10584-009-9760-6
[46]
Yan F, Xu K, Li D, et al.2017. A novel hazard assessment method for biomass gasification stations based on extended set pair analysis. PLoS ONE, 12(9): e0185006.
doi: 10.1371/journal.pone.0185006
[47]
Yang B, Braeuning A, Johnson K R, et al.2002. General characteristics of temperature variation in China during the last two millennia. Geophysical Research Letters, 29(9): 1029-1040.
doi: 10.1029/2001GL013866
[48]
Yang J J, Zhou J Z, Liu L, et al. Similarity Measures between Connection Numbers of Set Pair Analysis. In: Sun F, Zhang J, Tan Y, et al. Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, Vol. 5263. Berlin, Heidelberg: Springer, 63-68.
[49]
Yao T, Masson-Delmotte V, Gao J, et al.2013. A review of climatic controls on delta 18O in precipitation over the Tibetan Plateau: observations and simulations. Review of Geophysics, 51(4): 525-548.
doi: 10.1002/rog.v51.4
[50]
Ye Y C, Wu Y L.2000. The set pair analysis for the comprehensive evaluation of mine operation state. Metal Mine, 6: 23-33. (in Chinese)
[51]
Zhang F Y, Ahmad S, Zhang H Q, et al.2016a. Simulating low and high streamflow driven by snowmelt in an insufficiently gauged alpine basin. Stochastic Environmental Research and Risk Assessment, 30: 59-75.
doi: 10.1007/s00477-015-1028-2
[52]
Zhang F Y, Bai L, Li L H, et al.2016b. Sensitivity of runoff to climatic variability in the northern and southern slopes of the Middle Tianshan Mountains, China. Journal of Arid Land, 8(5): 681-693.
doi: 10.1007/s40333-016-0015-x
[53]
Zhang X T, Li X M, Li L H, et al.2019. Environmental factors influencing snowfall and snowfall prediction in the Tianshan Mountains, Northwest China. Journal of Arid Land, 11(1): 15-28.
doi: 10.1007/s40333-018-0110-2
[54]
Zhao F F, Xu Z X.2007. Comparative analysis on downscaled climate scenarios for headwater catchment of Yellow River using SDS and Delta methods. Acta Meteorologica Sinica, 65(4): 653-662. (in Chinese)
doi: 10.11676/qxxb2007.060
[55]
Zhao K Q.1989. Set pair and set pair analysis-a new concept and systematic analysis method. In: Proceedings of the National Conference on System Theory and Regional Planning. Baotou, China, 87-91. (in Chinese)
[56]
Zhao K Q, Xuan A L.1996. Set pair theory-a new theory method of non-define and its applications. Systems Engineering, 14(1): 18-23. (in Chinese)
[57]
Zhou J X, Li X M, Chen L, et al.2007. Updating methods for dynamic assessment of ecological footprint-a case study of Wuhan City. Resources Science, 29(3): 111-116. (in Chinese)