Please wait a minute...
Journal of Arid Land  2026, Vol. 18 Issue (1): 1-16    DOI: 10.1016/j.jaridl.2026.01.002     CSTR: 32276.14.JAL.20250249
Research article     
Spatiotemporal patterns and driving forces of dust weather events in Central Asia from 2000 to 2020
LIU Yuhan1, ZHAO Yuanyuan1,*(), GAO Guanglei1, DING Guodong1, LI Ning2
1School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
2Guyuan Forestry and Grassland Development Service Center, Ningxia 756000, China
Download: HTML     PDF(1755KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Central Asia is characterized by an arid climate and widespread desert distribution, with its sustainable development severely constrained by dust events. An objective understanding of the spatiotemporal patterns and driving forces of dust weather is highly important in this area. Based on the meteorological observations from 2000 to 2020, we examined the spatiotemporal characteristics of dust weather in the five Central Asian countries (Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan) via Theil-Sen trend analysis and Geodetector modeling method, quantitatively revealing the influence of environmental factors, such as temperature, precipitation, and vegetation, on the frequency of dust weather. The results showed that: (1) dust weather in Central Asia was mainly distributed in a large ''dust belt'' extending from west to east from northern part of the Caspian lowland desert, and concentrated in basins, plains, and other low-altitude areas. Strong dust weather mainly occurred in northern areas of the Aral Sea and southern edge of Central Asia, with a maximum annual frequency of 21.9%; (2) strong dust weather in Central Asia has fluctuated and slightly decreased since 2001. The highest frequency (1.1%) occurred in spring (from March to June); (3) from 2000 to 2020, changes such as spot shifting and shrinking occurred in the four main source areas (north of the Aral Sea, Kyzylkum Desert, Karakum Desert, and Garabogazköl Bay region), where sandstorms occurred in Central Asia, and northern Caspian lowland desert became the most important low-emission dust source in Central Asia; and (4) the combined effect of soil moisture and air temperature has the most significant influence on dust weather in Central Asia. This study provides a theoretical basis for sand prevention and sand control in Central Asia. In the future, Central Asia should focus on the rational utilization of land and water resources, and implement human interventions such as vegetation restoration and optimization of irrigation methods to curb further desertification in this area.



Key wordsCentral Asia      dust weather      temporal and spatial distribution      influencing factor      Geodetector     
Received: 28 May 2025      Published: 31 January 2026
Corresponding Authors: *ZHAO Yuanyuan (E-mail: yuanyuan0402@bjfu.edu.cn)
Cite this article:

LIU Yuhan, ZHAO Yuanyuan, GAO Guanglei, DING Guodong, LI Ning. Spatiotemporal patterns and driving forces of dust weather events in Central Asia from 2000 to 2020. Journal of Arid Land, 2026, 18(1): 1-16.

URL:

http://jal.xjegi.com/10.1016/j.jaridl.2026.01.002     OR     http://jal.xjegi.com/Y2026/V18/I1/1

Fig. 1 Land use types and major deserts in Central Asia. Note that the figure is based on the standard map (GS(2016)1666) of the National Platform for Common GeoSpatial Information Services (http://bzdt.ch.mnr.gov.cn/), and the boundary of the standard map has not been modified.
Criterion Interaction effect
q(X1∩X2)<min(q(X1), q(X2)) Nonlinear weakening
min(q(X1), q(X2))≤q(X1∩X2)<max(q(X1), q(X2)) One-factor nonlinear weakening
q(X1∩X2)≥max(q(X1), q(X2)) Two-factor enhancement
q(X1∩X2)=q(X1)+q(X2) Independent
q(X1∩X2)>q(X1)+q(X2) Nonlinear enhancement
Table 1 Interaction between explanatory variables
Fig. 2 Spatial distribution of dust weather in Central Asia in 2000, 2010, and 2020. (a1-a3), weak dust weather; (b1-b3), strong dust weather; (c1-c3), total dust weather.
Fig. 3 Characteristics of monthly variation of dust frequency in Central Asia. (a), frequency of three types of dust weather; (b), frequency of weak dust weather; (c), frequency of strong dust weather; (d), frequency of total dust weather. KZ, Kazakhstan; TI, Tajikistan; KG, Kyrgyzstan; UZ, Uzbekistan; TX, Turkmenistan.
Fig. 4 Characteristics of seasonal variation of dust frequency in Central Asia. (a1-a4), weak dust weather; (b1-b4), strong dust weather; (c1-c4), total dust weather.
Fig. 5 Trend in dust frequency in Central Asia from 2000 to 2020
Fig. 6 Annual dust trends in Central Asia. (a1), spatial distribution of weak dust frequency trend; (a2), inter-annual weak dust frequency; (b1), spatial distribution of strong dust frequency trend; (b2), inter-annual strong dust frequency; (c1), spatial distribution of total dust frequency trend; (c2), inter-annual total dust frequency.
Type Temperature Precipitation Wind speed Soil moisture NDVI Land use type
Weak dust weather 0.099** 0.026** 0.034** 0.055** 0.071** 0.066**
Strong dust weather 0.113** 0.004* 0.030** 0.126** 0.041** 0.078**
Total dust weather 0.128** 0.009* 0.044** 0.091** 0.070** 0.079**
Table 2 Single-factor analysis on dust frequency
Type Parameter Temperature Precipitation Wind speed Soil moisture NDVI Land use type
Weak dust weather Precipitation 0.026
Wind speed 0.073 0.034
NDVI 0.161 0.126 0.071
Soil moisture 0.140 0.263 0.329 0.055
Temperature 0.127 0.288 0.334 0.440 0.099
Land use type 0.122 0.171 0.291 0.376 0.357 0.066
Type Parameter Temperature Precipitation Wind speed Soil moisture NDVI Land use type
Strong
dust weather
Precipitation 0.004
Wind speed 0.056 0.030
NDVI 0.107 0.145 0.041
Soil moisture 0.204 0.245 0.305 0.126
Temperature 0.156 0.319 0.455 0.422 0.113
Land use type 0.174 0.233 0.220 0.420 0.369 0.078
Type Parameter Temperature Precipitation Wind speed Soil moisture NDVI Land use type
Total
dust weather
Precipitation 0.009
Wind speed 0.066 0.044
NDVI 0.171 0.139 0.070
Soil moisture 0.175 0.282 0.323 0.091
Temperature 0.166 0.351 0.418 0.464 0.128
Land use type 0.144 0.194 0.278 0.393 0.379 0.079
Table 3 Two-factor analysis on dust frequency
[1]   Abula T, Jilili A, Ge Y X, et al. 2020. Potential spatiotemporal variability of dust from the playa of the dry lake bed of the Aral Sea in Central Asia. China Environmental Science, 40(9): 3756-3766. (in Chinese)
[2]   Bao C L, Yong M, Jin E, et al. 2021. Regional spatial and temporal variation characteristics of dust in East Asia. Geographical Research, 40(11): 3002-3015. (in Chinese)
[3]   Bazarbayev R, Zhou B, Allaniyazov A, et al. 2022. Physical and chemical properties of dust in the Pre-Aral region of Uzbekistan. Environmental Science and Pollution Research, 29(27): 40893-40902.
doi: 10.1007/s11356-022-18827-6
[4]   Chen X G, Zhang C J, Dong A X, et al. 2004. Study on intensity standard of regional sandstorm in Gansu Province. Plateau Meteorology, 23(3): 374-381. (in Chinese)
[5]   Cheng H X, Lin Y J, Chen P, et al. 2023. Spatial characteristics of sand-dust weather days and influencing factors in the Tarim Basin. Arid Zone Research, 40(11): 1707-1717. (in Chinese)
doi: 10.13866/j.azr.2023.11.01
[6]   De Keersmaecker W, Lhermitte S, Tits L, et al. 2015. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Global Ecology and Biogeography, 24(5): 539-548.
doi: 10.1111/geb.2015.24.issue-5
[7]   Fan X W, Duan Q Y, Shen C W, et al. 2020. Global surface air temperatures in CMIP6: Historical performance and future changes. Environmental Research Letters, 15(10): 104056, doi: 10.1088/1748-9326/abb051.
[8]   Groll M, Opp C, Aslanov I. 2013. Spatial and temporal distribution of the dust deposition in Central Asia-results from a long term monitoring program. Aeolian Research, 9: 49-62.
doi: 10.1016/j.aeolia.2012.08.002
[9]   Guo Y, He Y, Zhang L F, et al. 2021. Remote sensing monitoring of vegetation change in Central Asia from 2000 to 2017. Chinese Agricultural Science Bulletin, 37(8): 123-131. (in Chinese)
doi: 10.11924/j.issn.1000-6850.casb2020-0197
[10]   Han H Q, Wang X H, Niu L Z, et al. 2020. The land-use and land-cover change characteristics and driving forces of cultivated land in Central Asian countries from 1992 to 2015. Chinese Journal of Eco-Agriculture, 29(2): 325-339. (in Chinese)
[11]   Howard K W F, Howard K K. 2016. The new ''Silk Road Economic Belt'' as a threat to the sustainable management of Central Asia's transboundary water resources. Environmental Earth Sciences, 75: 976, doi: 10.1007/s12665-016-5752-9.
[12]   Huang J P, Wang T H, Wang W C, et al. 2014. Climate effects of dust aerosols over East Asian arid and semiarid regions. Journal of Geophysical Research: Atmospheres, 119(19): 11398-11416.
[13]   Indoitu R, Orlovsky L, Orlovsky N. 2012. Dust storms in Central Asia: Spatial and temporal variations. Journal of Arid Environments, 85: 62-70.
doi: 10.1016/j.jaridenv.2012.03.018
[14]   Jing Y, Sun Y L, Gao S, et al. 2020. Spatiotemporal variations of AOD and geographical detection of its influence factors in Beijing-Tianjin-Hebei region. Arid Land Geography, 43(1): 87-98. (in Chinese)
doi: 10.12118/j.issn.1000-6060.2020.01.11
[15]   Kendall M G. 1962. Rank Correlation Methods. New York: Hafner Publishing Company.
[16]   Li Y H, Sun G W, Zhang Q, et al. 2006. The analysis of environmental creeping problems in Central Asia and Northwest China. China Environmental Science, 26(5): 609-613. (in Chinese)
[17]   Mohammadpour K, Sciortino M, Kaskaoutis D G, et al. 2022. Classification of synoptic weather clusters associated with dust accumulation over southeastern areas of the Caspian Sea (Northeast Iran and Karakum Desert). Aeolian Research, 54: 100771, doi: 10.1016/j.aeolia.2022.100771.
[18]   Mohammat A, Wang X H, Xu X T, et al. 2013. Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agricultural and Forest Meteorology, 178-179: 21-30.
doi: 10.1016/j.agrformet.2012.09.014
[19]   Nishonov B E, Kholmatjanov B M, Labzovskii L D, et al. 2023. Study of the strongest dust storm occurred in Uzbekistan in November 2021. Scientific Reports, 13: 20042, doi: 10.1038/s41598-023-42256-1.
[20]   Onishi K, Kurosaki Y, Otani S, et al. 2012. Atmospheric transport route determines components of Asian dust and health effects in Japan. Atmospheric Environment, 49: 94-102.
doi: 10.1016/j.atmosenv.2011.12.018
[21]   Opp C, Groll M, Aslanov I, et al. 2017. Aeolian dust deposition in the southern Aral Sea region (Uzbekistan): Ground-based monitoring results from the LUCA project. Quaternary International, 429: 86-99.
doi: 10.1016/j.quaint.2015.12.103
[22]   Orlovsky L, Orlovsky N, Durdyev A. 2005. Dust storms in Turkmenistan. Journal of Arid Environments, 60(1): 83-97.
doi: 10.1016/j.jaridenv.2004.02.008
[23]   Rashki A, Rautenbach C J W, Eriksson P G, et al. 2013. Temporal changes of particulate concentration in the ambient air over the city of Zahedan, Iran. Air Quality, Atmosphere & Health, 6: 123-135.
[24]   Rezazadeh M, Irannejad P, Shao Y. 2013. Climatology of the Middle East dust events. Aeolian Research, 10: 103-109.
doi: 10.1016/j.aeolia.2013.04.001
[25]   Shao Y P. 2008. Physics and Modelling of Wind Erosion (2nd ed.). Dordrecht: Springer.
[26]   Shao Y P, Klose M, Wyrwoll K-H. 2013. Recent global dust trend and connections to climate forcing. Journal of Geophysical Research: Atmospheres, 118(19): 11107-11118.
[27]   Shen H, Abuduwaili J, Samat A, et al. 2016. A review on the research of modern aeolian dust in Central Asia. Arabian Journal of Geosciences, 9: 625, doi: 10.1007/s12517-016-2646-9.
[28]   Shi L M, Zhang J H, Yao F M, et al. 2020. Temporal variation of dust emissions in dust sources over Central Asia in recent decades and the climate linkages. Atmospheric Environment, 222: 117176, doi: 10.1016/j.atmosenv.2019.117176.
[29]   Spivak L, Terechov A, Vitkovskaya I, et al. 2012. Dynamics of dust transfer from the desiccated Aral Sea bottom analysed by remote sensing. In: BreckleS W, WuchererW, DimeyevaL A. Aralkum-A Man-Made Desert:The Desiccated Floor of the Aral Sea (Central Asia). Dordrecht: Springer, 97-106.
[30]   Sun H, Liu X D, Wang A Q. 2020. Seasonal and interannual variations of atmospheric dust aerosols in mid and low latitudes of Asia-A comparative study. Atmospheric Research, 244: 105036, doi: 10.1016/j.atmosres.2020.105036.
[31]   Sun R, Zhang F M, Weng S S, et al. 2023. Spatio-temporal changes of NDVI and its response to climate in China from 2001 to 2021. China Environmental Science, 43(10): 5519-5528. (in Chinese)
[32]   UNDP United Nations Development Programme. 2002. Human Development Report 2002: Deepening Democracy in a Fragmented World. New York: UNDP.
[33]   Wang G X, Yuan X L, Jing C Q, et al. 2024a. The decreased cloud cover dominated the rapid spring temperature rise in arid Central Asia over the period 1980-2014. Geophysical Research Letters, 51(2):107523, doi: 10.1029/2023GL107523.
[34]   Wang J F, Xu C D. 2017. Geodetector: Principle and prospective. Journal of Geographical Sciences, 72(1): 116-134. (in Chinese)
[35]   Wang N, Zhang Y Y. 2023. Long-term variations of global dust emissions and climate control. Environmental Pollution, 340: 122847, doi: 10.1016/j.envpol.2023.122847.
[36]   Wang W, He S F, Guo H, et al. 2024b. Sand and dust storm risk assessment in Arid Central Asia: Implications for the environment, society, and agriculture. International Journal of Disaster Risk Science, 15(5): 703-718.
doi: 10.1007/s13753-024-00591-5
[37]   Wang Y J, Tang J K, Wang W H, et al. 2024c Long-term spatiotemporal characteristics and influencing factors of dust aerosols in East Asia (2000-2022). Remote Sensing, 16(2): 318, doi: 10.3390/rs16020318.
[38]   Wiggs G F, O'Hara S L, Wegerdt J, et al. 2003. The dynamics and characteristics of aeolian dust in dryland Central Asia: Possible impacts on human exposure and respiratory health in the Aral Sea Basin. Geographical Journal, 169(2): 142-157.
doi: 10.1111/geoj.2003.169.issue-2
[39]   Wu J, Kurosaki Y, Shinoda M, et al. 2016. Regional characteristics of recent dust occurrence and its controlling factors in East Asia. Semantic Scholar, 12: 187-191.
[40]   Xi X, Irina N S. 2015. Dust interannual variability and trend in Central Asia from 2000 to 2014 and their climatic linkages. Journal of Geophysical Research: Atmospheres, 120(23): 12175-12197.
[41]   Xu H J, Wang X P, Yang T B. 2017. Trend shifts in satellite-derived vegetation growth in Central Eurasia in 1982-2013. Science of the Total Environment, 579: 1658-1674.
doi: 10.1016/j.scitotenv.2016.11.182
[42]   Xu T, Shao H, Zhang C. 2015. Temporal pattern analysis of air temperature change in Central Asia during 1980-2011. Arid Land Geography, 38(1): 25-35. (in Chinese)
[43]   Xu Y, Lu Y G, Dai Q Y, et al. 2023. Assessment of the relative contribution of climate change and land use change on net primary productivity variation in the middle and lower reaches of the Yangtze River Basin. China Environmental Science, 43(9): 4988-5000. (in Chinese)
[44]   Yang S C, Qin F C, Wang M F. 2023. Spatial-temporal evolution characteristics and driving factors of sand-dust weather for Inner Mongolia Autonomous region during 1960-2020. Bulletin of Soil and Water Conservation, 43(5): 235-243. (in Chinese)
[45]   Yang S, Sun L X, He J, et al. 2024. Evolution of the Aral Sea: Crisis and present situation. Arid Land Geography, 47(2): 181-191. (in Chinese)
doi: 10.12118/j.issn.1000-6060.2023.710
[46]   Zhou Y C, Gao X, Meng X Y, et al. 2022. Characteristics of the spatio-temporal dynamics of aerosols in Central Asia and their influencing factors. Remote Sensing, 14(11): 2684, doi: 10.3390/rs14112684.
[1] Inom JURAMURODOV, Rustam URALOV, Dilmurod MAKHMUDJANOV, LU Chunfang, Feruz AKBAROV, Sardor PULATOV, Bakhtiyor KARIMOV, Orzimat TURGINOV, Komiljon TOJIBAEV. Assessment of plant diversity in the Surkhan-Sherabad Region, Uzbekistan by grid mapping[J]. Journal of Arid Land, 2025, 17(3): 394-410.
[2] HE Yuanrong, CHEN Yuhang, ZHONG Liang, LAI Yangfeng, KANG Yuting, LUO Ming, ZHU Yunfei, ZHANG Ming. Spatiotemporal evolution of ecological environment quality and its drivers in the Helan Mountain, China[J]. Journal of Arid Land, 2025, 17(2): 224-244.
[3] Haoriwa, Zhalagahu, ZHOU Ruiping. Spatiotemporal variation of drought and its influential factors in the Yellow River Basin, China based on vegetation health index[J]. Journal of Arid Land, 2025, 17(10): 1361-1377.
[4] PAN Meihui, CHEN Qing, LI Chenlu, LI Na, GONG Yifu. Spatiotemporal variation and influencing factors of desertification sensitivity on the Qinghai-Xizang Plateau, China[J]. Journal of Arid Land, 2025, 17(1): 58-73.
[5] GUO Bing, XU Mei, ZHANG Rui, LUO Wei. A new monitoring index for ecological vulnerability and its application in the Yellow River Basin, China from 2000 to 2022[J]. Journal of Arid Land, 2024, 16(9): 1163-1182.
[6] CHEN Zhuo, SHAO Minghao, HU Zihao, GAO Xin, LEI Jiaqiang. Potential distribution of Haloxylon ammodendron in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(9): 1255-1269.
[7] CHEN Jiazhen, KASIMU Alimujiang, REHEMAN Rukeya, WEI Bohao, HAN Fuqiang, ZHANG Yan. Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model[J]. Journal of Arid Land, 2024, 16(6): 852-875.
[8] BAO Anming, YU Tao, XU Wenqiang, LEI Jiaqiang, JIAPAER Guli, CHEN Xi, Tojibaev KOMILJON, Shomurodov KHABIBULLO, Xabibullaev B SAGIDULLAEVICH, Idirisov KAMALATDIN. Ecological problems and ecological restoration zoning of the Aral Sea[J]. Journal of Arid Land, 2024, 16(3): 315-330.
[9] ZHANG Mingyu, CAO Yu, ZHANG Zhengyong, ZHANG Xueying, LIU Lin, CHEN Hongjin, GAO Yu, YU Fengchen, LIU Xinyi. Spatiotemporal variation of land surface temperature and its driving factors in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(3): 373-395.
[10] YUAN Ximin, SU Zhiwei, TIAN Fuchang, WANG Pengquan. Spatiotemporal evolution of water conservation function and its driving factors in the Huangshui River Basin, China[J]. Journal of Arid Land, 2024, 16(11): 1484-1504.
[11] LI Haocheng, LI Junfeng, QU Wenying, WANG Wenhuai, Muhammad Arsalan FARID, CAO Zhiheng, MA Chengxiao, FENG Xueting. A novel framework of ecological risk management for urban development in ecologically fragile regions: A case study of Turpan City, China[J]. Journal of Arid Land, 2024, 16(11): 1604-1632.
[12] LIN Yanmin, HU Zhirui, LI Wenhui, CHEN Haonan, WANG Fang, NAN Xiongxiong, YANG Xuelong, ZHANG Wenjun. Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 110-130.
[13] WANG Yinping, JIANG Rengui, YANG Mingxiang, XIE Jiancang, ZHAO Yong, LI Fawen, LU Xixi. Spatiotemporal characteristics and driving mechanisms of land use/land cover (LULC) changes in the Jinghe River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 91-109.
[14] WANG Min, CHEN Xi, CAO Liangzhong, KURBAN Alishir, SHI Haiyang, WU Nannan, EZIZ Anwar, YUAN Xiuliang, Philippe DE MAEYER. Correlation analysis between the Aral Sea shrinkage and the Amu Darya River[J]. Journal of Arid Land, 2023, 15(7): 757-778.
[15] LI Wen, MU Guijin, YE Changsheng, XU Lishuai, LI Gen. Aeolian activity in the southern Gurbantunggut Desert of China during the last 900 years[J]. Journal of Arid Land, 2023, 15(6): 649-666.