Please wait a minute...
Journal of Arid Land  2016, Vol. 8 Issue (3): 453-461    DOI: 10.1007/s40333-016-0004-0
Research Articles     
Identity and distribution of weedy Pedicularis kansuensis Maxim. (Orobanchaceae) in Tianshan Mountains of Xinjiang: morphological, anatomical and molecular evidence
SUI Xiaolin1, Patrick KUSS2, LI Wenjun3,4, YANG Meiqing5, GUAN Kaiyun1,3, LI Airong1*
1 Yunnan Key Laboratory for Research and Development of Wild Plant Resources, Kunming Institute of Botany, Chinese
Academy of Sciences, Kunming 650201, China;
2 Institute of Systematic Botany, University of Zürich, Zürich 8008, Switzerland;
3 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 World Agroforestry Centre, East and Central Asia Region, Kunming 650201, China
Download:   PDF(448KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Weedy plants affect the biodiversity and ecosystem function as well as the crop and fodder plant production. However, adequate management requires detailed knowledge of the taxonomic identity of these plants. Here, we focused on a hemiparasitic Pedicularis species (Orobanchaceae), which occurs at high densities and results in significant biomass reductions in forage grasses in Bayanbulak Grassland of Xinjiang. The identity of this target species is not clear, with conflicting reports in publications and in herbarium collections. Hence, clear and management-relevant information on demography and reproductive ecology is difficult to be obtained from the literature. Therefore, we analyzed field and archival materials collected from Xinjiang in order to clarify the identity and distribution of the target species. Morphological analyses suggested that the populations at Bayanbulak Grassland should be Pedicularis kansuensis Maxim. rather than P. verticillata L. which has been accepted in the available literature. Phylogenetic analysis with a combination of three barcodes (matK, rbcL and trnH-psbA) uniting a clade of P. kansuensis and individuals from Bayanbulak Grassland populations with 100% bootstrap support, confirmed the target species to be P. kansuensis. Anatomical investigations and field observations showed that the target species is an annual or biennial herb, which also fits with the life cycle as P. kansuensis. Based on archive material and field observations, we verified that the distribution of P. kansuensis is mainly concentrated in the Tianshan Mountains of Xinjiang.

Key wordsarid lands of Central Asia      precipitation      stability      tendency      Mann-Kendall method     
Received: 29 July 2015      Published: 01 June 2016

The National Natural Science Foundation of China (U1303201, 31370512, 31400440)
The Youth Innovation Promotion Association of Chines Academy of Sciences
The Stiftung zur Förderung der Pflanzenkenntnis (Basel/CH; Foundation for the Promotion of Plant Knowledge)
The US National Science Foundation (DEB-1119098)

Corresponding Authors: LI Airong     E-mail:
Cite this article:

SUI Xiaolin, Patrick KUSS, LI Wenjun, YANG Meiqing, GUAN Kaiyun, LI Airong. Identity and distribution of weedy Pedicularis kansuensis Maxim. (Orobanchaceae) in Tianshan Mountains of Xinjiang: morphological, anatomical and molecular evidence. Journal of Arid Land, 2016, 8(3): 453-461.

URL:     OR

Ameloot E, Hermy M, Verheyen K. 2006. Rhinanthus: An effective tool in reducing biomass of road verges? An experiment along two motorways. Belgian Journal of Botany, 139(2): 173–187.

Bao G S, Wang H S. 2011. Allelopathic effects of Pedicularis kansuensis Maxim. on several graminaceous grass species on alpine meadow. Chinese Journal of Grassland, 33(2): 88–94. (in Chinese)

Breckle S W, Rafiqpoor M D. 2010. Field Guide Afghanistan: Flora and Vegetation. Bonn: Scientia Bonnensis.

Bullock J M, Pywell R F. 2005. Rhinanthus: a tool for restoring diverse grassland?. Folia Geobotanica, 40(2–3): 273–288.

Cameron D D, White A, Antonovics J. 2009. Parasite-grass-forb interactions and rock-paper-scissor dynamics: predicting the effects of the parasitic plant Rhinanthus minor on host plant communities. Journal of Ecology, 97(6): 1311–1319.

Caswell H. 2001. Matrix Population Models: Construction, Analysis, and Interpretation. Sunderland: Sinauer Associates.

Cissoko M, Boisnard A, Rodenburg J, et al. 2011. New rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds Striga hermonthica and Striga asiatica. New Phytologist, 192(4): 952–963.

Czerepanov S K. 1995. Vascular Plants of Russia and Adjacent States (the former USSR). Cambridge: Cambridge University Press.

Davies D M, Graves J D, Elias C O, et al. 1997. The impact of Rhinanthus spp. on sward productivity and composition: Implications for the restoration of species-rich grasslands. Biological Conservation, 82(1): 87–93.

Doyle J J, Doyle J L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11–15.

Grubov V I, Ivanina L I, Tscherneva O V. 2002. Plants of Central Asia: Plant Collection from China and Mongolia. vol. 5: Verbenaceae–Scrophulariaceae. Enfield (NH): Science Publishers.

Guan Y P. 2007. Countermeasures of protect and to continued development for the Bayinbuluk Grasslands. Grass-feeding Livestock, (3): 7–9. (in Chinese)

Hautier Y, Hector A, Yojtech E, et al. 2010. Modelling the growth of parasitic plants. Journal of Ecology, 98(4): 857–866.

Husain T, Garg A, Agnihotri P. 2010. Genus Pedicularis L. (Scrophulariaceae) in India: A Revisionary Study. Dehra Dun: Bishen Singh Mahendra Pal Singh.

Irving L J, Cameron D D. 2009. Chapter 3. You are what you eat: interactions between root parasitic plants and their hosts. Advances in Botanical Research, 50: 87–138.

Kearse M, Moir R, Wilson A, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647–1649.

Kosachev P A. 2010. Synopsis of the families Scrophulariaceae Juss. and Pediculariaceae Juss. of Altai Mountain Country. Turczaninowia, 13(1): 19–102. (in Russian)

Liu Y Y, Hu Y K, Yu J M, et al. 2008. Study on harmfulness of Pedicularis myriophylla and its control measures. Arid Zone Research, 25(6): 778–782. (in Chinese)

Magda D, Duru M, Theau J P. 2004. Defining management rules for grasslands using weed demographic characteristics. Weed Science, 52(3): 339–345.

Nasir E, Ali S I. 1980. Flora of Pakistan. St. Louis: University of Karachi and Missouri Botanical Press.

Pan X L, Nurbay. 2004. Pedicularis L. In: Flora Xinjiangensis, Vol. 4. Urumqi: Xinjiang Science and Technology Publishing House, 407–422. (in Chinese)

Parker C. 2012. Parasitic weeds: A world challenge. Weed Science, 60(2): 269–276.

Pavlov N V. 1965. Flora Kazachstana, vol. 8. Alma-Ata: Izdatel’stvo Akademii nauk Kazachskoj SSR, 115–145. (in Russian)

Phoenix G K, Press M C. 2005. Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). Journal of Ecology, 93(1): 67–78.

Schweingruber F H, Poschlod P. 2005. Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow and Landscape Research, 79(3): 195–415.

Silvertown J, Charlesworth D. 2001. Introduction to Plant Population Biology (4th ed.). Oxford: Blackwell Science.

Song Z S. 2006. It is an urgent task to recovery & comprehensively manage the grassland ecology of Bayingbuluke. Chinese Journal of Agricultural Resources and Regional Planning, 27(1): 21–25. (in Chinese)

Tamura K, Stecher G, Peterson D, et al. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725–2729.

Tsoong P C. 1963. Scrophulariaceae (Pars II). In: Tsoong P C. Flora Reipublicae Popularis Sinacae, vol. 68. Beijing: Science Press, 1–449. (in Chinese)

Vvedenskii A I. 1951. Flora of the Kirghiz SSR. Frunze: Academy of Sciences of the Kirghiz SSR. (in Russian)

Wang W X, Sang G J, Li L. 2009. Study on the control techniques of poisons grass Pedicularis in Xinjiang Bayanbulak Prairie. Grass-Feeding Livestock, (2): 49–50. (in Chinese)

Williams A R. 2010. On sustaining the ecology and livestock industry of the Bayanbuluk Grasslands. Journal of Arid Land, 2(1): 57–63.

Yamazaki T. 1988. A revision of the genus Pedicularis in Nepal. In: Ohba H, Malla S B. The Himalayan Plants, Volume 1. Tokyo: The University of Tokyo, Bulletin, 31: 91–161.

Yang H B, Holmgren N H, Mill R R. 1998. Pedicularis L. In: Wu Z Y, Raven P H. Flora of China, vol. 18. Beijing, St. Louis: Science Press Beijing, Missouri Botanical Garden Press, 97–209.

Yu W B, Huang P H, Ree R H, et al. 2011. DNA barcoding of Pedicularis L. (Orobanchaceae): evaluating four universal barcode loci in a large and hemiparasitic genus. Journal of Systematics and Evolution, 49(5): 425–437.
[1] WANG Junjie, SHI Bing, ZHAO Enjin, CHEN Xuguang, YANG Shaopeng. Synergistic effects of multiple driving factors on the runoff variations in the Yellow River Basin, China[J]. Journal of Arid Land, 2021, 13(8): 835-857.
[2] Brian COLLINS, Hadi RAMEZANI ETEDALI, Ameneh TAVAKOL, Abbas KAVIANI. Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957-2016 in Iran based on CRU TS gridded dataset[J]. Journal of Arid Land, 2021, 13(8): 858-878.
[3] Nirmal M DAHAL, XIONG Donghong, Nilhari NEUPANE, Belayneh YIGEZ, ZHANG Baojun, YUAN Yong, Saroj KOIRALA, LIU Lin, FANG Yiping. Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal[J]. Journal of Arid Land, 2021, 13(5): 433-454.
[4] Türkan BAYER ALTIN, Bekir N ALTIN. Response of hydrological drought to meteorological drought in the eastern Mediterranean Basin of Turkey[J]. Journal of Arid Land, 2021, 13(5): 470-486.
[5] Ayad M F AL-QURAISHI, Heman A GAZNAYEE, Mattia CRESPI. Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index[J]. Journal of Arid Land, 2021, 13(4): 413-430.
[6] XIANG Longwei, WANG Hansheng, JIANG Liming, SHEN Qiang, Holger STEFFEN, LI Zhen. Glacier mass balance in High Mountain Asia inferred from a GRACE release-6 gravity solution for the period 2002-2016[J]. Journal of Arid Land, 2021, 13(3): 224-238.
[7] TENG Zeyu, XIAO Shengchun, CHEN Xiaohong, HAN Chao. Soil bacterial characteristics between surface and subsurface soils along a precipitation gradient in the Alxa Desert, China[J]. Journal of Arid Land, 2021, 13(3): 257-273.
[8] JING Hang, MENG Min, WANG Guoliang, LIU Guobin. Aggregate binding agents improve soil aggregate stability in Robinia pseudoacacia forests along a climatic gradient on the Loess Plateau, China[J]. Journal of Arid Land, 2021, 13(2): 165-174.
[9] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[10] Esmail HEYDARI ALAMDARLOO, Hassan KHOSRAVI, Sahar NASABPOUR, Ahmad GHOLAMI. Assessment of drought hazard, vulnerability and risk in Iran using GIS techniques[J]. Journal of Arid Land, 2020, 12(6): 984-1000.
[11] XU Bo, HUGJILTU Minggagud, BAOYIN Taogetao, ZHONG Yankai, BAO Qinghai, ZHOU Yanlin, LIU Zhiying. Rapid loss of leguminous species in the semi-arid grasslands of northern China under climate change and mowing from 1982 to 2011[J]. Journal of Arid Land, 2020, 12(5): 752-765.
[12] HE Mingzhu, JI Xibin, BU Dongsheng, ZHI Jinhu. Cultivation effects on soil texture and fertility in an arid desert region of northwestern China[J]. Journal of Arid Land, 2020, 12(4): 701-715.
[13] YANG Meilin, YU Yang, ZHANG Haiyan, WANG Qian, GAN Miao, YU Ruide. Tree ring based drought variability in Northwest Tajikistan since 1895 AD[J]. Journal of Arid Land, 2020, 12(3): 413-422.
[14] XU Lili, YU Guangming, ZHANG Wenjie, TU Zhenfa, TAN Wenxia. Change features of time-series climate variables from 1962 to 2016 in Inner Mongolia, China[J]. Journal of Arid Land, 2020, 12(1): 58-72.
[15] YANG Yuling, LI Minfei, MA Jingjing, CHENG Junhui, LIU Yunhua, JIA Hongtao, LI Ning, WU Hongqi, SUN Zongjiu, FAN Yanmin, SHENG Jiandong, JIANG Ping'an. Changes in the relationship between species richness and belowground biomass among grassland types and along environmental gradients in Xinjiang, Northwest China[J]. Journal of Arid Land, 2019, 11(6): 855-865.