Please wait a minute...
Journal of Arid Land  2015, Vol. 7 Issue (6): 820-830    DOI: 10.1007/s40333-015-0052-x
Brief Communication     
Identifying the influence of urbanization on soil organic matter content and pH from soil magnetic characteristics
YANG Han1,2, XIONG Heigang3*, CHEN Xuegang2, WANG Yaqi2, ZHANG Fang1
1 College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China;
2 College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China;
3 College of Applied Arts and Science of Beijing Union University, Beijing 100191, China
Download:   PDF(494KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Soil magnetic characteristics are correlated with soil pH and organic matter content. Analyzing soil magnetic characteristics, organic matter content and pH can indirectly evaluate soil pollution caused by human activities. This study analyzed the soil magnetic characteristics, organic matter content and pH in surface soil samples from different land use types in Shihezi city, a newly and rapidly developing oasis city in Xinjiang of China. The aims of this study were to explore the possible relationships among the soil magnetic parameters and thereby improve the understanding of influence of urbanization on soil properties. Eighty surface soil samples at the depth of 0–10 cm were collected from 29 July to 4 August 2013. The results showed that the magnetic minerals in surface soil were dominated by ferromagnetic minerals. Spatially, the magnetic susceptibility (χLF), anhys-teretic remanent magnetization susceptibility (χARM), saturation isothermal remanent magnetization (SIRM) and “soft” isothermal remanent magnetization (SOFT) were found to be most dominant in the new northern urban area B (N-B), followed by built-up areas (U), suburban agricultural land (F), and then the new northern urban area A (N-A). The values of χLF, χARM, SIRM and SOFT were higher in the areas with high intensities of human ac-tivities and around the main roads. Meanwhile, the property “hard” isothermal remanent magnetization (HIRM) followed the order of U>N-B>F>N-A. Built-up areas had an average pH value of 7.93, which was much higher than that in the new northern urban areas as well as in suburban agricultural land, due to the increased urban pollutant emissions. The average value of soil organic matter content in the whole study area was 34.69 g/kg, and the values in the new northern urban areas were much higher than those in the suburban agricultural land and built-up areas. For suburban agricultural land, soil organic matter content was significantly negatively correlated with χLF, and had no correlation with other magnetic parameters, since the soil was frequently ploughed. In the new northern urban areas (N-A and N-B), there were significant positive correlations of soil organic matter contents with χARM, SIRM, SOFT and HIRM, because natural grasslands were not frequently turned over. For the built-up areas, soil organic matter contents were significantly positively correlated with χLF, χARM, SIRM and SOFT, but not significantly correlated with frequency-dependent susceptibility (χFD, expressed as a percentage) and HIRM, because the soil was not frequently turned over or influenced by human activities. The results showed that soil magnetic characteristics are related to the soil turnover time.

Key wordsdesert steppe      green-up      gross primary productivity      phenology      precipitation      temperature     
Received: 12 January 2015      Published: 10 December 2015
Fund:  

The National Natural Science Foundation of China (41171165, 41161029), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (IDHT20130322) and the Talent Strong School Plan of Funded Project of Beijing Union University (BPHR2012E01)

Corresponding Authors: XIONG Heigang     E-mail: heigang@buu.edu.cn
Cite this article:

YANG Han, XIONG Heigang, CHEN Xuegang, WANG Yaqi, ZHANG Fang. Identifying the influence of urbanization on soil organic matter content and pH from soil magnetic characteristics. Journal of Arid Land, 2015, 7(6): 820-830.

URL:

http://jal.xjegi.com/10.1007/s40333-015-0052-x     OR     http://jal.xjegi.com/Y2015/V7/I6/820

Burgess E W. 2008. The growth of the city: an introduction to a research project. In: Marzluff J M, Shulenberger E, Endlicher W, et al. Urban Ecology. Washington: Springer US, 71−78.

Chabukdhara M, Nema A K. 2013. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: probabilistic health risk approach. Ecotoxicology and Envi-ronmental Safety, 87: 57−64.

Chen X L, Li Z Z, Jin J H, et al. 2011. Soil pH value, organic matter and magnetic susceptibility in different urban function zones of Fuzhou City. Bulletin of Soil and Water Conservation, 31: 176−181. (in Chinese)

Davis J A. 1984. Complexation of trace metals by adsorbed natu-ral organic matter. Geochimica et Cosmochimica Acta, 48(4): 679−691.

Day R, Fuller M, Schmidt V A. 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13(4): 260−267.

De Kimpe C R, Morel J L. 2000. Urban soil management: a growing concern. Soil Science, 165(1): 31−40.

Dearing J A, Dann R J L, Hay K, et al. 1996. Frequen-cy-dependent susceptibility measurements of environmental materials. Geophysical Journal International, 124(1): 228−240.

Dearing J A, Bird P M, Dann R J L, et al. 1997. Secondary ferri-magnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral for-mation. Geophysical Journal International, 130(3): 727−736.

?ur?a O. 1999. Heavy metals contamination and magnetic sus-ceptibility in soils around metallurgical plant. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(6): 541−543.

Elliott R J R, Sun P, Zhu T. 2014. Urbanization and energy inten-sity: a province-level study for China. Department of Eco-nomics Discussion Paper 14-05. University of Birmingham, Birmingham, UK.

Elmqvist T, Fragkias M, Goodness J, et al. 2013.  Stewardship of the biosphere in the urban era. In: Elmqvist T, Fragkias M, Goodness J, et al. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. Berlin: Springer Netherlands, 719−746.

Evans M, Heller F. 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Oxford: Academic Press, 573.

Gautam P, Blaha U, Appel E. 2005. Integration of magnetism and heavy metal chemistry of soils to quantify the environmental pollution in Kathmandu, Nepal. Island Arc, 14(4): 424−435.

Huang Y L, Wang Y L, Zhang L P. 2008. Long-term trend of chemical composition of wet atmospheric precipitation during 1986–2006 at Shenzhen City, China. Atmospheric Environ-ment, 42(16): 3740−3750.

Jing Y J, Zheng D M, Lu S Q, et al. 2004. The composition fea-tures and content of organic matter in the cropland soils of Xinjiang. Agricultural Research in Arid Areas, 21: 61−64. (in Chinese)

Jorgenson A K, Rice J. 2005. Structural dynamics of international trade and material consumption: A cross-national study of the ecological footprints of less-developed countries. Journal of World-Systems Research, 11(1): 57−77.

Kapi?ka A, Petrovský E, Ustjak S, et al. 1999. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. Journal of Geochemical Ex-ploration, 66(1): 291−297.

Kapi?ka A, Jordanova N, Petrovský E, et al. 2000. Magnetic sta-bility of power-plant fly ash in different soil solutions. Phys-ics and Chemistry of the Earth, Part A: Solid Earth and Geod-esy, 25(5): 431−436.

Kong S F, Ji Y Q, Liu L L, et al. 2012. Diversities of phthalate esters in suburban agricultural soils and wasteland soil ap-peared with urbanization in China. Environmental Pollution, 170: 161−168.

Li X Y, Liu L J, Wang Y G, et al. 2013. Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma, 192: 50−58.

Lourenço A M, Rocha F, Gomes C R. 2012. Relationships be-tween magnetic parameters, chemical composition and clay minerals of topsoils near Coimbra, central Portugal. Natural Hazards and Earth System Science, 12(8): 2545−2555.

Maher B A. 1998. Magnetic properties of modern soils and Qua-ternary loessic paleosols: paleoclimatic implications. Palaeo-geography, Palaeoclimatology, Palaeoecology, 137(1): 25−54.

Murdock K J, Wilkie K, Brown L L. 2013. Rock magnetic prop-erties, magnetic susceptibility, and organic geochemistry com-parison in core LZ1029-7 Lake El’gygytgyn, Russia Far East. Climate of the Past, 9(1): 467−479.

Oldfield F. 1991. Environmental magnetism—a personal perspec-tive. Quaternary Science Reviews, 10(1): 73−85.

Reuter J H, Perdue E M. 1977. Importance of heavy met-al-organic matter interactions in natural waters. Geochimica et Cosmochimica Acta, 41(2): 325−334.

Rosowiecka O, Nawrocki J. 2010. Assessment of soils pollution extent in surroundings of ironworks based on magnetic analy-sis. Studia 

Geophysica et Geodaetica, 54(1): 185−194.

Shen H Y, Chen J L, Dai H F, et al. 2013. New insights into the sorption and detoxification of chromium (VI) by tetra-ethylenepentamine functionalized nanosized magnetic polymer adsorbents: mechanism and pH effect. Industrial & Engineer-ing Chemistry Research, 52(36): 12723−12732.

Si P, Zheng Z F, Ren Y, et al. 2014. Effects of urbanization on daily temperature extremes in North China. Journal of Geo-graphical Sciences, 24(2): 249−268.

Thompson R, Oldfield F. 1986. Environmental Magnetism. Lon-don: Allen & Unwin, 277.

Tu J, Wang H S, Zhang Z F, et al. 2005. Trends in chemical com-position of precipitation in Nanjing, China, during 1992–2003. Atmospheric Research, 73(3−4): 283−298.

Wang B, Xia D S, Yu Y, et al. 2013. Magnetic properties of river sediments and their relationship with heavy metals and organ-ic matter in the urban area in Lanzhou, China. Environmental Earth Sciences, 70(2): 605−614.

Wang B, Xia D, Yu Y, et al. 2014. Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China. Environ-mental Pollution, 184: 335−346.

Wang X S. 2013. Assessment of heavy metal pollution in Xuzhou urban topsoils by magnetic susceptibility measurements. Journal of Applied Geophysics, 92: 76−83.

Wei B G, Yang L S. 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2): 99−107.

Xia D S, Wang B, Yu Y, et al. 2014. Combination of magnetic parameters and heavy metals to discriminate soil-contamination sources in Yinchuan—A typical oasis city of Northwestern China. Science of The Total Environment, 485: 83−92.

Yang H, Xiong H G, Chen X G. 2014. Environmental magnetic propertires and their spatial variability of topsoil in Shihezi city. Environmental Science, 35: 3537−3545. (in Chinese)

Yang Z P, Lu W X, Long Y Q, et al. 2011. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. Journal of Geochemical Exploration, 108(1): 27−38.

Zeng F R, Ali S, Zhang H T, et al. 2011. The influence of pH and organic matter content in paddy soil on heavy metal availabil-ity and their uptake by rice plants. Environmental Pollution, 159(1): 84−91.

Zheng Y, Zhang S H. 2008. Magnetic properties of street dust and topsoil in Beijing and its environmental implications. Chinese Science Bulletin, 53(3): 408−417.
[1] WANG Junjie, SHI Bing, ZHAO Enjin, CHEN Xuguang, YANG Shaopeng. Synergistic effects of multiple driving factors on the runoff variations in the Yellow River Basin, China[J]. Journal of Arid Land, 2021, 13(8): 835-857.
[2] Brian COLLINS, Hadi RAMEZANI ETEDALI, Ameneh TAVAKOL, Abbas KAVIANI. Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957-2016 in Iran based on CRU TS gridded dataset[J]. Journal of Arid Land, 2021, 13(8): 858-878.
[3] CHEN Li, XU Changchun, LI Xiaofei. Projections of temperature extremes based on preferred CMIP5 models: a case study in the Kaidu-Kongqi River basin in Northwest China[J]. Journal of Arid Land, 2021, 13(6): 568-580.
[4] Nirmal M DAHAL, XIONG Donghong, Nilhari NEUPANE, Belayneh YIGEZ, ZHANG Baojun, YUAN Yong, Saroj KOIRALA, LIU Lin, FANG Yiping. Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal[J]. Journal of Arid Land, 2021, 13(5): 433-454.
[5] Türkan BAYER ALTIN, Bekir N ALTIN. Response of hydrological drought to meteorological drought in the eastern Mediterranean Basin of Turkey[J]. Journal of Arid Land, 2021, 13(5): 470-486.
[6] SA Chula, MENG Fanhao, LUO Min, LI Chenhao, WANG Mulan, ADIYA Saruulzaya, BAO Yuhai. Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau[J]. Journal of Arid Land, 2021, 13(4): 332-349.
[7] Ayad M F AL-QURAISHI, Heman A GAZNAYEE, Mattia CRESPI. Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index[J]. Journal of Arid Land, 2021, 13(4): 413-430.
[8] XIANG Longwei, WANG Hansheng, JIANG Liming, SHEN Qiang, Holger STEFFEN, LI Zhen. Glacier mass balance in High Mountain Asia inferred from a GRACE release-6 gravity solution for the period 2002-2016[J]. Journal of Arid Land, 2021, 13(3): 224-238.
[9] TENG Zeyu, XIAO Shengchun, CHEN Xiaohong, HAN Chao. Soil bacterial characteristics between surface and subsurface soils along a precipitation gradient in the Alxa Desert, China[J]. Journal of Arid Land, 2021, 13(3): 257-273.
[10] HU Haiying, ZHU Lin, LI Huixia, XU Dongmei, XIE Yingzhong. Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China[J]. Journal of Arid Land, 2021, 13(2): 109-122.
[11] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[12] Arvind BHATT, David J GALLACHER, Paulo R M SOUZA-FILHO. Germination strategies of annual and short-lived perennial species in the Arabian Desert[J]. Journal of Arid Land, 2020, 12(6): 1071-1082.
[13] Esmail HEYDARI ALAMDARLOO, Hassan KHOSRAVI, Sahar NASABPOUR, Ahmad GHOLAMI. Assessment of drought hazard, vulnerability and risk in Iran using GIS techniques[J]. Journal of Arid Land, 2020, 12(6): 984-1000.
[14] YANG Meilin, YU Yang, ZHANG Haiyan, WANG Qian, GAN Miao, YU Ruide. Tree ring based drought variability in Northwest Tajikistan since 1895 AD[J]. Journal of Arid Land, 2020, 12(3): 413-422.
[15] ZHENG Jing, FAN Junliang, ZOU Yufeng, Henry Wai CHAU, ZHANG Fucang. Ridge-furrow plastic mulching with a suitable planting density enhances rainwater productivity, grain yield and economic benefit of rainfed maize[J]. Journal of Arid Land, 2020, 12(2): 181-198.