Please wait a minute...
Journal of Arid Land  2015, Vol. 7 Issue (5): 706-715    DOI: 10.1007/s40333-015-0132-y     CSTR: 32276.14.s40333-015-0132-y
Brief Communication     
The relationship between energy consumption and economic growth and the development strategy of a low-carbon economy in Kazakhstan
XIONG Chuanhe1,2, YANG Degang1, HUO Jinwei1, ZHAO Yannan1,2
1 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Download:   PDF(229KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Fossil energy is the material basis of human survival, economic development and social progress. The relationship between energy consumption and economic growth is becoming increasingly close. However, energy consumption is the major source of greenhouse gases, which can significantly affect the balance of the global ecosystem. It has become the common goal of countries worldwide to address climate change, reduce carbon dioxide emissions, and implement sustainable development strategies. In this study, we applied an approximate relationship analysis, a decoupling relationship analysis, and a trend analysis to explore the relationship between energy consumption and economic growth using data from Kazakhstan for the period of 1993–2010. The results demonstrated: (1) the total energy consumption and GDP in Kazakhstan showed a ”U”-type curve from 1993 to 2010. This curve was observed because 1993–1999 was a period during which Kazakhstan transitioned from a republic to an independent country and experienced a difficult transition from a planned to a market economy. Then, the economic system became more stable and the industrial production increased rapidly because of the effective financial, monetary and industrial policy support from 2000 to 2010. (2) The relationships between energy consumption and carbon emissions, economic growth and energy exports were linked; the carbon emissions were mainly derived from energy consumption, and the dependence of economic growth on energy exports gradually increased from 1993 to 2010. Before 2000, the relationship between energy consumption and economic growth was in a recessional decoupling state because of the economic recession. After 2000, this relationship was in strong and weak decoupling states because the international crude oil prices rose and energy exports increased greatly year by year. (3) It is forecasted that Kazakhstan cannot achieve its goal of energy consumption by 2020. Therefore, a low-carbon economy is the best strategic choice to address climate change from a global perspective in Kazakhstan. Thus, we proposed strategies including the improvement of the energy consumption structure, the development of new energy and renewable energy, the use of cleaner production technologies, the adjustment and optimization of the industrial structure, and the expansion of forest areas.

Key wordstotal suspended particle      dust deposition      desert      atmospheric environment     
Received: 29 October 2014      Published: 05 October 2015
Fund:  

International Science & Technology Cooperation Program of China (2010DFA92720-07).

Corresponding Authors:
Cite this article:

XIONG Chuanhe, YANG Degang, HUO Jinwei, ZHAO Yannan. The relationship between energy consumption and economic growth and the development strategy of a low-carbon economy in Kazakhstan. Journal of Arid Land, 2015, 7(5): 706-715.

URL:

http://jal.xjegi.com/10.1007/s40333-015-0132-y     OR     http://jal.xjegi.com/Y2015/V7/I5/706

Cao Y G, Cheng Y, Yuan C, et al. 2007. Decoupling research between change of cultivated land quantity and change of GDP in representative areas. Resource Development & Market, 23(7): 586–589. (in Chinese)

Chen B M, Du H L. 2006. Analyzing decoupling relationship between arable land occupation and GDP growth. Resources Science, 28(5): 36–42. (in Chinese)

Cheng Y Q, Wang Z Y, Ye X Y, et al. 2014. Spatiotemporal dynamics of carbon intensity from energy consumption in China. Journal of Geographical Sciences, 24(4): 631–650.

de Bruyn S M, Opschoor J B. 1997. Developments in the throughput- income relationship: theoretical and empirical observations. Ecological Economics, 20(3): 255–268.

Du H L, Chen B M. 2007. Rationality of farmland occupation by constructions based on decoupling analysis method. Transactions of the Chinese Society of Agricultural Engineering, 23(4): 52–58. (in Chinese)

Duan N, Deng H. 2004. The rise of multi peak theory and circular economy. World Nonferrous Metals, 10: 7–9. (in Chinese)

Enevoldsen M K, Ryelund A V, Andersen M S. 2007. Decoupling of industrial energy consumption and CO2-emissions in energy-intensive industries in Scandinavia. Energy Economics, 29(4): 665–692.

Femia A, Hinterberger F, Luks F. 2001. Ecological economic policy for sustainable development: potentials and domains of intervention for delinking approaches. Population & Environment, 23(2): 157–174.

Gu W. 2005. The ecological environment situation in Kazakhstan. Central Asian Information, 7: 36–39. (in Chinese)

Guo L, Yan J M. 2007. Study on the decoupling of cultivated land occupation by construction from economic growth in China. China Population Resources and Environment, 17(5): 48–53. (in Chinese)

Hüttler W, Schandl H, Weisz H. 1999. Are industrial economies on the path of dematerialization? Material flow accounts for Austria 1960–1996: indicators and international comparison. In: Ecologizing Societal Metabolism: Designing Scenarios for Sustainable Materials Management. Amsterdam, the Netherlands: Universitair Grafisch Bedrijf Leiden, 26–29.

International Energy Agency (IEA). 2014. World Energy Statistics. [2014-8-15]. http://www.iea.org/stats/index.asp.

Li H Q, Wang L M, Lang Y H. 2009. Evolution process and driving mechanism of energy geopolitical pattern—a study of Central Asia. World Regional Studies, 18(4): 56–65. (in Chinese)

Li X S, Qu F T, Guo Z X, et al. 2008. Decoupling between urban and rural construction land. China Population Resources and Environment, 18(5): 179–184. (in Chinese)

Lu I J, Lin S J, Lewis C. 2007. Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea. Energy Policy, 35(6): 3226–3235.

Mi K. 2010. Research on energy cooperative between Kazakhstan and China. MSc Thesis. Changchun: Jilin University. (in Chinese)

Ministry of National Economy of the Republic of Kazakhstan. 2012. Statistical Yearbook of Kazakhstan. [2014-8-15]. www.stat.gov.kz.

OECD. 2002. Indicators to measure decoupling of environmental pressures for economic growth. Paris: OECD, 211–222.

OECD. 2003a. Analysis of the links between transport and economic growth. Paris: OECD, 11.

OECD. 2003b. Environmental indicators: development, measurement and use. Paris: OECD, 13.

Pang J X, Chen X P, Wang H Y. 2014. Relationship of energy consumption with economic growth in Gansu province. Journal of Arid Land Resources and Environment, 28(2): 31–36. (in Chinese)

Samouilids J E, Mitropoulos C S. Energy and economic growth in industrializing countries: the case of Greece. Energy Economics, 6(3): 191–201.

Song W, Chen B M, Chen X W. 2009. Decoupling evaluation between cultivated land occupation and economic growth in Changshu City. Journal of Natural Resources, 24(9): 1532–1540. (in Chinese)

Sun W J. 2011. Game analysis on energy cooperation evolutionary of Central Asia. Development Research, 3: 133–136. (in Chinese)

Sun X. 2008. Study on energy geopolitics and multilateral energy cooperation in Central Asia. World Economy Study, 5: 37–43. (in Chinese)

Sun Z Z. 1999. The five Central Asian countries of new international pattern. East European & Central Asian Study, 4: 59–66. (in Chinese)

Tapio P. 2005. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transport Policy, 12(2): 137–151.

Vehmas J, Kaivo-oja J, Luukkanen J. 2003. Global trends of linking environmental stress and economic growth. Tutu Publications 7/2003: 6–9.

Wang C J, Zhang X L, Du H R, et al. 2013. Variations and influence factors of carbon emission of primary energy consumption in Kazakhstan. Arid Land Geography, 36(4): 757–763. (in Chinese)

Wang C M. 2009. Analyzing decoupling of economic growth and energy consumption based on the sample of China. Journal of Shandong Institute of Business and Technology, 6: 1–3, 8. (in Chinese)

Wang C M. 2010. Decoupling analysis of china economic growth and energy consumption. China Population Resources and Environment, 20(3): 35–37. (in Chinese)

Wang H, Wang J Q, Zhao T. 2009. Decoupling and recoupling analysis of China’s economic development and environments and energy consumption. Statistics and Decision, 17: 113–115. (in Chinese)

Wang H. 2010. Measurement of the relationship between China’s economic growth and energy consumption by using delinking theory. Soft Science, 24(9): 23–27. (in Chinese)

Wang M X. 2006. The theory of decoupling applied to the model of recycling economy in Zhejiang province. Forestry Economics, (12): 40–43. (in Chinese)

Wang Q L. 2009. Decoupling analysis of China’s economic development and energy consumption. Popular Business, 14: 60–61. (in Chinese)

World Bank. 2014a. World Development Indicators. [2014-8-15]. http://data.worldbank.org.cn/indicator/NY.GDP.MKTP.KD.

World Bank. 2014b. World Development Indicators. [2014-8-15]. http://data.worldbank.org.cn/indicator/EG.USE.COMM.KT.OE.

Wu H, Gu S Z, Zhou H, et al. 2011. Relationships between energy

 comsumption-carbon emissions and economic growth in Hebei province. Resources Science, 33(10): 1897–1905. (in Chinese)

Yang J M. 2008. The reserves, mining and attract of energy in Kazakhstan. Central Asian Information, 3: 12–14. (in Chinese)

Yang K, Chen B M, Song W. 2009. Decoupling analysis between arable land occupation and GDP growth in Hebei province. Resources Science, 31(11): 1940–1946. (in Chinese)

Yi L. 2010. The interpretation of Kazakhstan’s 2020 national strategic development plan. New Silk Road Horizon, 2: 80. (in Chinese)

Yu F W. 2008. Analysis of the decoupling relationship between grain production and irrigation water of China. Chinese Rural Economy, 10: 34–44. (in Chinese)

Yu F W. 2009. Decoupling analysis of economic development and environments & resource. Journal of Inner Mongolia Finance and Economics College, 3: 29–34. (in Chinese)

Zhang K M, Wen Z G. 2001. China’s point of view and countermeasures on global warming. China Soft Science, 7: 6–11. (in Chinese)

Zhang Z X. 2000. Decoupling China’s carbon emissions increase from economic growth: an economic analysis and policy implications. World Development, 28(4): 739–752.

Zhao C Q. 2003. Guide to the World States: Kazakhstan. Beijing: Beijing Social Sciences Academic Press, 105–112. (in Chinese)

Zhao Y P, Sun Q H, Duan N. 2006. Responsive relationship between economic development and energy consumption in China—a practical research based on comparative de-link and re-link theory. Science Research Management, 27(3): 128–134. (in Chinese)

Zhong T Y, Huang X J, Han L, et al. 2010. Review on the Research of Decoupling Analysis in the Field of Environments and Resource. Journal of Nature Resource, 25(8): 1400–1412. (in Chinese)

Zhu D J, Qiu S F. 2007. Analytical tool for urban circular economy planning and itpreliminary application: a case of Shanghai. City Planning Review, 31(3): 64–69. (in Chinese)
[1] CHEN Zhuo, SHAO Minghao, HU Zihao, GAO Xin, LEI Jiaqiang. Potential distribution of Haloxylon ammodendron in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(9): 1255-1269.
[2] Mohammed SOUDDI, Haroun CHENCHOUNI, M'hammed BOUALLALA. Thriving green havens in baking deserts: Plant diversity and species composition of urban plantations in the Sahara Desert[J]. Journal of Arid Land, 2024, 16(9): 1270-1287.
[3] MENG Ruibing, MENG Zhongju, Brenton SHARRATT, ZHANG Jianguo, CAI Jiale, CHEN Xiaoyan. Threshold friction velocity influenced by soil particle size within the Columbia Plateau, northwestern United States[J]. Journal of Arid Land, 2024, 16(8): 1147-1162.
[4] PAN Jiapeng, ZHANG Kecun, AN Zhishan, ZHANG Yu. Near-surface wind field characteristics of the desert-oasis transition zone in Dunhuang, China[J]. Journal of Arid Land, 2024, 16(5): 654-667.
[5] SONG Dacheng, ZHAO Wenzhi, LI Guangyu, WEI Lemin, WANG Lide, YANG Jingyi, WU Hao, MA Quanlin. Utilizing sediment grain size characteristics to assess the effectiveness of clay-sand barriers in reducing aeolian erosion in Minqin desert area, China[J]. Journal of Arid Land, 2024, 16(5): 668-684.
[6] SHEN Aihong, SHI Yun, MI Wenbao, YUE Shaoli, SHE Jie, ZHANG Fenghong, GUO Rui, HE Hongyuan, WU Tao, LI Hongxia, ZHAO Na. Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia, China[J]. Journal of Arid Land, 2024, 16(5): 725-737.
[7] QU Wenjie, ZHAO Wenzhi, YANG Xinguo, WANG Lei, ZHANG Xue, QU Jianjun. Effects of wind speed, underlying surface, and seed morphological traits on the secondary seed dispersal in the Tengger Desert, China[J]. Journal of Arid Land, 2024, 16(4): 531-549.
[8] SHEN Jianxiang, WANG Xin, WANG Lei, WANG Jiahui, QU Wenjie, ZHANG Xue, CHANG Xuanxuan, YANG Xinguo, CHEN Lin, QIN Weichun, ZHANG Bo, NIU Jinshuai. Spatiotemporal characteristics of seed rain and soil seed bank of artificial Caragana korshinskii Kom. forest in the Tengger Desert, China[J]. Journal of Arid Land, 2024, 16(4): 550-566.
[9] PAN Yaqing, KANG Peng, QU Xuan, RAN Yichao, LI Xinrong. Effects of long-term fencing on soil microbial community structure and function in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 431-446.
[10] YE He, HONG Mei, XU Xuehui, LIANG Zhiwei, JIANG Na, TU Nare, WU Zhendan. Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 447-459.
[11] MA Jinpeng, PANG Danbo, HE Wenqiang, ZHANG Yaqi, WU Mengyao, LI Xuebin, CHEN Lin. Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe[J]. Journal of Arid Land, 2023, 15(9): 1084-1106.
[12] Orhan DENGİZ, İnci DEMİRAĞ TURAN. Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem[J]. Journal of Arid Land, 2023, 15(7): 779-796.
[13] ZHAO Hongyan, YAN Changzhen, LI Sen, WANG Yahui. Remote sensing monitoring of the recent rapid increase in cultivation activities and its effects on desertification in the Mu Us Desert, China[J]. Journal of Arid Land, 2023, 15(7): 812-826.
[14] QIANG Yuquan, ZHANG Jinchun, XU Xianying, LIU Hujun, DUAN Xiaofeng. Stem sap flow of Haloxylon ammodendron at different ages and its response to physical factors in the Minqin oasis-desert transition zone, China[J]. Journal of Arid Land, 2023, 15(7): 842-857.
[15] ZHOU Chongpeng, GONG Lu, WU Xue, LUO Yan. Nutrient resorption and its influencing factors of typical desert plants in different habitats on the northern margin of the Tarim Basin, China[J]. Journal of Arid Land, 2023, 15(7): 858-870.