Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (12): 1361-1376    DOI: 10.1007/s40333-022-0108-7     CSTR: 32276.14.s40333-022-0108-7
Research article     
Evaluation of CRU TS, GPCC, AgMERRA, and AgCFSR meteorological datasets for estimating climate and crop variables: A case study of maize in Qazvin Province, Iran
Faraz GORGIN PAVEH1,*(), Hadi RAMEZANI ETEDALI2, Brian COLLINS3
1Syracuse University, Syracuse 13244, USA
2Imam Khomeini International University, Qazvin 34149-16818, Iran
3Centre for Crop Science, The University of Queensland, Brisbane 4072, Australia
Download: HTML     PDF(4161KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In the past few decades, meteorological datasets from remote sensing techniques in agricultural and water resources management have been used by various researchers and managers. Based on the literature, meteorological datasets are not more accurate than synoptic stations, but their various advantages, such as spatial coverage, time coverage, accessibility, and free use, have made these techniques superior, and sometimes we can use them instead of synoptic stations. In this study, we used four meteorological datasets, including Climatic Research Unit gridded Time Series (CRU TS), Global Precipitation Climatology Centre (GPCC), Agricultural National Aeronautics and Space Administration Modern-Era Retrospective Analysis for Research and Applications (AgMERRA), Agricultural Climate Forecast System Reanalysis (AgCFSR), to estimate climate variables, i.e., precipitation, maximum temperature, and minimum temperature, and crop variables, i.e., reference evapotranspiration, irrigation requirement, biomass, and yield of maize, in Qazvin Province of Iran during 1980-2009. At first, data were gathered from the four meteorological datasets and synoptic station in this province, and climate variables were calculated. Then, after using the AquaCrop model to calculate the crop variables, we compared the results of the synoptic station and meteorological datasets. All the four meteorological datasets showed strong performance for estimating climate variables. AgMERRA and AgCFSR had more accurate estimations for precipitation and maximum temperature. However, their normalized root mean square error was inferior to CRU for minimum temperature. Furthermore, they were all very efficient for estimating the biomass and yield of maize in this province. For reference evapotranspiration and irrigation requirement CRU TS and GPCC were the most efficient rather than AgMERRA and AgCFSR. But for the estimation of biomass and yield, all the four meteorological datasets were reliable. To sum up, GPCC and AgCFSR were the two best datasets in this study. This study suggests the use of meteorological datasets in water resource management and agricultural management to monitor past changes and estimate recent trends.



Key wordsclimate variables      crop variables      meteorological datasets      precipitation      reference evapotranspiration      irrigation requirement      Iran     
Received: 04 July 2022      Published: 31 December 2022
Corresponding Authors: *Faraz GORGIN PAVEH (E-mail: fgorginp@syr.edu)
Cite this article:

Faraz GORGIN PAVEH, Hadi RAMEZANI ETEDALI, Brian COLLINS. Evaluation of CRU TS, GPCC, AgMERRA, and AgCFSR meteorological datasets for estimating climate and crop variables: A case study of maize in Qazvin Province, Iran. Journal of Arid Land, 2022, 14(12): 1361-1376.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0108-7     OR     http://jal.xjegi.com/Y2022/V14/I12/1361

Precipitation (mm) Monthly evapotranspiration (mm) Daily evapotranspiration (mm) Minimum temperature (°C) Maximum temperature (°C) Month
35.8 29.3 0.9 -4.1 6.2 January
40.4 44.2 1.6 -2.5 8.6 February
51.1 84.7 2.7 1.4 14.1 March
47.4 119.5 4.0 6.6 20.6 April
30.9 163.6 5.3 10.3 26.0 May
4.2 224.6 7.5 14.8 32.6 June
3.3 242.7 7.8 17.6 35.4 July
8.7 221.8 7.2 17.1 34.9 August
1.2 165.8 5.5 13.2 30.8 September
28.1 100.8 3.3 8.3 23.4 October
44.7 47.6 1.6 3.0 14.6 November
43.6 28.3 0.9 -1.8 8.3 December
Table 1 Information about the climate variables in Qazvin Province during study period
Fig. 1 Study area and the location of synoptic station used in the study
Dataset Grid resolution Company's name
CRU TS 0.50° United Kingdom's Natural Environment Research Council and United Kingdom National Centre for Atmospheric Science
GPCC 1.00° German Weather System
AgMERRA 0.25° United States National Aeronautics and Space Administration
AgCFSR 0.25° United States National Aeronautics and Space Administration
Table 2 Information about the grid resolution and company's name of the four datasets used in this study
Fig. 2 Comparison of minimum temperature estimated by Climatic Research Unit gridded Time Series (CRU TS), Agricultural National Aeronautics and Space Administration Modern-Era Retrospective Analysis for Research and Applications (AgMERRA), and Agricultural Climate Forecast System Reanalysis (AgCFSR) using K1 (a) and K4 (b) with the data from the synoptic station in Qazvin Province during 1980-2009. K1 represents only the closest point of the datasets to the synoptic station was measured, and K4 represents the average of the four closest points of the datasets to the synoptic station was calculated.
Dataset Minimum temperature
R2 RMSE (°C) NRMSE (%) ME (°C)
K1 K4 K1 K4 K1 K4 K1 K4
CRU TS 0.99 0.99 0.4 0.5 5.96 7.55 2.6 3.0
AgMERRA 0.99 0.99 0.7 0.3 10.55 4.33 3.1 3.2
AgCFSR 0.99 0.99 1.0 0.3 14.51 4.30 1.1 2.1
CRU TS 0.99 0.99 1.3 1.3 6.32 6.62 4.3 4.5
AgMERRA 0.99 0.99 0.2 1.0 1.10 4.80 4.9 6.3
AgCFSR 0.99 0.99 0.8 1.1 3.82 5.09 1.4 3.4
CRU TS 0.62 0.62 1.9 3.3 6.89 11.90 182.6 182.0
GPCC 0.72 0.70 2.4 3.2 8.53 11.80 192.7 182.6
AgMERRA 0.10 0.60 1.6 3.3 5.61 11.78 167.8 187.4
AgCFSR 0.56 0.66 1.5 3.5 5.43 11.79 187.9 187.3
Table 3 Comparison of minimum temperature, maximum temperature, and precipitation estimated by CRU TS, GPCC, AgMERRA, and AgCFSR with the data from the synoptic station in Qazvin Province during 1980-2009
Fig. 3 Comparison of maximum temperature estimated by CRU TS, AgMERRA, and AgCFSR using K1 (a) and K4 (b) with the data from the synoptic station in Qazvin Province during 1980-2009
Fig. 4 Comparison of precipitation estimated by CRU TS, Global Precipitation Climatology Centre (GPCC), AgMERRA, and AgCFSR using K1 (a) and K4 (b) with the data from the synoptic station in Qazvin Province during 1980-2009
Fig. 5 Comparison of reference evapotranspiration estimated by CRU TS, AgMERRA, and AgCFSR using K1 (a), K4 (b), and K8 (c) with the data from the synoptic station in Qazvin Province during 1980-2009. K8 represents the average of the eight closest points of the datasets to the synoptic station was calculated.
Dataset Reference evapotranspiration
R2 RMSE (mm) NRMSE (%) ME (mm)
K1 K4 K8 K1 K4 K8 K1 K4 K8 K1 K4 K8
CRU TS 0.02 0.30 0.30 172.45 168.28 156.31 14.93 14.57 13.24 370.00 347.00 365.00
GPCC - - - - - - - - - - - -
AgMERRA 0.00 0.02 0.02 425.32 403.00 593.30 36.83 34.90 51.38 625.00 595.00 604.00
AgCFSR 0.00 0.03 0.03 460.11 424.00 616.46 39.85 36.72 53.39 701.00 645.00 653.00
CRU TS 0.00 0.00 0.01 130.72 127.89 135.04 18.28 17.88 18.88 255.00 281.00 283.00
GPCC 0.08 0.02 0.06 145.00 150.86 144.00 20.27 21.09 20.14 323.00 310.00 329.00
AgMERRA 0.07 0.21 0.11 305.69 310.98 507.39 42.74 43.48 70.94 457.00 526.00 531.00
AgCFSR 0.00 0.01 0.05 311.89 316.05 528.13 43.61 44.19 73.84 255.00 499.00 538.00
CRU TS 0.10 0.15 0.14 1.19 0.90 0.60 4.03 3.02 2.12 2.14 1.74 1.35
GPCC 0.13 0.15 0.15 1.09 0.80 0.60 3.69 2.89 2.04 1.88 1.62 1.29
AgMERRA 0.05 0.06 0.07 1.29 0.90 0.70 4.39 2.90 2.54 2.78 2.13 1.88
AgCFSR 0.04 0.13 0.12 1.15 0.70 0.70 3.89 2.52 2.38 2.62 1.60 2.00
CRU TS 0.08 0.08 0.09 0.61 0.44 0.34 4.27 3.13 2.41 1.31 0.99 0.77
GPCC 0.10 0.13 0.09 0.56 0.43 0.33 3.96 3.07 2.34 1.60 0.95 0.73
AgMERRA 0.01 0.01 0.01 0.68 0.46 0.42 4.80 3.26 2.96 1.18 1.10 1.12
AgCFSR 0.06 0.02 0.02 0.59 0.42 0.39 4.14 2.94 2.78 1.26 0.96 1.00
Table 4 Statistical evaluation of reference evapotranspiration, irrigation requirement, biomass, and yield estimated by CRU TS, GPCC, AgMERRA, and AgCFSR in Qazvin Province from 1980 to 2009
Fig. 6 Comparison of irrigation requirement estimated by CRU TS, GPCC, AgMERRA, and AgCFSR using K1 (a), K4 (b), and K8 (c) with the data from the synoptic station in Qazvin Province during 1980-2009
Fig. 7 Comparison of biomass estimated by CRU TS, GPCC, AgMERRA, and AgCFSR using K1 (a), K4 (b), and K8 (c) with the data from the synoptic station in Qazvin Province during1980-2009
Fig. 8 Comparison of yield estimated by CRU TS, GPCC, AgMERRA, and AgCFSR using K1 (a), K4 (b), and K8 (c) with the data from the synoptic station in Qazvin Province during 1980-2009
[1]   Abedinpour M, Sarangi A, Rajput T B S, et al. 2012. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 110: 55-66.
doi: 10.1016/j.agwat.2012.04.001
[2]   Ahmed K, Shahid S, Wang X, et al. 2019. Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water, 11(2): 210, doi: 10.3390/w11020210.
doi: 10.3390/w11020210
[3]   Allen R G, Pereira L S, Raes D, et al. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Rome: FAO, 300(9): D05109.
[4]   Apan A A, Raine S R, Le Brocque A, et al. 2004. Spatial prioritization of revegetation sites for dryland salinity management: An analytical framework using GIS. Journal of Environmental Planning and Management, 47(6): 811-825.
doi: 10.1080/0964056042000284848
[5]   Bahrololoum R, Ramezani Etedali H, Azizian A, et al. 2020. Use of gridded weather datasets in simulation of wheat yield and water requirement (Case study: Iran's Qazvin Plain). Iranian Journal of Ecohydrology, 7(3): 691-706.
[6]   Benevides P, Catalao J, Nico G. 2019. Neural network approach to forecast hourly intense rainfall using GNSS precipitable water vapor and meteorological sensors. Remote Sensing, 11(8): 966, doi: 10.3390/rs11080966.
doi: 10.3390/rs11080966
[7]   Bosilovich M G, Chen J, Robertson F R, et al. 2008. Evaluation of global precipitation in reanalyses. Journal of Applied Meteorology and Climatology, 47(9): 2279-2299.
doi: 10.1175/2008JAMC1921.1
[8]   Bowen G J, Cai Z, Fiorella R P, et al. 2019. Isotopes in the water cycle: Regional- to global-scale patterns and applications. Annual Review of Earth and Planetary Sciences, 47: 453-479.
doi: 10.1146/annurev-earth-053018-060220
[9]   Ceglar A, Toreti A, Balsamo G, et al. 2017. Precipitation over monsoon Asia: A comparison of reanalyses and observations. Journal of Climate, 30(2): 465-476.
doi: 10.1175/JCLI-D-16-0227.1
[10]   Confalonieri R, Orlando F, Paleari L, et al. 2016. Uncertainty in crop model predictions: what is the role of users? Environmental Modelling & Software, 81: 165-173.
[11]   Daly C, Neilson R P, Phillips D L. 1994. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology and Climatology, 33(2): 140-158.
[12]   Dorenbos J, Kassam A H. 1979. Yield Response to Water. In: Food and Agriculture Organization of the United Nations. Rome, Italy.
[13]   Duethmann D, Zimmer J, Gafurov A, et al. 2013. Evaluation of areal precipitation estimates based on downscaled reanalysis and station data by hydrological modelling. Hydrology and Earth System Sciences, 17(7): 2415-2434.
doi: 10.5194/hess-17-2415-2013
[14]   El-mageed A, Ibrahim M M, Elbeltagi A M. 2017. The effect of water stress on nitrogen status as well as water use efficiency of potato crop under drip irrigation system. Misr Journal of Agricultural Engineering, 34(3): 1351-1374.
doi: 10.21608/mjae.2017.97473
[15]   Ge Y, Zhang K, Yang X. 2019. A 110-year pollen record of land use and land cover changes in an anthropogenic watershed landscape, eastern China: Understanding past human-environment interactions. Science of the Total Environment, 650: 2906-2918.
doi: 10.1016/j.scitotenv.2018.10.058
[16]   Golabi M, Naseri A A. 2015. Assessment Aquacrop model to predict the sugarcane yield and soil salinity profiles under salinity stress. Iranian Journal of Soil and Water Research, 4(46): 685-694.
[17]   Gorgin Paveh F, Ramezani Etedali R, Kakvand P. 2020. Estimation of Wheat Water Footprint Based on CRU and AgMERRA Gridded Datasets. [2022-06-23]. https://osau.edu.ua/en/iv-mizhnarodnyj-yevrazijskyj-kongres-z-silskogo-gospodarstva-ta-pryrodnychyh-nauk/.
[18]   Harris I, Jones P D, Osborn T J, et al. 2014. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. International Journal of Climatology, 34(3): 623-642.
doi: 10.1002/joc.3711
[19]   Harris I, Osborn T J, Jones P, et al. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1): 1-18.
doi: 10.1038/s41597-019-0340-y
[20]   Hellal F, Mansour H, Abdel-Hady M, et al. 2019. Assessment water productivity of barley varieties under water stress by AquaCrop model. AIMS Agriculture and Food, 4(3): 501-517.
doi: 10.3934/agrfood.2019.3.501
[21]   Javanmard S, Yatagai A, Nodzu M I, et al. 2010. Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM-3B42 over Iran. Advances in Geosciences, 25: 119-125.
doi: 10.5194/adgeo-25-119-2010
[22]   Johansson B, Chen D. 2003. The influence of wind and topography on precipitation distribution in Sweden: Statistical analysis and modelling. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(12): 1523-1535.
[23]   Kakvand P, Ramezani Etedali R, Gorgin Paveh F. 2020. Estimation of Maize Water Footprint Based on GPCC and AgCFSR Gridded Datasets. [2022-06-23]. https://osau.edu.ua/en/iv-mizhnarodnyj-yevrazijskyj-kongres-z-silskogo-gospodarstva-ta-pryrodnychyh-nauk/.
[24]   Katiraie-Boroujerdy P S, Nasrollahi N, Hsu K. et al. 2013. Evaluation of satellite-based precipitation estimation over Iran. Journal of Arid Environments, 97: 205-219.
doi: 10.1016/j.jaridenv.2013.05.013
[25]   Keating B A, Carberry P S, Hammer G L, et al. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3-4): 267-288.
doi: 10.1016/S1161-0301(02)00108-9
[26]   Kreuzer D, Munz M, Schlüter S. 2020. Short-term temperature forecasts using a convolutional neural network-An application to different weather stations in Germany. Machine Learning with Applications, 2: 100007, doi: 10.1016/j.mlwa.2020.100007.
doi: 10.1016/j.mlwa.2020.100007
[27]   Lashkari A, Salehnia N, Asadi S, et al. 2018. Evaluation of different gridded rainfall datasets for rainfed wheat yield prediction in an arid environment. International Journal of Biometeorology, 62(8): 1543-1556.
doi: 10.1007/s00484-018-1555-x pmid: 29740702
[28]   Li J, Tian L, Wang Y, et al. 2021. Optimal sampling strategy of water quality monitoring at high dynamic lakes: A remote sensing and spatial simulated annealing integrated approach. Science of the Total Environment, 777: 146113, doi: 10.1016/j.scitotenv.2021.146113.
doi: 10.1016/j.scitotenv.2021.146113
[29]   Massah A R, Morid S. 2005. Effects of climate change on Zayandeh Rud river flows. Journal of Science and Technology of Agriculture and Natural Resources, 4: 17-27.
[30]   Mitchell T D, Carter T R, Jones P D, et al. 2004. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901-2000) and 16 scenarios (2001-2100). Geography, 55: 25, doi: 10.1002/joc.1181.
doi: 10.1002/joc.1181
[31]   Mitchell T D, Jones P D. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25(6): 693-712.
doi: 10.1002/joc.1181
[32]   New M, Hulme M, Jones P. 1999. Representing twentieth-century space-time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate, 12(3): 829-856.
doi: 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2
[33]   New M, Hulme M, Jones P. 2000. Representing twentieth-century space-time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate. Journal of Climate, 13(13): 2217-2238.
[34]   New M, Todd M, Hulme M, et al. 2001. Precipitation measurements and trends in the twentieth century. International Journal of Climatology, 21(15): 1889-1922.
doi: 10.1002/joc.680
[35]   Olivera Rodriguez P, Holzman M E, Degano M F, et al. 2021. Spatial variability of the green water footprint using a medium-resolution remote sensing technique: The case of soybean production in the Southeast Argentine Pampas. Science of the Total Environment, 763: 142963, doi: 10.1016/j.scitotenv.2020.142963.
doi: 10.1016/j.scitotenv.2020.142963
[36]   Ollivier C, Olioso A, Carrière S D, et al. 2021. An evapotranspiration model driven by remote sensing data for assessing groundwater resource in karst watershed. Science of the Total Environment, 781: 146706, doi: 10.1016/j.scitotenv.2021. 146706.
doi: 10.1016/j.scitotenv.2021. 146706
[37]   Ordikhani H, Parashkoohi M G, Zamani D M, et al. 2021. Energy-environmental life cycle assessment and cumulative exergy demand analysis for horticultural crops (Case study: Qazvin province). Energy Reports, 7: 2899-2915.
doi: 10.1016/j.egyr.2021.05.022
[38]   Queyrel W, Habets F, Blanchoud H, et al. 2016. Pesticide fate modeling in soils with the crop model STICS: Feasibility for assessment of agricultural practices. Science of the Total Environment, 542: 787-802.
doi: 10.1016/j.scitotenv.2015.10.066
[39]   Ramezani Etedali H, Ahmadi M. 2021. Evaluation of various meteorological datasets in estimation yield and actual evapotranspiration of wheat and maize (case study: Qazvin plain). Agricultural Water Management, 256: 107080, doi: 10.1016/j.agwat.2021.107080.
doi: 10.1016/j.agwat.2021.107080
[40]   Ramezani Etedali H, Gorgin F, Kakvand P. 2022. Study of the performance of two meteorological datasets in estimating the maize water footprint, a case study: Qazvin Plain. Iranian Journal of Irrigation and Drainage, 15(6): 1394-1403.
[41]   Reichle R H, Koster R D, De Lannoy G J M, et al. 2011. Assessment and enhancement of MERRA land surface hydrology estimates. Journal of Climate, 24(24): 6322-6338.
doi: 10.1175/JCLI-D-10-05033.1
[42]   Rodriguez J, Ustin S, Sandoval-Solis S, et al. 2015. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water. Science of the Total Environment, 565: 1020-1027.
doi: 10.1016/j.scitotenv.2016.05.146
[43]   Ruane A C, Goldberg R, Chryssanthacopoulos J. 2015. Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200: 233-248.
doi: 10.1016/j.agrformet.2014.09.016
[44]   Saeidi R, Ramezani Etedali H, Sotoodehnia A, et al. 2021. Evaluation of AquaCrop model for estimating of changes process of soil moisture, evapotranspiration and yield of maize under salinity and fertility stresses. Environmental Stresses in Crop Sciences, 14(1): 195-210.
[45]   Salehnia N, Zare H, Kolsoumi S, et al. 2018. Predictive value of Keetch-Byram Drought Index for cereal yields in a semi-arid environment. Theoretical and Applied Climatology, 134(3): 1005-1014.
doi: 10.1007/s00704-017-2315-2
[46]   Schneider U, Becker A, Finger P, et al. 2014. GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115(1): 15-40.
doi: 10.1007/s00704-013-0860-x
[47]   Shi H, Li T, Wei J. 2017. Evaluation of the gridded CRU TS precipitation dataset with the point raingauge records over the Three-River Headwaters Region. Journal of Hydrology, 548: 322-332.
doi: 10.1016/j.jhydrol.2017.03.017
[48]   Stöckle C O, Donatelli M, Nelson R. 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18(3-4): 289-307.
doi: 10.1016/S1161-0301(02)00109-0
[49]   Strangeways I. 2006. Precipitation:Theory, Measurement and Distribution. Cambridge: Cambridge University Press.
[50]   Valéry A, Andréassian V, Perrin C. 2010. Regionalization of precipitation and air temperature over high-altitude catchments-learning from outliers. Hydrological Sciences Journal-Journal des Sciences Hydrologiques, 55(6): 928-940.
doi: 10.1080/02626667.2010.504676
[51]   Vorosmarty C J, Sahagian D. 2000. Anthropogenic disturbance of the terrestrial water cycle. BioScience, 50(9): 753-765.
doi: 10.1641/0006-3568(2000)050[0753:ADOTTW]2.0.CO;2
[52]   White J L, Knapp A K, Kelly E F. 2008. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158(1): 129-140.
doi: 10.1007/s00442-008-1116-9
[53]   WMO, ICSU. 1990. The Global Precipitation Climatology Project-Implementation and data management plan. [2022-08-17]. https://library.wmo.int/index.php?lvl=notice_display&id=11757#.Y4ZbLnZBzIU.
[54]   Worqlul A W, Collick A S, Tilahun S A, et al. 2015. Comparing TRMM 3B42, CFSR and ground-based rainfall estimates as input for hydrological models, in data scarce regions: the Upper Blue Nile Basin, Ethiopia. Hydrology and Earth System Sciences Discussions, 12(2): 2081-2112.
[55]   Yang H S, Dobermann A, Lindquist J L, et al. 2004. Hybrid-maize-A maize simulation model that combines two crop modeling approaches. Field Crops Research, 87(2-3): 131-154.
doi: 10.1016/j.fcr.2003.10.003
[56]   Yao T, Xue Y, Chen D, et al. 2019. Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bulletin of the American Meteorological Society, 100(3): 423-444.
doi: 10.1175/BAMS-D-17-0057.1
[57]   Zhu X, Xu K, Liu Y, et al. 2021. Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model. Agricultural Systems, 189: 103040, doi: 10.1016/j.agsy.2020.103040.
doi: 10.1016/j.agsy.2020.103040
[1] WANG Xiangyu, XU Min, KANG Shichang, LI Xuemei, HAN Haidong, LI Xingdong. Comprehensive applicability evaluation of four precipitation products at multiple spatiotemporal scales in Northwest China[J]. Journal of Arid Land, 2024, 16(9): 1232-1254.
[2] YANG Jianhua, LI Yaqian, ZHOU Lei, ZHANG Zhenqing, ZHOU Hongkui, WU Jianjun. Effects of temperature and precipitation on drought trends in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(8): 1098-1117.
[3] XU Wenjie, DING Jianli, BAO Qingling, WANG Jinjie, XU Kun. Improving the accuracy of precipitation estimates in a typical inland arid area of China using a dynamic Bayesian model averaging approach[J]. Journal of Arid Land, 2024, 16(3): 331-354.
[4] LIU Xinyu, LI Xuemei, ZHANG Zhengrong, ZHAO Kaixin, LI Lanhai. A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains[J]. Journal of Arid Land, 2024, 16(2): 195-219.
[5] Mitiku A WORKU, Gudina L FEYISA, Kassahun T BEKETIE, Emmanuel GARBOLINO. Projecting future precipitation change across the semi-arid Borana lowland, southern Ethiopia[J]. Journal of Arid Land, 2023, 15(9): 1023-1036.
[6] Reza DEIHIMFARD, Sajjad RAHIMI-MOGHADDAM, Farshid JAVANSHIR, Alireza PAZOKI. Quantifying major sources of uncertainty in projecting the impact of climate change on wheat grain yield in dryland environments[J]. Journal of Arid Land, 2023, 15(5): 545-561.
[7] ZHANG Lihua, GAO Han, WANG Junfeng, ZHAO Ruifeng, WANG Mengmeng, HAO Lianyi, GUO Yafei, JIANG Xiaoyu, ZHONG Lingfei. Plant property regulates soil bacterial community structure under altered precipitation regimes in a semi-arid desert grassland, China[J]. Journal of Arid Land, 2023, 15(5): 602-619.
[8] Sakine KOOHI, Hadi RAMEZANI ETEDALI. Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset[J]. Journal of Arid Land, 2023, 15(4): 377-392.
[9] ZHANG Yixin, LI Peng, XU Guoce, MIN Zhiqiang, LI Qingshun, LI Zhanbin, WANG Bin, CHEN Yiting. Temporal and spatial variation characteristics of extreme precipitation on the Loess Plateau of China facing the precipitation process[J]. Journal of Arid Land, 2023, 15(4): 439-459.
[10] LI Hongfang, WANG Jian, LIU Hu, MIAO Henglu, LIU Jianfeng. Responses of vegetation yield to precipitation and reference evapotranspiration in a desert steppe in Inner Mongolia, China[J]. Journal of Arid Land, 2023, 15(4): 477-490.
[11] Adnan ABBAS, Asher S BHATTI, Safi ULLAH, Waheed ULLAH, Muhammad WASEEM, ZHAO Chengyi, DOU Xin, Gohar ALI. Projection of precipitation extremes over South Asia from CMIP6 GCMs[J]. Journal of Arid Land, 2023, 15(3): 274-296.
[12] Mohsen SHARAFATMANDRAD, Azam KHOSRAVI MASHIZI. Evaluation of restoration success in arid rangelands of Iran based on the variation of ecosystem services[J]. Journal of Arid Land, 2023, 15(11): 1290-1314.
[13] LI Qian, MA Long, LIU Tingxi. Transformation among precipitation, surface water, groundwater, and mine water in the Hailiutu River Basin under mining activity[J]. Journal of Arid Land, 2022, 14(6): 620-636.
[14] SU Yuan, GONG Yanming, HAN Wenxuan, LI Kaihui, LIU Xuejun. Dependency of litter decomposition on litter quality, climate change, and grassland type in the alpine grassland of Tianshan Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(6): 691-703.
[15] CHEN Haiyan, CHEN Yaning, LI Dalong, LI Weihong, YANG Yuhui. Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains, Central Asia[J]. Journal of Arid Land, 2022, 14(3): 297-309.