Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (4): 441-454    DOI: 10.1007/s40333-022-0014-z     CSTR: 32276.14.s40333-022-0014-z
Research article     
Spatial variability between glacier mass balance and environmental factors in the High Mountain Asia
ZHANG Zhen1,2,*(), GU Zhengnan1, Hu Kehong1, XU Yangyang1, ZHAO Jinbiao1
1School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China
2State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Download: HTML     PDF(757KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

High Mountain Asia (HMA) region contains the world's highest peaks and the largest concentration of glaciers except for the polar regions, making it sensitive to global climate change. In the context of global warming, most glaciers in the HMA show various degrees of negative mass balance, while some show positive or near-neutral balance. Many studies have reported that spatial heterogeneity in glacier mass balance is strongly related to a combination of climate parameters. However, this spatial heterogeneity may vary according to the dynamic patterns of climate change at regional or continental scale. The reasons for this may be related to non-climatic factors. To understand the mechanisms by which spatial heterogeneity forms, it is necessary to establish the relationships between glacier mass balance and environmental factors related to topography and morphology. In this study, climate, topography, morphology, and other environmental factors are investigated. Geodetector and linear regression analysis were used to explore the driving factors of spatial variability of glacier mass balance in the HMA by using elevation change data during 2000-2016. The results show that the coverage of supraglacial debris is an essential factor affecting the spatial heterogeneity of glacier mass balance, followed by climatic factors and topographic factors, especially the median elevation and slope in the HMA. There are some differences among mountain regions and the explanatory power of climatic factors on the spatial differentiation of glacier mass balance in each mountain region is weak, indicating that climatic background of each mountain region is similar. Therefore, under similar climatic backgrounds, the median elevation and slope are most correlated with glacier mass balance. The interaction of various factors is enhanced, but no unified interaction factor plays a primary role. Topographic and morphological factors also control the spatial heterogeneity of glacier mass balance by influencing its sensitivity to climate change. In conclusion, geodetector method provides an objective framework for revealing the factors controlling glacier mass balance.



Key wordsgeodetector      glacier change      mass balance      climate change      High Mountain Asia     
Received: 30 December 2021      Published: 30 April 2022
Corresponding Authors: *ZHANG Zhen (E-mail: zhangzhen@aust.edu.cn)
Cite this article:

ZHANG Zhen, GU Zhengnan, Hu Kehong, XU Yangyang, ZHAO Jinbiao. Spatial variability between glacier mass balance and environmental factors in the High Mountain Asia. Journal of Arid Land, 2022, 14(4): 441-454.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0014-z     OR     http://jal.xjegi.com/Y2022/V14/I4/441

Fig. 1 Principle of geodetector. x, independent variable; y, dependent variable; h, the strata of x or y (classification or partition); ${{\bar{Y}}_{h}}$, the mean value of strata h; σ2h, the variance of y at strata h; σ2, the variance of y at the whole region.
Fig. 2 Spatial distribution of the glacier mass balance change in the High Mountain Asia. Mts, Mountains.
Region Factors arranged from the largest to the smallest by the q value Dominant interaction (q)
West Himalaya S (0.20), NDG (0.08), Zmax (0.07), DG (0.06), P (0.05), Pc (0.03), Tc (0.03), Zmed (0.03), PDG (0.03), T (0.03), Lmax (0.02), HI (0.02), A (0.02) SP (0.25)
Central Himalaya NDG (0.18), S (0.18), DG (0.10), DCR (0.08), Zmed (0.08), HI (0.07), Zmax (0.07), Zmin (0.07), Tc (0.04), PDG (0.03), T (0.03), A (0.02), Lmax (0.02), Pc (0.02) NDG∩DCR (0.33)
East Himalaya S (0.25), Zmed (0.17), Zmax (0.17), DCR (0.16), NDG (0.16), Zmin (0.15), P (0.13), DG (0.12), T (0.11), PDG (0.09) SZmed (0.45)
Karakoram DCR (0.05), Zmed (0.04), Zmax (0.04), Tc (0.04), Zmin (0.04), P (0.03), T (0.03), S (0.03), Lmax (0.02), HI (0.02), A (0.02), NDG (0.01), Pc (0.01), DG (0.01) DCR∩Zmed (0.13)
Pamir Plateau S (0.13), Zmed (0.09), DCR (0.07), Pc (0.06), NDG (0.06), As (0.06), P (0.05), Zmax (0.05), DG (0.04), T (0.03), HI (0.03), Tc (0.03), Zmin (0.03), PDG (0.02) SPc (0.22)
Hissar Alay P (0.16), HI (0.15), Tc (0.15), S (0.14), T (0.12), Zmin (0.11), Pc (0.10), Lmax (0.09) TcT (0.41)
Hindu Kush S (0.41), DG (0.35), NDG (0.35), Zmax (0.24), PDG (0.17), Zmed (0.13), P (0.11), Pc (0.10), Zmin (0.09), Tc (0.08), T (0.08), Lmax (0.07), HI (0.06) S∩NDG (0.55)
Western Tianshan S (0.18), Zmed (0.17), Zmax (0.16), T (0.15), NDG (0.13), P (0.12), DG (0.11), Tc (0.09), PDG (0.05), DCR (0.04), Zmin (0.04), Pc (0.04), As (0.04), HI (0.03) ZmedT (0.28)
Eastern Tianshan Zmed (0.30), S (0.28), Zmax (0.27), NDG (0.25), DG (0.22), HI (0.15), Pc (0.11), T (0.08), Zmin (0.06) S∩HI (0.46)
Western Kunlun P (0.09), Lmax (0.07), A (0.07), Zmed (0.05), DCR (0.04), Zmin (0.03), Tc (0.03), Zmax (0.03), As (0.02), S (0.02) PLmax (0.18)
Eastern Kunlun Zmed (0.28), Zmax (0.28), Zmin (0.26), T (0.23), Pc (0.23), P (0.15), DG (0.11), S (0.09), NDG (0.08), DCR (0.06) ZmedPc (0.52)
Tibetan Interior Mountains S (0.22), Zmed (0.21), Pc (0.21), P (0.20), Zmin (0.18), DCR (0.18), T (0.13),
Lmax (0.09)
S∩DCR (0.46)
Tanggula Zmed (0.44), P (0.28), DCR (0.26), Zmin (0.25), Zmax (0.24), NDG (0.23), Tc (0.22), T (0.18), Pc (0.18) ZmedA (0.61)
Qilian Tc (0.17), P (0.15), T (0.14), Zmed (0.14), Zmax (0.08) ZmedT (0.34)
Eastern Tibetan Plateau Zmed (0.75), Zmax (0.72), PDG (0.71), DG (0.65) ZmedT (0.99)
Gangdise Mountains Zmed (0.52), Zmax (0.50), S (0.44), Pc (0.43), Zmin (0.38) ZminT (0.79)
Nyainqêntanglha S (0.12), Lmax (0.10), P (0.08), Tc (0.08), A (0.08), Zmed (0.07), T (0.05), Zmax (0.04), PDG (0.04), Zmin (0.04), Pc (0.04), As (0.04), HI (0.03), DG (0.03), DCR (0.02) SLmax (0.23)
Hengduan DG (0.49), Zmin (0.49), S (0.46), PDG (0.45), NDG (0.44), Zmax (0.38), Pc (0.29), Tc (0.21), T (0.18), Zmed (0.18), HI (0.18), DCR (0.17), Lmax (0.16) ZminAs (0.68)
HMA DCR (0.14), T (0.10), Pc (0.10), P (0.08), S (0.08), Zmed (0.06), Zmax (0.05), NDG (0.05), DG (0.03), HI (0.03), Tc (0.02), Zmin (0.02), PDG (0.02), Lmax (0.01) DCR∩S (0.30)
Table 1 Geodetector's results for different mountain regions
Region A Zmin Zmax Zmed S As Lmax DCR
West Himalaya -0.11** -0.04 0.21** 0.11** 0.45** 0.03 -0.11** -0.07
Central Himalaya -0.09* -0.09* 0.22** 0.20** 0.43** 0.02 -0.13** -0.15**
East Himalaya -0.00 0.03 0.34** 0.25** 0.48** -0.02 -0.03 -0.08
Karakoram -0.10** -0.06* -0.08** -0.05* 0.14** 0.04 -0.13** -0.12**
Pamir Plateau -0.01 0.08* 0.22** 0.25** 0.34** 0.11** -0.03 -0.06
Hissar Alay -0.20* -0.13 -0.07 0.03 0.21* 0.06 -0.22** -0.17*
Hindu Kush 0.05 -0.19** 0.43** 0.27** 0.63** 0.02 0.12 -0.09
Western Tianshan -0.04 0.06 0.31** 0.40** 0.42** -0.05 -0.05 0.05
Eastern Tianshan 0.03 0.25** 0.49** 0.54** 0.52** 0.08 0.07 0.12
Western Kunlun -0.24** -0.10* -0.17** -0.14** 0.10** 0.16** -0.24** -0.10*
Eastern Kunlun -0.13 0.39** 0.37** 0.53** 0.28** -0.06 -0.05 0.19**
Tibetan Interior Mountains -0.01 -0.30** -0.16 -0.18 -0.10 0.04 -0.02 -0.16
Tanggula -0.02 0.19* 0.44** 0.64** 0.20* 0.03 -0.01 -0.31**
Qilian -0.04 0.02 0.26** 0.28** 0.21* 0.05 0.02 -0.03
Eastern Tibetan Plateau 0.18 -0.04 0.82** 0.85** 0.17 0.24 0.30 -0.24
Gangdise Mountains 0.01 0.52** 0.60** 0.70** 0.59** 0.26 -0.16 -0.35*
Nyainqêntanglha -0.24** 0.01 -0.06 0.06 0.34** -0.01 -0.31** 0.02
Hengduan Shan 0.26** -0.58** 0.47** -0.02 0.63** 0.14 0.32** 0.32**
HMA -0.00 0.11** 0.19** 0.20** 0.27** 0.01 -0.01 -0.19**
Table 2 Correlation matrix analyzing glacier mass changes and environmental factors
Region DG PDG NDG HI P T Pc Tc
West Himalaya 0.23** 0.15** 0.25** -0.10** 0.03 0.07* 0.06 -0.09*
Central Himalaya 0.26** 0.10* 0.38** -0.25** -0.03 0.06 0.04 0.00
East Himalaya 0.29** 0.19** 0.31** -0.13* 0.21** 0.04 0.05 -0.07
Karakoram -0.00 -0.03 0.03 -0.09** 0.05* -0.07** -0.03 -0.11**
Pamir Plateau 0.12** 0.05 0.17** -0.14** -0.13** -0.12** -0.17** 0.11**
Hissar Alay 0.04 -0.10 0.21* -0.37** -0.32** -0.26** -0.20* -0.29**
Hindu Kush 0.47** 0.35** 0.50** -0.20** 0.24** 0.16* 0.25** 0.08
Western Tianshan 0.22** 0.15** 0.27** -0.17** -0.21** -0.31** 0.11** -0.04
Eastern Tianshan 0.40** 0.17* 0.50** -0.33** 0.02 -0.09 0.33** 0.06
Western Kunlun -0.04 -0.03 -0.04 0.01 -0.12** -0.08* -0.03 0.10*
Eastern Kunlun 0.15* 0.07 0.20** -0.02 -0.10 -0.21** -0.23** 0.05
Tibetan Interior Mountains 0.13 0.04 0.16 -0.09 -0.30** -0.17 -0.16 -0.11
Tanggula 0.18* 0.14 0.18* -0.16 0.23** -0.20* 0.10 -0.00
Qilian 0.17 0.08 0.23* -0.10 0.10 0.05 0.08 -0.20*
Eastern Tibetan Plateau 0.65** 0.62** 0.56* 0.11 0.12 -0.24 0.22 0.06
Gangdise Mountains 0.18 0.10 0.22 -0.06 0.14 -0.18 0.33* -0.32*
Nyainqêntanglha -0.05 -0.14** 0.06 -0.15** 0.09* 0.06 0.14** 0.14**
Hengduan 0.61** 0.55** 0.58** -0.11 0.04 0.20* 0.46** -0.28**
HMA 0.08** 0.01 0.14** -0.15** -0.23** -0.29** 0.10** -0.05**
Table 3 Correlation matrix analyzing glacier mass changes and environmental factors
[1]   Anderson B, Mackintosh A, Stumm D, et al. 2010. Climate sensitivity of a high-precipitation glacier in New Zealand. Journal of Glaciology, 56(195): 114-128.
doi: 10.3189/002214310791190929
[2]   Anderson B, Mackintosh A. 2012. Controls on mass balance sensitivity of maritime glaciers in the Southern Alps, New Zealand: the role of debris cover. Journal of Geophysical Research: Earth Surface, 117(F1): 1-15.
[3]   Benn D, Bolch T, Hands K, et al. 2012. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews, 114(1-2): 156-174.
doi: 10.1016/j.earscirev.2012.03.008
[4]   Brun F, Berthier E, Wagnon P, et al. 2017. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000-2016. Nature Geoscience, 10(9): 668-673.
doi: 10.1038/ngeo2999
[5]   Brun F, Wagnon P, Berthier E, et al. 2019. Heterogeneous influence of glacier morphology on the mass balance variability in High Mountain Asia. Journal of Geophysical Research: Earth Surface, 124(6): 1331-1345.
doi: 10.1029/2018JF004838
[6]   Farinotti D. 2017. Cryospheric science: Asia's glacier changes. Nature Geoscience, 10(9): 621-622.
doi: 10.1038/ngeo2995
[7]   Farinotti D, Immerzeel W, de Kok R, et al. 2020. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nature Geoscience, 13(1): 8-16.
doi: 10.1038/s41561-019-0513-5 pmid: 31915463
[8]   Fischer M, Huss M, Hoelzle M. 2015. Surface elevation and mass changes of all Swiss glaciers 1980-2010. The Cryosphere, 9(2): 525-540.
doi: 10.5194/tc-9-525-2015
[9]   Fujita K. 2008. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth and Planetary Science Letters, 276(1-2): 14-19.
doi: 10.1016/j.epsl.2008.08.028
[10]   Fyffe C, Reid T, Brock B, et al. 2014. A distributed energy-balance melt model of an alpine debris-covered glacier. Journal of Glaciology, 60(221): 587-602.
doi: 10.3189/2014JoG13J148
[11]   Hewitt K. 2005. The Karakoram anomaly? Glacier expansion and the elevation effect, Karakoram Himalaya. Mountain Research and Development, 25(4): 332-340.
doi: 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2
[12]   Huang L, Li Z, Han H, et al. 2018. Analysis of thickness changes and the associated driving factors on a debris-covered glacier in the Tienshan Mountain. Remote Sensing of Environment, 206: 63-71.
doi: 10.1016/j.rse.2017.12.028
[13]   Hugonnet R, McNabb R, Berthier E, et al. 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature, 592(7856): 726-731.
doi: 10.1038/s41586-021-03436-z
[14]   Huss M. 2012. Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900-2100. The Cryosphere, 6(4): 713-727.
doi: 10.5194/tc-6-713-2012
[15]   Kapnick S, Delworth T, Ashfaq M, et al. 2014. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nature Geoscience, 7(11): 834-840.
doi: 10.1038/ngeo2269
[16]   Kraaijenbrink P, Bierkens M, Lutz A, et al. 2017. Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. Nature, 549(7671): 257-260.
doi: 10.1038/nature23878
[17]   Li Y, Ding Y, Shangguan D, et al. 2019. Regional differences in global glacier retreat from 1980 to 2015. Advances in Climate Change Research, 10(4): 203-213.
doi: 10.1016/j.accre.2020.03.003
[18]   Lin H, Li G, Cuo L, et al. 2017. A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000-2014. Scientific Reports, 7(1): 6712, doi: 10.1038/s41598-017-07133-8.
doi: 10.1038/s41598-017-07133-8
[19]   Liu Q, Liu S. 2016. Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Climate Dynamics, 46(1-2): 303-316.
doi: 10.1007/s00382-015-2585-2
[20]   Loibl D, Lehmkuhl F, Grießinger J. 2014. Reconstructing glacier retreat since the Little Ice Age in SE Tibet by glacier mapping and equilibrium line altitude calculation. Geomorphology, 214: 22-39.
doi: 10.1016/j.geomorph.2014.03.018
[21]   Marzeion B, Kaser G, Maussion F, et al. 2018. Limited influence of climate change mitigation on short-term glacier mass loss. Nature Climate Change, 8(4): 305-308.
doi: 10.1038/s41558-018-0093-1
[22]   Mattson L E, Gardner J S, Young G J. 1993. Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. IAHS Publication, 218: 289-296.
[23]   Mölg T, Hardy D R. 2007. Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. Journal of Geophysical Research, 109(D16): 1-13.
[24]   Nicholson L, Benn D I. 2006. Calculating ice melt beneath a debris layer using meteorological data. Journal of Glaciology, 52(178): 463-470.
doi: 10.3189/172756506781828584
[25]   Oerlemans J, Fortuin J P F. 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science, 258(5079): 115-117.
pmid: 17835895
[26]   Oerlemans J, Reichert B. 2000. Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. Journal of Glaciology, 46(152): 1-6.
doi: 10.3189/172756500781833269
[27]   Paul F, Barrand N, Baumann S, et al. 2013. On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology, 54(63): 171-182.
doi: 10.3189/2013AoG63A296
[28]   Sakai A, Nuimura T, Fujita K, et al. 2015. Climate regime of Asian glaciers revealed by GAMDAM glacier inventory. The Cryosphere, 9(3): 865-880.
doi: 10.5194/tc-9-865-2015
[29]   Sakai A, Fujita K. 2017. Contrasting glacier responses to recent climate change in high-mountain Asia. Scientific Reports, 7(1): 13717, doi: 10.1038/s41598-017-14256-5.
doi: 10.1038/s41598-017-14256-5
[30]   Salerno F, Gambelli S, Viviano G, et al. 2014. High alpine ponds shift upwards as average temperatures increase: A case study of the Ortles-Cevedale mountain group (Southern Alps, Italy) over the last 50 years. Global and Planetary Change, 120: 81-91.
doi: 10.1016/j.gloplacha.2014.06.003
[31]   Salerno F, Thakuri S, Tartari G, et al. 2017. Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers. Earth and Planetary Science Letters, 471: 19-31.
doi: 10.1016/j.epsl.2017.04.039
[32]   Scherler D, Bookhagen B, Strecker M. 2011. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4(3): 156-159.
doi: 10.1038/ngeo1068
[33]   Scherler D, Wulf H, Gorelick N. 2018. Global assessment of supraglacial debris-cover extents. Geophysical Research Letters, 45(21): 11798-11805.
doi: 10.1029/2018GL080158
[34]   Stefaniak A, Robson B, Cook S, et al. 2021. Mass balance and surface evolution of the debris-covered Miage Glacier, 1990-2018. Geomorphology, 373: 107474, doi: 10.1016/j.geomorph.2020.107474.
doi: 10.1016/j.geomorph.2020.107474
[35]   Steiner J, Buri P, Miles E, et al. 2019. Supraglacial ice cliffs and ponds on debris-covered glaciers: spatio-temporal distribution and characteristics. Journal of Glaciology, 65(252): 617-632.
doi: 10.1017/jog.2019.40
[36]   Wang J, Li X, Christakos G, et al. 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. International Journal of Geographical Information Science, 24(1): 107-127.
doi: 10.1080/13658810802443457
[37]   Wang R, Liu S, Shangguan D, et al. 2019. Spatial heterogeneity in glacier mass-balance sensitivity across High Mountain Asia. Water, 11(4): 776, doi: 10.3390/w11040776.
doi: 10.3390/w11040776
[38]   Wang X, Xie Z, Li Q, et al. 2008. Sensitivity analysis of glacier systems to climate warming in China. Journal of Geographical Sciences, 18(2): 190-200.
doi: 10.1007/s11442-008-0190-6
[39]   Yao T, Thompson L, Yang W, et al. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667.
doi: 10.1038/nclimate1580
[40]   Yao T, Wu F, Ding L, et al. 2015. Multispherical interactions and their effects on the Tibetan Plateau's Earth system: a review of the recent years researches. National Science Review, 2(4): 468-488.
doi: 10.1093/nsr/nwv070
[1] GUO Bing, XU Mei, ZHANG Rui, LUO Wei. A new monitoring index for ecological vulnerability and its application in the Yellow River Basin, China from 2000 to 2022[J]. Journal of Arid Land, 2024, 16(9): 1163-1182.
[2] CHEN Zhuo, SHAO Minghao, HU Zihao, GAO Xin, LEI Jiaqiang. Potential distribution of Haloxylon ammodendron in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(9): 1255-1269.
[3] SUN Chao, BAI Xuelian, WANG Xinping, ZHAO Wenzhi, WEI Lemin. Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022[J]. Journal of Arid Land, 2024, 16(8): 1044-1061.
[4] YAN Yujie, CHENG Yiben, XIN Zhiming, ZHOU Junyu, ZHOU Mengyao, WANG Xiaoyu. Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023[J]. Journal of Arid Land, 2024, 16(8): 1062-1079.
[5] YANG Jianhua, LI Yaqian, ZHOU Lei, ZHANG Zhenqing, ZHOU Hongkui, WU Jianjun. Effects of temperature and precipitation on drought trends in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(8): 1098-1117.
[6] HAN Qifei, XU Wei, LI Chaofan. Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(8): 1118-1129.
[7] WANG Tongxia, CHEN Fulong, LONG Aihua, ZHANG Zhengyong, HE Chaofei, LYU Tingbo, LIU Bo, HUANG Yanhao. Glacier area change and its impact on runoff in the Manas River Basin, Northwest China from 2000 to 2020[J]. Journal of Arid Land, 2024, 16(7): 877-894.
[8] DU Lan, TIAN Shengchuan, ZHAO Nan, ZHANG Bin, MU Xiaohan, TANG Lisong, ZHENG Xinjun, LI Yan. Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China[J]. Journal of Arid Land, 2024, 16(7): 925-942.
[9] Haq S MARIFATUL, Darwish MOHAMMED, Waheed MUHAMMAD, Kumar MANOJ, Siddiqui H MANZER, Bussmann W RAINER. Predicting potential invasion risks of Leucaena leucocephala (Lam.) de Wit in the arid area of Saudi Arabia[J]. Journal of Arid Land, 2024, 16(7): 983-999.
[10] Seyed Morteza MOUSAVI, Hossein BABAZADEH, Mahdi SARAI-TABRIZI, Amir KHOSROJERDI. Assessment of rehabilitation strategies for lakes affected by anthropogenic and climatic changes: A case study of the Urmia Lake, Iran[J]. Journal of Arid Land, 2024, 16(6): 752-767.
[11] LI Chuanhua, ZHANG Liang, WANG Hongjie, PENG Lixiao, YIN Peng, MIAO Peidong. Influence of vapor pressure deficit on vegetation growth in China[J]. Journal of Arid Land, 2024, 16(6): 779-797.
[12] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[13] CHEN Jiazhen, KASIMU Alimujiang, REHEMAN Rukeya, WEI Bohao, HAN Fuqiang, ZHANG Yan. Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model[J]. Journal of Arid Land, 2024, 16(6): 852-875.
[14] YANG Zhiwei, CHEN Rensheng, LIU Zhangwen, ZHAO Yanni, LIU Yiwen, WU Wentong. Spatiotemporal variability of rain-on-snow events in the arid region of Northwest China[J]. Journal of Arid Land, 2024, 16(4): 483-499.
[15] ZHANG Mingyu, CAO Yu, ZHANG Zhengyong, ZHANG Xueying, LIU Lin, CHEN Hongjin, GAO Yu, YU Fengchen, LIU Xinyi. Spatiotemporal variation of land surface temperature and its driving factors in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(3): 373-395.