Please wait a minute...
Journal of Arid Land  2016, Vol. 8 Issue (1): 125-137    DOI: 10.1007/s40333-015-0056-6
Research Articles     
Vulnerability to drought-induced cavitation in shoots of two typical shrubs in the southern Mu Us Sandy Land, China
LI Yangyang1,2*, CHEN Weiyue3, CHEN Jiacun2, SHI Hui4
1 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China;
2 Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling 712100, China;
3 College of Forestry, Northwest A&F University, Yangling 712100, China;
4 School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
Download:   PDF(653KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Salix psammophila and Caragana korshinskii are two typical shrubs in the southern Mu Us Sandy Land of China which are threatened by increasing water deficits related to climate change and large-scale human activities (e.g. coal mining and oil exploitation). In this study, we assessed their vulnerability to xylem embolism and the related anatomical traits in two-year-old regenerated shoots of these two shrubs to understand how they cope with drought environment. We also evaluated the in situ hydraulic safety margins to hydraulic failure from measurements of annual predawn and midday leaf water potentials. The results showed that S. psammophila stems had a higher water transport capacity than C. korshinskii stems. The stem xylem water potentials at 12%, 50% and 88% loss of conductivity were –1.11, –1.63 and –2.15 MPa in S. psammophila, respectively, and –1.37, –2.64 and –3.91 MPa in C. korshinskii, respectively. This suggested that C. korshinskii was more resistant to cavitation than S. psammophila. Compared with S. psammophila, C. korshinskii had shorter maximum vessel length, lower vessel density, smaller conductive area and higher wood density, which may contribute to its more resistant xylem. The in situ hydraulic safety margins indicated that even during the driest periods, both shrubs lived well above the most critical embolism thresholds, and the hydraulic safety margin was wider in C. korshinskii than in S. psammophila, suggesting that the regenerated shoots of both shrubs could function normally and C. korshinskii had greater hydraulic protection. These results provide the basis for an in-depth understanding of the survival, growth and functional behavior of these two shrubs under harsh and dry desert environments.

Key wordsglacier change      ice surface elevation change      climate change      Shiyi Glacier      Hulugou Basin     
Received: 04 March 2015      Published: 10 February 2016

This study was supported by the National Natural Science Foundation of China (41371507).

Cite this article:

LI Yangyang, CHEN Weiyue, CHEN Jiacun, SHI Hui. Vulnerability to drought-induced cavitation in shoots of two typical shrubs in the southern Mu Us Sandy Land, China. Journal of Arid Land, 2016, 8(1): 125-137.

URL:     OR

Brodribb T J, Field T S. 2000. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell and Environment, 23(12): 1381–1388.

Brodribb T J, Holbrook N M. 2005. Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer. Plant Physiology, 137(3): 1139–1146.

Bucci S J, Scholz F G, Peschiutta M L, et al. 2013. The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought-induced embolism by leaves and roots. Plant, Cell and Environment, 36(12): 2163–2174.

Choat B, Jansen S, Brodribb T J, et al. 2012. Global convergence in the vulnerability of forests to drought. Nature, 491(7426): 752–755.

Cochard H, Froux F, Mayr S, et al. 2004. Xylem wall collapse in water-stressed pine needles. Plant Physiology, 134(1): 401–408.

Cochard H, Casella E, Mencuccini M. 2007. Xylem vulnerability to cavitation varies among poplar and willow clones and correlates with yield. Tree Physiology, 27(12): 1761–1767.

Cochard H, Barigah S T, Kleinhentz M, et al. 2008. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? Journal of Plant Physiology, 165(9): 976–982.

Cochard H, Badel E, Herbette S, et al. 2013. Methods for measuring plant vulnerability to cavitation: a critical review. Journal of Experimental Botany, 64(15): 4779–4791.

Cohen S, Bennink J, Tyree M. 2003. Air method measurements of apple vessel length distributions with improved apparatus and theory. Journal of Experimental Botany, 54(389): 1889–1897.

Delzon S, Cochard H. 2014. Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. New Phytologist, 203(2): 355–358.

Dong X J, Zhang X S. 2001. Some observations of the adaptations of sandy shrubs to the arid environment in the Mu Us Sandland: leaf water relations and anatomic features. Journal of Arid Environments, 48(1): 41–48.

Ewers F W, Fisher J B. 1989. Techniques for measuring vessel lengths and diameters in stems of woody plants. American Journal of Botany, 76(5): 645–656.

Fan L M. 2007. Groundwater seepage caused by mining and the prevention strategies in the northern Shaanxi. Mining Safety and Environmental Protection, 34(5): 62–64. (in Chinese)

Fang X W, Turner N C, Xu D H, et al. 2013. Limits to the height growth of Caragana korshinskii resprouts. Tree Physiology, 33(3): 275–284.

Hacke U G, Sperry J S, Pittermann J. 2000. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1(1): 31–41.

Hacke U G, Sperry J S, Pockman W T, et al. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4): 457–461.

Hacke U G, Sperry J S, Wheeler J K, et al. 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26(6): 689–701.

Hargrave K R, Kolb K J, Ewers F W, et al. 1994. Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae). New Phytologist, 126(4): 695–705.

Jacobsen A L, Pratt R B, Ewers F W, et al. 2007. Cavitation resistance among 26 chaparral species of southern California. Ecological Monographs, 77(1): 99–115.

Ma C C, Gao Y B, Guo H Y, et al. 2008. Physiological adaptations of four dominant Caragana species in the desert region of the Inner Mongolia Plateau. Journal of Arid Environments, 72(3): 247–254.

Maherali H, Pockman W T, Jackson R B. 2004. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85(8): 2184–2199.

Mayr S, Hacke U, Schmid P, et al. 2006. Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations. Ecology, 87(12): 3175–3185.

Meinzer F C, Johnson D M, Lachenbruch B, et al. 2009. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology, 23(5): 922–930.

Nardini A, Battistuzzo M, Savi T. 2013. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytologist, 200(2): 322–329.

Niu X W, Ding Y C, Zhang Q, et al. 2003. Studies on the characteristics of Caragana root development and some relevant physiology. Acta Botanica Boreali-Occidentalia Sinica, 23(5): 860–865. (in Chinese)

Ogasa M, Miki N H, Murakami Y, et al. 2013. Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree Physiology, 33(4): 335–344.

Pammenter N W, van der Willigen C. 1998. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 18(8–9): 589–593.

Pinto C A, David J S, Cochard H, et al. 2012. Drought-induced embolism in current-year shoots of two Mediterranean evergreen oaks. Forest Ecology and Management, 285: 1–10.

Pockman W T, Sperry J S. 2000. Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. American Journal of Botany, 87(9): 1287–1299.

Pratt R B, Ewers F W, Lawson M C, et al. 2005. Mechanisms for tolerating freeze-thaw stress of two evergreen chaparral species: Rhus ovata and Malosma laurina (Anacardiaceae). American Journal of Botany, 92(7): 1102–1113.

Salleo S, Gullo M A, de Paoli D, et al. 1996. Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. New Phytologist, 132(1): 47–56.

Sperry J S, Tyree M T. 1988. Mechanism of water stress-induced xylem embolism. Plant Physiology, 88(3): 581–587.

Sperry J S, Nichols K L, Sullivan J E M, et al. 1994. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology, 75(6): 1736–1752.

Sperry J S, Hacke U G, Wheeler J K. 2005. Comparative analysis of end wall resistivity in xylem conduits. Plant, Cell and Environment, 28(4): 456–465.

Tyree M T, Sperry J S. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1): 19–36.

Tyree M T, Davis S D, Cochard H. 1994. Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal, 15(4): 335–360.

Walter H, Box E O. 1983. The desert of central Asia. In: West N E. Ecosystems of the World (Vol. 5): Temperate Deserts and Semi-Deserts. Amsterdam: Elsevier, 193–236.

Wang L, Mu Y, Zhang Q F, et al. 2013. Groundwater use by plants in a semi-arid coal-mining area at the Mu Us Desert frontier. Environmental Earth Sciences, 69(3): 1015–1024.

Wang R Q, Zhang L L, Zhang S X, et al. 2014. Water relations of Robinia pseudoacacia L.: do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia? Plant, Cell and Environment, 37(12): 2667–2678.

Wheeler J K, Sperry J S, Hacke U G, et al. 2005. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell and Environment, 28(6): 800–812.

Wheeler J K, Huggett B A, Tofte A N, et al. 2013. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell and Environment, 36(11): 1938–1949.

Wikberg J, Ögren E. 2007. Variation in drought resistance, drought acclimation and water conservation in four willow cultivars used for biomass production. Tree Physiology, 27(9): 1339–1346.

Xu B C, Shan L. 2004. A comparative study on water use characteristics and eco-adaptability of Hippophae rhamnoides and Caragana korshinskii in semi-arid loess hilly-gully region. Chinese Journal of Applied Ecology, 15(11): 2025–2028. (in Chinese)

Zhang L, Wu B, Ding G D, et al. 2010. Root distribution characteristics of Salix psammophyla and Caragana korshinskii in Mu Us sandy land. Journal of Arid Land Resources and Environment, 24(3): 158–161. (in Chinese)

Zimmermann M H. 1983. Xylem Structure and the Ascent of Sap. Berlin: Springer-Verlag, 96–106.
[1] BAI Jie, LI Junli, BAO Anmin, CHANG Cun. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(8): 814-834.
[2] WU Jun, DENG Guoning, ZHOU Dongmei, ZHU Xiaoyan, MA Jing, CEN Guozhang, JIN Yinli, ZHANG Jun. Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China[J]. Journal of Arid Land, 2021, 13(7): 674-687.
[3] WANG Yuejian, GU Xinchen, YANG Guang, YAO Junqiang, LIAO Na. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(6): 581-598.
[4] SA Chula, MENG Fanhao, LUO Min, LI Chenhao, WANG Mulan, ADIYA Saruulzaya, BAO Yuhai. Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau[J]. Journal of Arid Land, 2021, 13(4): 332-349.
[5] Ayad M F AL-QURAISHI, Heman A GAZNAYEE, Mattia CRESPI. Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index[J]. Journal of Arid Land, 2021, 13(4): 413-430.
[6] Adilov BEKZOD, Shomurodov HABIBULLO, FAN Lianlian, LI Kaihui, MA Xuexi, LI Yaoming. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage[J]. Journal of Arid Land, 2021, 13(1): 71-87.
[7] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[8] Farzaneh KHAJOEI NASAB, Ahmadreza MEHRABIAN, Hossein MOSTAFAVI. Mapping the current and future distributions of Onosma species endemic to Iran[J]. Journal of Arid Land, 2020, 12(6): 1031-1045.
[9] Mahsa MIRDASHTVAN, Mohsen MOHSENI SARAVI. Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran[J]. Journal of Arid Land, 2020, 12(6): 964-983.
[10] XU Bo, HUGJILTU Minggagud, BAOYIN Taogetao, ZHONG Yankai, BAO Qinghai, ZHOU Yanlin, LIU Zhiying. Rapid loss of leguminous species in the semi-arid grasslands of northern China under climate change and mowing from 1982 to 2011[J]. Journal of Arid Land, 2020, 12(5): 752-765.
[11] FENG Jian, ZHAO Lingdi, ZHANG Yibo, SUN Lingxiao, YU Xiang, YU Yang. Can climate change influence agricultural GTFP in arid and semi-arid regions of Northwest China?[J]. Journal of Arid Land, 2020, 12(5): 837-853.
[12] ZHOU Zuhao, HAN Ning, LIU Jiajia, YAN Ziqi, XU Chongyu, CAI Jingya, SHANG Yizi, ZHU Jiasong. Glacier variations and their response to climate change in an arid inland river basin of Northwest China[J]. Journal of Arid Land, 2020, 12(3): 357-373.
[13] LI Xuemei, Slobodan P SIMONOVIC, LI Lanhai, ZHANG Xueting, QIN Qirui. Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China[J]. Journal of Arid Land, 2020, 12(3): 374-396.
[14] BAI Haihua, YIN Yanting, Jane ADDISON, HOU Yulu, WANG Linhe, HOU Xiangyang. Market opportunities do not explain the ability of herders to meet livelihood objectives over winter on the Mongolian Plateau[J]. Journal of Arid Land, 2020, 12(3): 522-537.
[15] QIAO Xianguo, GUO Ke, LI Guoqing, ZHAO Liqing, LI Frank Yonghong, GAO Chenguang. Assessing the collapse risk of Stipa bungeana grassland in China based on its distribution changes[J]. Journal of Arid Land, 2020, 12(2): 303-317.