Please wait a minute...
Journal of Arid Land  2020, Vol. 12 Issue (2): 318-330    DOI: 10.1007/s40333-020-0095-5     CSTR: 32276.14.s40333-020-0095-5
Research article     
Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: a case study in Fars Province, Iran
Sheida DEHGHAN1, Nasrin SALEHNIA2, Nasrin SAYARI1,*(), Bahram BAKHTIARI1
1 Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran
2 Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177949207, Iran
Download: HTML     PDF(921KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Drought is one of the most significant environmental disasters, especially in arid and semi-arid regions. Drought indices as a tool for management practices seeking to deal with the drought phenomenon are widely used around the world. One of these indicators is the Palmer drought severity index (PDSI), which is used in many parts of the world to assess the drought situation and continuation. In this study, the drought state of Fars Province in Iran was evaluated by using the PDSI over 1995-2014 according to meteorological data from six weather stations in the province. A statistical downscaling model (SDSM) was used to apply the output results of the general circulation model in Fars Province. To implement data processing and prediction of climate data, a statistical period 1995-2014 was considered as the monitoring period, and a statistical period 2019-2048 was for the prediction period. The results revealed that there is a good agreement between the simulated precipitation (R2>0.63; R2, determination coefficient; MAE<0.52; MAE, mean absolute error; RMSE<0.56; RMSE, Root Mean Squared Error) and temperature (R2>0.95, MAE<1.74, and RMSE<1.78) with the observed data from the stations. The results of the drought monitoring model presented that dry periods would increase over the next three decades as compared to the historical data. The studies showed the highest drought in the meteorological stations Abadeh and Lar during the prediction period under two future scenarios representative concentration pathways (RCP4.5 and RCP8.5). According to the results of the validation periods and efficiency criteria, we suggest that the SDSM is a proper tool for predicting drought in arid and semi-arid regions.



Key wordsPDSI      SDSM      RCP4.5      RCP8.5      climate change      extreme drought     
Received: 14 February 2019      Published: 10 March 2020
Corresponding Authors:
About author: *Corresponding author: Nasrin SAYARI (Email: nasrin_sayari@yahoo.com)
Cite this article:

Sheida DEHGHAN, Nasrin SALEHNIA, Nasrin SAYARI, Bahram BAKHTIARI. Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: a case study in Fars Province, Iran. Journal of Arid Land, 2020, 12(2): 318-330.

URL:

http://jal.xjegi.com/10.1007/s40333-020-0095-5     OR     http://jal.xjegi.com/Y2020/V12/I2/318

Fig. 1 Location of the study area, Fars Province of Iran (a). The north and northwest part has cold winter and mild summer; the central area has rainy, mild winter and hot, dry summer; and the south and southeast part has cold winter and hot summer (b). N, north; NW, northwest; S, south, SE, southeast.
Meteorological station Location Elevation (m) Mean annual temperature (°C) Total daily precipitation (mm) Climate
Shiraz 29°32′N, 52°36′E 1484 18.6 6370.1 Semi-arid
Fasa 28°58′N, 53°41′E 1288 19.4 5429.3 Semi-arid
Abadeh 31°11′N, 52°40′E 2030 14.4 2649.4 Arid
Darab 28°47′N, 54°17′E 1098 22.1 4983.8 Arid
Lar 27°42′N, 54°17′E 792 23.9 3533.2 Arid
Eghlid 30°54′N, 52°38′E 2300 13.0 6325.9 Arid
Table 1 Characteristics of the six meteorological stations in Fars Province of Iran during 1995-2014
PDSI value Classification
≥4.00 Extreme wet
3.00-3.99 Very wet
2.00-2.99 Moderate wet
1.00-1.99 Slight wet
0.50-0.99 Incipient wet spell
0.49- -0.49 Near normal
-0.50- -0.99 Incipient dry spell
-1.00- -1.99 Mild drought
-2.00- -2.99 Moderate drought
-3.00- -3.99 Severe drought
≤-4.00 Extreme drought
Table 2 Drought classification by PDSI value
Fig. 2 Flowchart of estimating climate variables through the statistical downscaling model (SDSM). NCEP, national center of environmental prediction; GCM, global climate model.
Meteorological station Precipitation Temperature
R2 RMSE MAE NSE R2 RMSE MAE NSE
Shiraz 0.89 0.39 0.19 0.80 0.99 0.44 0.37 0.99
Fasa 0.63 0.50 0.36 0.65 0.99 1.14 0.98 0.99
Abadeh 0.66 0.21 0.15 0.61 0.97 1.42 0.70 0.97
Darab 0.71 0.36 0.23 0.75 0.95 1.78 1.74 0.95
Lar 0.75 0.56 0.52 0.64 0.99 0.52 0.45 0.99
Eghlid 0.93 0.13 0.14 0.97 0.96 1.42 1.14 0.96
Table 3 Results of the model evaluation in the validation period 2019-2033
Fig. 3 Observed (1995-2014) and simulated (2019-2048) maximum monthly precipitation (a-f) and monthly average temperature (g-l) under RCP4.5 and RCP8.5 scenarios at selected stations of Fars Province, Iran
Meteorological station Year Annual precipitation (mm) Precipitation of the previous year (mm)
Abadeh 2008 36.3 152.7
Darab 2001 100.0 195.4
Eghlid 2000 232.0 299.0
2008 123.1 386.2
Fasa 2001 138.2 243.7
2008 112.5 185.3
Lar 2000 102.1 123.6
Shiraz 2008 125.8 241.7
2010 94.3 281.0
Table 4 Extreme drought events in Fars Province during 1995-2014
Meteorological station RCP4.5 RCP8.5
2039-2048 2029-2038 2019-2028 2039-2048 2029-2038 2019-2028
(Months)
Shiraz 75 66 68 46 79 77
Fasa 59 59 64 58 88 66
Abadeh 85 80 82 68 58 101
Darab 58 62 66 63 57 65
Lar 64 75 64 69 88 72
Eghlid 33 67 54 64 65 57
Table 5 Number of dry months in the prediction period 2019-2048
Fig. 4 Boxplot for the monthly Palmer drought severity index (PDSI) at the Abadeh station under RCP4.5 for the prediction period 2019-2048. The horizontal line inward the box shows the group median (black line), and the multiple sign refers to the mean. The circles refer to outlier data.
Fig. 5 Boxplot for the monthly Palmer drought severity index (PDSI) at the Abadeh station under RCP8.5 for the prediction period 2019-2048. The horizontal line inward the box shows the group median (black line), and the multiply sign refers to the mean. The circles refer to outlier data.
Fig. 6 PDSI values under RCP4.5 during 2019-2048
Fig. 7 PDSI values under RCP8.5 during 2019-2048
[1]   Achilleos G A. 2011. The inverse distance weighted interpolation method and error propagation mechanism-creating a DEM from an analogue topographical map. Journal of Spatial Science, 56(2): 283-304.
doi: 10.1080/14498596.2011.623348
[2]   Agricultural and Meteorological Software. 2018. Drought monitor and prediction (Version 1.0). [2019-11-10]. .
[3]   Alley W M. 1984. The Palmer drought severity index: limitations and assumptions. Journal of Applied Meteorology, 23(7): 1100-1109.
[4]   Ashiq M W, Zhao C, Ni J, et al. 2010. GIS-based high-resolution spatial interpolation of precipitation in mountain-plain areas of upper Pakistan for regional climate change impact studies. Theoretical and Applied Climatology, 99(3-4): 239.
doi: 10.1007/s00704-009-0140-y
[5]   Bak B, Labedzki L. 2014. Prediction of precipitation deficit and excess in Bydgoszcz Region in view of predicted climate change. Journal of Water and Land Development, 23(1): 11-19.
doi: 10.1515/jwld-2014-0025
[6]   Chu J T, Xia J, Xu C Y, et al. 2010. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theoretical and Applied Climatology, 99(1-2): 149-161.
doi: 10.1007/s00704-009-0129-6
[7]   Dai A. 2011. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008. Journal of Geophysical Research: Atmospheres, 116(D12), doi: 10.1029/2010JD015541.
[8]   Dai A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3(1): 52-58.
doi: 10.1038/nclimate1633
[9]   Dubrovský M, Hayes M, Duce P, et al. 2014. Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Regional Environmental Change, 14(5): 1907-1919.
doi: 10.1007/s10113-013-0562-z
[10]   Escalante-Sandoval C, Nuñez-Garcia P. 2017. Meteorological drought features in northern and northwestern parts of Mexico under different climate change scenarios. Journal of Arid Land, 9(1): 65-75.
doi: 10.1007/s40333-016-0022-y
[11]   Hayes M J, Wilhelmi O V, Knutson C L. 2004. Reducing drought risk: bridging theory and practice. Natural Hazards Review, 5(2): 106-113.
[12]   Hessami M, Gachon P, Ouarda B M J, et al. 2007. Automated regression-based statistical downscaling tool. Environmental Modelling & Software, 23(6): 813-834.
[13]   Huang J, Zhang J, Zhang Z, et al. 2011. Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stochastic Environmental Research and Risk Assessment, 25(6): 781-792.
doi: 10.1007/s00477-010-0441-9
[14]   Intergovernmental Panel on Climate Change (IPCC). 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field C B, Barros V, Stocker T F, et al. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 115.
[15]   IPCC. 2013. Climate change 2013: the physical science basis. In: Stocker T F, Qin D, Plattner M, et al. An Overview of the Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 112.
[16]   Jin J, Wang Q, Li L H. 2016. Long-term oscillation of drought conditions in the western China: an analysis of PDSI on a decadal scale. Journal of Arid Land, 8(6): 819-831.
doi: 10.1007/s40333-016-0089-5
[17]   Gao L M, Zhang Y N. 2016. Spatio-temporal variation of hydrological drought under climate change during the period 1960-2013 in the Hexi Corridor, China. Journal of Arid Land, 8(2): 157-171.
doi: 10.1007/s40333-015-0022-3
[18]   Mahmood R, Babel M. 2013. Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India. Theoretical and Applied Climatology, 113(1-2): 27-44.
doi: 10.1007/s00704-012-0765-0
[19]   Morid S, Smakhtin V, Moghaddasi M. 2006. Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology, 26(7): 971-985.
doi: 10.1002/(ISSN)1097-0088
[20]   Moss R H, Edmonds J A, Hibbard K A, et al. 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747-756.
doi: 10.1038/nature08823 pmid: 20148028
[21]   Palmer T N, Räisänen J. 2002. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature, 415(6871): 512-514.
doi: 10.1038/415512a pmid: 11823856
[22]   Palmer W C. 1965. Meteorological Drought. Washington: Office of Climatology, US Weather Bureau, 7-12.
[23]   Rahimi J, Ebrahimpour M, Khalili A. 2013. Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Applied Climatology, 112(3-4), 409-418.
doi: 10.1007/s00704-012-0741-8
[24]   Salehnia N, Zare H, Kolsoumi S, et al. 2017a. Predictive value of Keetch-Byram Drought Index for cereal yields in a semi-arid environment. Theoretical and Applied Climatology, 134: 1005-1014.
doi: 10.1007/s00704-017-2315-2
[25]   Salehnia N, Alizadeh A, Sanaeinejad H, et al2017b. Estimation of meteorological drought indices based on AgMERRA precipitation data and station-observed precipitation data. Journal of Arid Land, 9(6): 797-809.
doi: 10.1007/s40333-017-0070-y
[26]   Sheffield J, Wood E F, Roderick M L. 2012. Little change in global drought over the past 60 years. Nature, 491(7424): 435-438.
doi: 10.1038/nature11575
[27]   Sillmann J, Kharin V V, Zwiers F W, et al. 2013. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 118(6): 2473-2493.
doi: 10.1002/jgrd.50273 pmid: 25821662
[28]   Sternberg T. 2011. Regional drought has a global impact. Nature, 472(7342):169-169.
[29]   Szép I J, Mika J, Dunkel Z. 2005. Palmer drought severity index as soil moisture indicator: physical interpretation, statistical behaviour and relation to global climate. Physics and Chemistry of the Earth, Parts A/B/C, 30(1-3): 231-243.
doi: 10.1016/j.pce.2004.08.039
[30]   Touma, D, Ashfaq M, Nayak M A, et al. 2015. A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 526: 196-207.
doi: 10.1016/j.jhydrol.2014.12.011
[31]   Trenberth K E, Dai A, Rasmussen R M, et al. 2003. The changing character of precipitation. American Meteorological Society. [2003-09-01]. https://doi.org/10.1175/BAMS-84-9-1205.
[32]   Vallam P, Qin X S. 2017. Projecting future precipitation and temperature at sites with diverse climate through multiple statistical downscaling schemes. Theoretical and Applied Climatology, 134: 669-688.
doi: 10.1007/s00704-017-2299-y
[33]   Wang X Y, Yang T, Shao Q X, et al. 2012. Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone. Stochastic Environmental Research and Risk Assessment, 26(3): 405-418.
doi: 10.1007/s00477-011-0535-z
[34]   Wilby R L, Dawson C W, Barrow E M. 2002. SDSM-a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2): 145-157.
[35]   Wu C, Xian Z, Huang G. 2016. Meteorological drought in the Beijiang River basin, South China: current observations and future projections. Stochastic Environmental Research and Risk Assessment, 30(7): 1821-1834.
doi: 10.1007/s00477-015-1157-7
[36]   Yu G, Sauchyn D, Li Y F. 2013. Drought changes and the mechanism analysis for the North American Prairie. Journal of Arid Land, 5(1): 1-14.
doi: 10.1007/s40333-013-0136-4
[37]   Zandi L H, Fooladmand H R, Boustani F. 2014. Evaluation of the wheat agricultural drought return period in the province of Fars using RDI index. Water Engineering, 7(22): 1-10.
[1] CHEN Zhuo, SHAO Minghao, HU Zihao, GAO Xin, LEI Jiaqiang. Potential distribution of Haloxylon ammodendron in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(9): 1255-1269.
[2] SUN Chao, BAI Xuelian, WANG Xinping, ZHAO Wenzhi, WEI Lemin. Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022[J]. Journal of Arid Land, 2024, 16(8): 1044-1061.
[3] YAN Yujie, CHENG Yiben, XIN Zhiming, ZHOU Junyu, ZHOU Mengyao, WANG Xiaoyu. Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023[J]. Journal of Arid Land, 2024, 16(8): 1062-1079.
[4] YANG Jianhua, LI Yaqian, ZHOU Lei, ZHANG Zhenqing, ZHOU Hongkui, WU Jianjun. Effects of temperature and precipitation on drought trends in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(8): 1098-1117.
[5] HAN Qifei, XU Wei, LI Chaofan. Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(8): 1118-1129.
[6] WANG Tongxia, CHEN Fulong, LONG Aihua, ZHANG Zhengyong, HE Chaofei, LYU Tingbo, LIU Bo, HUANG Yanhao. Glacier area change and its impact on runoff in the Manas River Basin, Northwest China from 2000 to 2020[J]. Journal of Arid Land, 2024, 16(7): 877-894.
[7] DU Lan, TIAN Shengchuan, ZHAO Nan, ZHANG Bin, MU Xiaohan, TANG Lisong, ZHENG Xinjun, LI Yan. Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China[J]. Journal of Arid Land, 2024, 16(7): 925-942.
[8] Haq S MARIFATUL, Darwish MOHAMMED, Waheed MUHAMMAD, Kumar MANOJ, Siddiqui H MANZER, Bussmann W RAINER. Predicting potential invasion risks of Leucaena leucocephala (Lam.) de Wit in the arid area of Saudi Arabia[J]. Journal of Arid Land, 2024, 16(7): 983-999.
[9] Seyed Morteza MOUSAVI, Hossein BABAZADEH, Mahdi SARAI-TABRIZI, Amir KHOSROJERDI. Assessment of rehabilitation strategies for lakes affected by anthropogenic and climatic changes: A case study of the Urmia Lake, Iran[J]. Journal of Arid Land, 2024, 16(6): 752-767.
[10] LI Chuanhua, ZHANG Liang, WANG Hongjie, PENG Lixiao, YIN Peng, MIAO Peidong. Influence of vapor pressure deficit on vegetation growth in China[J]. Journal of Arid Land, 2024, 16(6): 779-797.
[11] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[12] YANG Zhiwei, CHEN Rensheng, LIU Zhangwen, ZHAO Yanni, LIU Yiwen, WU Wentong. Spatiotemporal variability of rain-on-snow events in the arid region of Northwest China[J]. Journal of Arid Land, 2024, 16(4): 483-499.
[13] ZHANG Mingyu, CAO Yu, ZHANG Zhengyong, ZHANG Xueying, LIU Lin, CHEN Hongjin, GAO Yu, YU Fengchen, LIU Xinyi. Spatiotemporal variation of land surface temperature and its driving factors in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(3): 373-395.
[14] WANG Baoliang, WANG Hongxiang, JIAO Xuyang, HUANG Lintong, CHEN Hao, GUO Wenxian. Runoff change in the Yellow River Basin of China from 1960 to 2020 and its driving factors[J]. Journal of Arid Land, 2024, 16(2): 168-194.
[15] LIU Xinyu, LI Xuemei, ZHANG Zhengrong, ZHAO Kaixin, LI Lanhai. A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains[J]. Journal of Arid Land, 2024, 16(2): 195-219.