Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (10): 1015-1025    DOI: 10.1007/s40333-021-0021-5
Research article     
Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau
ZHOU Tairan1,2, HAN Chun1,2, QIAO Linjie1,2, REN Chaojie1,2, WEN Tao1,2, ZHAO Changming1,2,*()
1State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
2Gansu Provincial Field Scientific Observation and Research Station of Mountain Ecosystems, Lanzhou University, Lanzhou 730000, China
Download: HTML     PDF(902KB)
Export: BibTeX | EndNote (RIS)      


Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area. To further understand the impact of vegetation types and environmental factors such as precipitation on soil water content, we continuously monitored the seasonal dynamics in soil water content in four plots (natural grassland, Caragana korshinskii, Armeniaca sibirica and Pinus tabulaeformis) in Chinese Loess Plateau. The results show that the amplitude of soil water content fluctuation decreases with an increase in soil depth, showing obvious seasonal variations. Soil water content of artificial vegetation was found to be significantly lower than that of natural grassland, and most precipitation events have difficulty replenishing soil water content below a depth of 40 cm. Spring and autumn are the key seasons for replenishment of soil water by precipitation. Changes in soil water content are affected by precipitation, vegetation types, soil evaporation and other factors. The interception effect of vegetation on precipitation and the demand for water consumption by transpiration are the key factors affecting the efficiency of soil water replenishment by precipitation in this area. Due to artificial vegetation plantation in this area, soil will face a water deficit crisis in the future.

Key wordssoil water content      vegetation type      precipitation      seasonal change      evaporation     
Received: 30 June 2021      Published: 10 October 2021
Corresponding Authors: ZHAO Changming     E-mail:
Cite this article:

ZHOU Tairan, HAN Chun, QIAO Linjie, REN Chaojie, WEN Tao, ZHAO Changming. Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau. Journal of Arid Land, 2021, 13(10): 1015-1025.

URL:     OR

Fig. 1 Landscape of natural grassland (a), Caragana korshinskii (b), Armeniaca sibirica (c) and Pinus tabulaeformis (d)
Index Natural grassland Caragana korshinskii Armeniaca sibirica Pinus tabulaeformis
Stand age (a) - 56 50 50
Altitude (m) 2050 2084 2156 2120
Slope (°) 15 20 15 18
Aspect Southeast Southeast Southeast West
Total vegetation coverage (%) 95 57 50 75
Dominant species A. sacrorum,
Ajania fruticulosa,
Stipa bungeana
A. sacrorum,
Caragana jubata,
Achnatherum splendens
A. sacrorum,
Ajania fruticulosa,
Stipa capillata
A. sacrorum,
Stipa bungeana,
Aster altaicus
Understory vegetation
coverage (%)
- 22 25 15
Bulk density (g/cm3) 1.19±0.05 0.98±0.07 1.07±0.04 1.08±0.05
Clay (%) 8.36±1.68 7.77±0.37 6.37±0.94 6.86±0.89
Silt (%) 81.25±4.28 78.83±1.63 74.61±0.5 75.69±0.83
Sand (%) 10.39±2.69 13.39±1.64 19.01±1.07 17.45±1.66
Table 1 Information of vegetation and soil of the sample plot
Fig. 2 Frequency (a) and amount (b) of precipitation in each season
Sample plot Soil depth (cm) Average (%) Maximum (%) Minimum (%) SD (%) CV (%)
Natural grassland
10 21.38c 34.24 12.40 3.66 17.13
20 23.93a 33.47 17.50 2.75 11.51
40 20.12c 25.62 14.06 2.96 14.70
60 17.61e 20.20 11.72 2.45 13.93
80 14.20g 17.02 10.31 2.00 14.07
C. korshinskii
10 18.53d 33.51 11.79 4.20 22.64
20 20.87c 30.22 12.61 4.79 22.95
40 9.87j 15.21 4.93 2.98 30.17
60 9.25k 12.76 6.42 1.73 18.70
80 8.27l 9.70 6.93 0.47 5.74
A. sibirica
10 17.40e 30.66 10.11 4.78 27.45
20 18.57d 27.32 12.53 3.53 19.00
40 12.69i 18.21 8.12 2.57 20.27
60 4.25n 4.94 3.03 0.42 9.96
80 4.79m 6.41 3.03 0.96 20.15
P. tabulaeformis
10 13.21h 30.02 5.64 4.73 35.82
20 20.24c 37.49 11.71 4.05 19.99
40 23.01b 31.71 14.72 2.90 12.62
60 16.34f 19.28 10.58 2.60 15.88
80 8.15l 11.52 3.85 2.30 28.26
Table 2 Statistical values of soil water content in the four plots
Fig. 3 Daily time series of precipitation (a), air temperature (f), vapor pressure deficit (f) and soil water content in natural grassland, C. korshinskii, A. sibirica, and P. tabulaeformis plots at soil depths of 10 (a), 20 (b), 40 (c), 60 (d) and 80 cm (e)
Fig. 4 Response of soil water content to precipitation events (6.8, 18.4 and 25.1 mm) in different soil depths of the four plots. (a1-a3), natural grassland; (b1-b3), C. korshinskii; (c1-c3), A. sibirica; (d1-d3), P. tabulaeformis. P, precipitation.
Season Plot Average (cm) SD (cm) CV (%)
Natural grassland 18.20a 0.81 4.43
C. korshinskii 11.67e 1.08 9.24
A. sibirica 9.34k 1.02 10.89
P. tabulaeformis 15.49c 1.02 6.60
Natural grassland 15.41c 1.95 12.62
C. korshinskii 10.01i 1.88 18.80
A. sibirica 8.72k 1.91 21.93
P. tabulaeformis 13.00e 2.67 20.55
Natural grassland 18.38a 0.40 2.18
C. korshinskii 13.40d 0.36 2.71
A. sibirica 11.36g 0.56 4.96
P. tabulaeformis 15.68c 0.77 4.91
Natural grassland 16.75c 0.89 5.29
C. korshinskii 10.49h 1.42 13.50
A. sibirica 9.57j 0.82 8.55
P. tabulaeformis 13.91c 0.81 5.82
Natural grassland 17.18b 1.67 9.72
C. korshinskii 11.39f 1.85 16.21
A. sibirica 9.74j 1.54 15.82
P. tabulaeformis 14.52c 1.90 13.07
Table 3 Statistical value of soil water storage capacity during experimental period
Fig. 5 Response model of change of soil water storage to precipitation
[1]   An W, Li Z, Wang S, et al. 2017. Exploring the effects of the "Grain for Green" program on the differences in soil water in the semi-arid Loess Plateau of China. Ecological Engineering, 107:144-151.
doi: 10.1016/j.ecoleng.2017.07.017
[2]   Cheng R R, Chen Q W, Zhang J G, et al. 2020. Soil moisture variations in response to precipitation in different vegetation types: A multi-year study in the loess hilly region in China. Ecohydrology, 13(3):e2196, doi: 10.1002/eco.2196.
doi: 10.1002/eco.2196
[3]   Daly E, Porporato A. 2005. A review of soil moisture dynamics: From rainfall infiltration to ecosystem response. Environmental Engineering Science, 22(1):9-24.
doi: 10.1089/ees.2005.22.9
[4]   D'Odorico P, Caylor K, Okin G S, et al. 2007. On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. Journal of Geophysical Research, 112:G04010, doi: 10.1029/2006JG000379.
doi: 10.1029/2006JG000379
[5]   Fu B J, Wang J, Chen L D, et al. 2003. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. CATENA, 54(1-2):197-213.
doi: 10.1016/S0341-8162(03)00065-1
[6]   Gao L, Shao M G, Peng X H, et al. 2015. Spatio-temporal variability and temporal stability of water contents distributed within soil profiles at a hillslope scale. CATENA, 132:29-36.
doi: 10.1016/j.catena.2015.03.022
[7]   Grayson R B, Western A W, Chiew F H S, et al. 1997. Preferred states in spatial soil moisture patterns: Local and nonlocal controls. Water Resources Research, 33(12):2897-2908.
doi: 10.1029/97WR02174
[8]   Guo S J, Xu Y D, He C, et al. 2019. Differential responses of soil quality in revegetation types to precipitation gradients on the Loess Plateau. Agricultural and Forest Meteorology, 276-277:107622, doi: 10.1016/j.agrformet.2019.107622.
doi: 10.1016/j.agrformet.2019.107622
[9]   He X B, Huang Z B. 2001. Zeolite application for enhancing water infiltration and retention in loess soil. Resources Conservation and Recycling, 34(1):45-52.
doi: 10.1016/S0921-3449(01)00094-5
[10]   Hou G, Bi H, Wei X, et al. 2018. Response of soil moisture to single rainfall events under three vegetation types in the Gully Region of the Loess Plateau. Sustainability, 10(10):3793.
doi: 10.3390/su10103793
[11]   Kakembo V. 2009. Vegetation patchiness and implications for landscape function: The case of Pteronia incana invader species in Ngqushwa Rural Municipality, Eastern Cape, South Africa. CATENA, 77(3):180-186.
doi: 10.1016/j.catena.2008.12.014
[12]   Kurc S A, Small E E. 2007. Soil moisture variations and ecosystem-scale fluxes of water and carbon in semiarid grassland and shrubland. Water Resources Research, 43(6):W06416, doi: 10.1029/2006WR005011.
doi: 10.1029/2006WR005011
[13]   Laio F, Porporato A, Ridolfi L, et al. 2001. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress II. Probabilistic soil moisture dynamics. Advances in Water Resources, 24(7):707-723.
doi: 10.1016/S0309-1708(01)00005-7
[14]   Li X Y, Zhang S Y, Peng H Y, et al. 2013. Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of North China. Agricultural and Forest Meteorology, 171-172:20-30.
doi: 10.1016/j.agrformet.2012.11.001
[15]   Liang H, Xue Y, Li Z, et al. 2018. Soil moisture decline following the plantation of Robinia pseudoacacia forests: Evidence from the Loess Plateau. Forest Ecology and Management, 412:62-69.
doi: 10.1016/j.foreco.2018.01.041
[16]   Liu X, Zhang B, Zhuang J Y, et al. 2017. The relationship between sap flow density and environmental factors in the Yangtze River Delta Region of China. Forests, 8(3):74.
doi: 10.3390/f8030074
[17]   Ma C, Luo Y, Shao M, et al. 2017. Environmental controls on sap flow in black locust forest in Loess Plateau, China. Scientific Reports, 7(1):13160, doi: 10.1038/s41598-017-13532-8.
doi: 10.1038/s41598-017-13532-8
[18]   Ma C K, Li X D, Luo Y, et al. 2019. The modelling of rainfall interception in growing and dormant seasons for a pine plantation and a black locust plantation in semi-arid Northwest China. Journal of Hydrology, 577:123849, doi: 10.1016/j.jhydrol.2019.06.021.
doi: 10.1016/j.jhydrol.2019.06.021
[19]   Mei X M, Ma L, Zhu Q K, et al. 2019. The variability in soil water storage on the loess hillslopes in China and its estimation. Catena, 172:807-818.
doi: 10.1016/j.catena.2018.09.045
[20]   Odindi J O, Kakembo V. 2011. The hydrological response of Pteronia incana-invaded areas in the Eastern Cape Province, South Africa. Ecohydrology, 4(6):832-840.
doi: 10.1002/eco.v4.6
[21]   Pan M, Wood E F, Wojcik R, et al. 2008. Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sensing of Environment, 112(4):1282-1294.
doi: 10.1016/j.rse.2007.02.039
[22]   Peel M C. 2009. Hydrology: catchment vegetation and runoff. Progress in Physical Geography, 33(6):837-844.
[23]   Schlueter S, Vogel H J, Ippisch O, et al. 2013. Combined impact of soil heterogeneity and vegetation type on the annual water balance at the field scale. Vadose Zone Journal, 12(4):1-17.
[24]   Schwinning S, Sala O E. 2004. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141(2):211-220.
pmid: 15034778
[25]   Shao Q, Gu W, Dai Q Y, et al. 2014. Effectiveness of geotextile mulches for slope restoration in semi-arid northern China. CATENA, 116:1-9.
doi: 10.1016/j.catena.2013.12.006
[26]   Wang S, Fu B J, Gao G Y, et al. 2013. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. CATENA, 101:122-128.
doi: 10.1016/j.catena.2012.10.006
[27]   Wilson D J, Western A W, Grayson R B. 2004. Identifying and quantifying sources of variability in temporal and spatial soil moisture observations. Water Resources Research, 40(2):W02507, doi: 10.1029/2003WR002306.
doi: 10.1029/2003WR002306
[28]   Wu H, Li X Y, Li J, et al. 2016. Differential soil moisture pulse uptake by coexisting plants in an alpine Achnatherum splendens grassland community. Environmental Earth Sciences, 75(10):914, doi: 10.1007/s12665-016-5694-2.
doi: 10.1007/s12665-016-5694-2
[29]   Xu G, Zhang T G, Li Z B, et al. 2017. Temporal and spatial characteristics of soil water content in diverse soil layers on land terraces of the Loess Plateau, China. CATENA, 158:20-29.
doi: 10.1016/j.catena.2017.06.015
[30]   Yu T, Feng Q, Si J, et al. 2019. Responses of riparian forests to flood irrigation in the hyper-arid zone of NW China. Science of the Total Environment, 648:1421-1430.
doi: 10.1016/j.scitotenv.2018.08.287
[31]   Yu X, Huang Y, Li E, et al. 2017. Effects of vegetation types on soil water dynamics during vegetation restoration in the Mu Us Sandy Land, northwestern China. Journal of Arid Land, 9(2):188-199.
doi: 10.1007/s40333-017-0054-y
[32]   Yu X N, Huang Y M, Li E G, et al. 2018. Effects of rainfall and vegetation to soil water input and output processes in the Mu Us Sandy Land, northwest China. CATENA, 161:96-103.
doi: 10.1016/j.catena.2017.10.023
[33]   Zhang X, Zhang L, Zhao J, et al. 2008. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resources Research, 44(7):W00A07, doi: 10.1029/2007WR006711.
doi: 10.1029/2007WR006711
[34]   Zhang Z, Si B, Li M, et al. 2020. Deficit and recovery of deep soil water following a full cycle of afforestation and deforestation of apple trees on the Loess Plateau, China. Water, 12(4):989, doi: 10.3390/w12040989.
doi: 10.3390/w12040989
[35]   Zhao C L, Jia X X, Zhu Y J, et al. 2017. Long-term temporal variations of soil water content under different vegetation types in the Loess Plateau, China. CATENA, 158:55-62.
doi: 10.1016/j.catena.2017.06.006
[36]   Zhou D, Zhao S, Zhu C. 2012. The Grain for Green project induced land cover change in the Loess Plateau: A case study with Ansai County, Shanxi Province, China. Ecological Indicators, 23:88-94.
doi: 10.1016/j.ecolind.2012.03.021
[37]   Zhu L, Wang Z H, Mao G L, et al. 2014. Water uptake from different soil depths for halophytic shrubs grown in northern area of Ningxia Plain (China) in contrasted water regimes. Journal of Plant Interactions, 9(1):26-34.
doi: 10.1080/17429145.2012.751139
[1] Mohammad KHEIRI, Jafar KAMBOUZIA, Reza DEIHIMFARD, Saghi M MOGHADDAM, Seyran ANVARI. Assessing the response of dryland barley yield to climate variability in semi-arid regions, Iran[J]. Journal of Arid Land, 2021, 13(9): 905-917.
[2] WANG Junjie, SHI Bing, ZHAO Enjin, CHEN Xuguang, YANG Shaopeng. Synergistic effects of multiple driving factors on the runoff variations in the Yellow River Basin, China[J]. Journal of Arid Land, 2021, 13(8): 835-857.
[3] Brian COLLINS, Hadi RAMEZANI ETEDALI, Ameneh TAVAKOL, Abbas KAVIANI. Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957-2016 in Iran based on CRU TS gridded dataset[J]. Journal of Arid Land, 2021, 13(8): 858-878.
[4] HUANG Laiming, ZHAO Wen, SHAO Ming'an. Response of plant physiological parameters to soil water availability during prolonged drought is affected by soil texture[J]. Journal of Arid Land, 2021, 13(7): 688-698.
[5] Nirmal M DAHAL, XIONG Donghong, Nilhari NEUPANE, Belayneh YIGEZ, ZHANG Baojun, YUAN Yong, Saroj KOIRALA, LIU Lin, FANG Yiping. Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal[J]. Journal of Arid Land, 2021, 13(5): 433-454.
[6] Türkan BAYER ALTIN, Bekir N ALTIN. Response of hydrological drought to meteorological drought in the eastern Mediterranean Basin of Turkey[J]. Journal of Arid Land, 2021, 13(5): 470-486.
[7] Ayad M F AL-QURAISHI, Heman A GAZNAYEE, Mattia CRESPI. Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index[J]. Journal of Arid Land, 2021, 13(4): 413-430.
[8] XIANG Longwei, WANG Hansheng, JIANG Liming, SHEN Qiang, Holger STEFFEN, LI Zhen. Glacier mass balance in High Mountain Asia inferred from a GRACE release-6 gravity solution for the period 2002-2016[J]. Journal of Arid Land, 2021, 13(3): 224-238.
[9] TENG Zeyu, XIAO Shengchun, CHEN Xiaohong, HAN Chao. Soil bacterial characteristics between surface and subsurface soils along a precipitation gradient in the Alxa Desert, China[J]. Journal of Arid Land, 2021, 13(3): 257-273.