Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (10): 1099-1108    DOI: 10.1007/s40333-022-0104-y     CSTR: 32276.14.s40333-022-0104-y
Research article     
Effects of native and invasive Prosopis species on topsoil physiochemical properties in an arid riparian forest of Hormozgan Province, Iran
Maryam MOSLEHI JOUYBARI1,*(), Asgahr BIJANI2, Hossien PARVARESH2, Ross SHACKLETON3,4, Akram AHMADI5
1Research Division of Natural Resources, Hormozgan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas 7915847669, Iran
2Department of Environmental Sciences, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas 7915893144, Iran
3Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf 8903, Switzerland
4Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch 7602, South Africa
5Research Division of Natural Resources, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan 4915677555, Iran
Download: HTML     PDF(1453KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Biological invasions can alter soil properties within the range of their introduced, leading to impacts on ecosystem services, ecosystem functions, and biodiversity. To better understand the impacts of biological invasions on soil, we compared topsoil physiochemical properties at sites with invasive alien tree species (Prosopis juliflora), native tree species (Prosopis cineraria, Acacia tortilis, and Acacia ehrenbergiana), and mixed tree species in Hormozgan Province of Iran in May 2018. In this study, we collected 40 soil samples at a depth of 10 cm under single tree species, including P. juliflora, P. cineraria, A. tortilis, and A. ehrenbergiana, as well as under mixed tree species. The results showed that organic matter, moisture, potassium, calcium, nitrogen, and magnesium in topsoil at sites with A. tortilis and A. ehrenbergiana growing in combination with P. cineraria were higher than that at sites where P. juliflora was present (P<0.05). Sodium at sites with A. tortilis and A. ehrenbergiana growing in combination with P. cineraria and P. juliflora was lower as compared to that at sites with just A. tortilis and A. ehrenbergiana. Electrical conductivity was lower at sites with A. tortilis and A. ehrenbergiana growing in combination with P. cineraria, and it was higher at sites with mixed Acacia and P. juliflora trees. Based on the generally more positive effect of native Acacia and P. cineraria on topsoil physiochemical properties as compared to the P. julifora, afforestation with native tree species is preferable for soil restoration. In addition, due to the negative effects of P. julifora on soil properties, P. julifora spread should be better managed.



Key wordsProsopis juliflora      Prosopis cineraria      tree species      invasion      topsoil physiochemical properties      Iran     
Received: 30 April 2022      Published: 31 October 2022
Corresponding Authors: *Maryam MOSLEHI JOUYBARI (E-mail: m.moslehi@areeo.ac.ir)
Cite this article:

Maryam MOSLEHI JOUYBARI, Asgahr BIJANI, Hossien PARVARESH, Ross SHACKLETON, Akram AHMADI. Effects of native and invasive Prosopis species on topsoil physiochemical properties in an arid riparian forest of Hormozgan Province, Iran. Journal of Arid Land, 2022, 14(10): 1099-1108.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0104-y     OR     http://jal.xjegi.com/Y2022/V14/I10/1099

Fig. 1 The schematic images of the soil sampling method at the sites with single tree species (a) and the sites with mixed tree species (b). N, north; E, east; S, south; W, west.
Topsoil physiochemical property P. cineraria P. juliflora A. tortilis P. cineraria×
A. tortilis
P. juliflora×
A. tortilis
Soil organic matter (%) 1.27±0.10ab 1.07±0.31b 1.36±0.12ab 1.46±0.35a 1.03±0.11b
Soil moisture (%) 13.52±4.28a 8.26±2.41bc 12.66±8.45ab 14.97±4.21a 6.50±0.75c
Soil acidity 7.30±0.07abc 7.23±0.23bc 7.54±0.21a 7.50±0.26ab 7.12±0.13c
Electrical conductivity (S/cm) 1.19±0.36b 2.23±0.21a 1.41±0.37b 1.18±0.39b 1.57±0.48b
Table 1 Comparison of the effects of Prosopis cineraria, Prosopis juliflora, and Acacia tortilis as well as the combinations of these tree species on topsoil physiochemical properties
Fig. 2 Effects of Prosopis cineraria, Prosopis juliflora, and Acacia tortilis as well as the combinations of these tree species on topsoil exchangeable cations. (a), sodium; (b), potassium; (c), calcium; (d), magnesium; (e), nitrogen. Different lowercase letters indicate significant differences among tree species (P<0.05). Bars are standard deviations.
Topsoil physiochemical property P. cineraria P. juliflora A. ehrenbergiana P. cineraria×
A. ehenbergiana
P. juliflora×
A. ehenbergiana
Soil organic matter (%) 1.27±0.10a 1.07±0.31a 1.02±0.19a 1.30±0.22a 1.02±0.24a
Soil moisture (%) 13.52±4.28a 8.26±2.41b 9.21±2.02ab 13.66±5.70a 8.03±1.80b
Soil acidity 7.30±0.07b 7.23±0.23b 7.60±0.16a 7.45±0.25ab 7.18±0.20b
Electrical conductivity (S/cm) 1.19±0.36c 2.23±0.21a 1.47±0.40bc 1.13±0.53c 1.79±0.39ab
Table 2 Comparison of the effects of P. cineraria, P. juliflora, and Acacia ehrenbergiana as well as the combinations of these tree species on topsoil physiochemical properties
Fig. 3 Effects of P. cineraria, P. juliflora, and Acacia ehrenbergiana as well as the combinations of these tree species on topsoil exchangeable cations. (a), sodium; (b), potassium; (c), calcium; (d), magnesium; (e), nitrogen. Different lowercase letters indicate significant differences among tree species (P<0.05). Bars mean standard deviation.
[1]   Abbasi T, Abbasi S A. 2011. Sources of pollution in rooftop rainwater harvesting systems and their control. Critical Reviews in Environmental Science and Technology, 41: 2097-2167.
doi: 10.1080/10643389.2010.497438
[2]   Al-Abdali S S, Al-Dhuhli A S, Al-Reasi H A. 2019. Preliminary investigations of allelopathic effects and herbicide-based eradication of mesquite (Prosopis juliflora). Sultan Qaboos University Journal for Science, 24(1): 11-17.
[3]   Bavaraja P K, Sharma S D, Badrinath M S, et al. 2007. Prosopis juliflora-An efficient tree species for reclamation of salt affected soils. Karnataka Journal of Agricultural Sciences, 20(4): 727-731.
[4]   Bijani A. 2020. Investigation of allelopathic effects of native and alien Prosopis on some soil chemical content and characteristics of Accacia tortilis and Acacia ehrenbergiana in Hormozgan Province (Sirick city). MSc Thesis. Bandar Abbas: Islamic Azad University.
[5]   Black C A. 1965. Methods of Soil Analysis. Madison: American Soil Society of Agronomy Press.
[6]   Blackburn T M, Essl F, Evans T, et al. 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biology, 12(5): e1001850, doi: 10.1371/journal.pbio.1001850.
doi: 10.1371/journal.pbio.1001850
[7]   Chou C H. 2010. Roles of allelopathy in plant biodiversity and sustainable agriculture. Critical Reviews in Plant Sciences, 18(5): 609-636.
doi: 10.1080/07352689991309414
[8]   Dzikiti S, Schachtschneider K, Naiken V, et al. 2013. Water relations and the effects of clearing invasive Prosopis trees on groundwater in an arid environment in the Northern Cape, South Africa. Journal of Arid Environments, 90: 103-113.
doi: 10.1016/j.jaridenv.2012.10.015
[9]   Dzikiti S, Ntshidi Z, Le Maitre D C, et al. 2017. Assessing water use by Prosopis invasions and Vachellia karroo trees: Implications for groundwater recovery following alien plant removal in an arid catchment in South Africa. Forest Ecology and Management, 398: 153-163.
doi: 10.1016/j.foreco.2017.05.009
[10]   Edrisi S A, El-Keblawy A, Abhilash P C. 2020. Sustainability analysis of Prosopis juliflora (Sw.) DC based restoration of degraded land in North India. Land, 9(2): 59, doi: 10.3390/land9020059.
doi: 10.3390/land9020059
[11]   El-Keblawy A, Al-Rawai A. 2007. Impacts of the invasive exotic Prosopis juliflora (Sw.) D.C. on the native flora and soils of the UAE. Plant Ecology, 190(1): 23-35.
doi: 10.1007/s11258-006-9188-2
[12]   El-Keblawy A, Abdelfatah M. 2014. Impact of native and invasive exotic Prosopis congeners on soil properties and associated flora in the arid United Arab Emirates. Journal of Arid Environments, 100-101: 1-8.
[13]   El-Shabasy A. 2017. Study on allelopathic effect of Prosopis juliflora on mineral content of Acacia ehrenbergiana in Farasan Islands, KSA. Journal of Medicinal Plants Studies, 5: 130-134.
[14]   Fadoul M S, Elamin M A. 2016. Impact of water harvesting techniques on growth of some indigenous tree species in Jebel Awila Locality, Sudan. Global Journal of Science Frontier Research: (D) Agriculture and Veterinary, 16(3): 42-53.
[15]   Garg V K, Singh B. 2003. Macronutrient dynamics and use efficiency in three species of short rotation forestry developed on sodic soils in North India. Journal of Tropical Forest Science, 15(2): 289-302.
[16]   Gioria M, Osborne B A. 2014. Resource competition in plant invasions: emerging patterns and research needs. Frontiers in Plant Science, 5: 501, doi: 10.3389/fpls.2014.00501.
doi: 10.3389/fpls.2014.00501 pmid: 25324851
[17]   Goel U, Saxena D B, Kumar B. 1989. Comparative study of allelopathy as exhibited by Prosopis Juliflora swartz and Prosopis cineraria (L) druce. Journal of Chemical Ecology, 15: 591-600.
doi: 10.1007/BF01014703 pmid: 24271801
[18]   Goel V L, Behl H M. 1999. Screening of Prosopis germplasm for afforestation of degraded soil sites: performance, leaf nutrient status and influence on soil properties. Journal of Sustainable Forestry, 8(2): 1-13.
[19]   Guevara A, Giordano C V, Aranibar J, et al. 2010. Phenotypic plasticity of the coarse root system of Prosopis flexuosa, a phreatophyte tree, in the Monte Desert (Argentina). Plant Soil, 330: 447-464.
doi: 10.1007/s11104-009-0218-4
[20]   Hejda M, Pyšek P, Jarošík V. 2009. Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology, 97(3): 393-403.
doi: 10.1111/j.1365-2745.2009.01480.x
[21]   Inderjit, Seastedt T R, Callaway R M, et al. 2008. Allelopathy and plant invasions: traditional, congeneric, and biogeographical approaches. Biological Invasions, 10(6): 875-890.
doi: 10.1007/s10530-008-9239-9
[22]   Kahi C H, Ngugi R K, Mureithi S M, et al. 2009. The canopy effects of Prosopis juliflora (DC.) and Acacia tortilis (Hayne) trees on herbaceous plants species and soil physico-chemical properties in Njemps Flats, Kenya. Tropical and Subtropical Agroecosystems, 10(3): 441-449.
[23]   Kaur R, Gonzáles W L, Llambi L D, et al. 2012. Community impacts of Prosopis juliflora invasion: biogeographic and congeneric comparisons. PLoS ONE, 7(9): e44966, doi: 10.1371/journal.pone.0044966.
doi: 10.1371/journal.pone.0044966
[24]   Kazemi S H, Hojjati M, Falah A, et al. 2015. Effect of forest management on soil physical and chemical properties of Khalil-Mahale forest. Journal of Forest Research and Development, 1(2): 167-180.
[25]   Linders T E, Bekele K, Schaffner U, et al. 2020. The impact of invasive species on social-ecological systems: Relating supply and use of selected provisioning ecosystem services. Ecosystem Services, 41: 101055, doi: 10.1016/j.ecoser.2019.101055.
doi: 10.1016/j.ecoser.2019.101055
[26]   Moradi M, Imani F, Naji H R, et al. 2013. Variation in soil carbon stock and nutrient content in sand dunes after afforestation by Prosopis juliflora in the Khuzestan province (Iran). iForest-Biogeosciences and Forestry, 10(3): 585-589.
doi: 10.3832/ifor2137-010
[27]   Mosbah M, Tounekti T, Khemira H. 2018. Invasive character of Prosopis juliflora is facilitated by its allelopathy and a wide mutualistic interaction with soil microorganisms. Journal of Biological Sciences, 18: 115-123.
doi: 10.3923/jbs.2018.115.123
[28]   Nahali M H. 2000. Ecological evaluation of Prosopis juliflora and its potential for composting in Hormozgan province. Agricultural Economics and Development, 8(31): 305-323.
[29]   Nascimento C E D S, da Silva C A D, Leal I R, et al. 2020. Seed germination and early seedling survival of the invasive species Prosopis juliflora (Fabaceae) depend on habitat and seed dispersal mode in the Caatinga dry forest. Peer Journal, 8: e9607, doi: 10.7717/peerj.9607.
doi: 10.7717/peerj.9607
[30]   Pasiecznik N M, Harris P J C, Smith S J. 2004. Identifying Tropical Prosopis Species:A Field Guide. Conventry: HDRA Publishing.
[31]   Reinhart K O, Callaway R M. 2006. Soil biota and invasive plants. New Phytology, 170: 445-457.
doi: 10.1111/j.1469-8137.2006.01715.x
[32]   Schachtschneider K, February E C. 2013. Impact of Prosopis invasion on a keystone tree species in the Kalahari Desert. Plant Ecology, 214(4): 597-605.
doi: 10.1007/s11258-013-0192-z
[33]   Shackleton R T, Le Maitre D C, Pasiecznik N M, et al. 2014. Prosopis: a global assessment of the biogeography, benefits, impacts and management of one of the world's worst woody invasive plant taxa. AoB Plants, 6: plu027, doi: 10.1093/aobpla/plu027.
doi: 10.1093/aobpla/plu027
[34]   Shackleton R T, Le Maitre D C, van Wilgen B W, et al. 2015. The impact of invasive alien Prosopis species (mesquite) on native plants in different environments in South Africa. South African Journal of Botany, 97: 25-31.
doi: 10.1016/j.sajb.2014.12.008
[35]   Shackleton R T, Shackleton C M, Kull C A. 2019. The role of invasive alien species in shaping local livelihoods and human well-being: A review. Journal of Environmental Management, 229: 145-157.
doi: S0301-4797(18)30526-7 pmid: 30049620
[36]   Sharifian A, Niknahad-Gharmakher H, Foladizada M, et al. 2022. Socio-ecological evidence highlights that native Prosopis species are better for arid land restoration than non-native ones. Restoration Ecology, doi: 10.1111/rec.13756.
doi: 10.1111/rec.13756
[37]   Shiferaw H, Bewket W, Alamirew T, et al. 2019. Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Science of the Total Environment, 675: 354-366.
doi: 10.1016/j.scitotenv.2019.04.220
[38]   Shitanda D, Mukonyi K, Kagiri M, et al. 2013. Properties of Prosopis Juliflora and its potential uses in asal areas of Kenya. Journal of Agriculture, Science and Technology, 15(1): 15-27.
[39]   Sintayehu D W, Dalle G, Bobasa A F. 2020. Impacts of climate change on current and future invasion of Prosopis juliflora in Ethiopia: environmental and socio-economic implications. Heliyon, 6(8): e04596, doi: 10.1016/j.heliyon.2020.e04596.
doi: 10.1016/j.heliyon.2020.e04596
[40]   Smith J L, Doran J W. 1996. Measurement and use of pH and electrical conductivity for soil quality analysis. In: Methods for Assessing Soil Quality. Soil Science Society American. Madison, USA.
[41]   Thomas G W. 1982. Exchangeable cations. In: Page A L, Miller R H, Keeney D R. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Madison: American Society of Agronomy.
[42]   Vilà M, Espinar J L, Hejda M, et al. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14(7): 702-708.
doi: 10.1111/j.1461-0248.2011.01628.x pmid: 21592274
[43]   Weidenhamer J D, Callaway R M. 2010. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. Journal of Chemical Ecology, 36: 59-69.
doi: 10.1007/s10886-009-9735-0 pmid: 20077127
[44]   Zhang X X, Liu Z W, Tian N, et al. 2015. Allelopathic effects of decomposed leaf litter from intercropped trees on rape. Turkish Journal of Agriculture and Forestry, 39: 898-908.
doi: 10.3906/tar-1406-88
[1] Haq S MARIFATUL, Darwish MOHAMMED, Waheed MUHAMMAD, Kumar MANOJ, Siddiqui H MANZER, Bussmann W RAINER. Predicting potential invasion risks of Leucaena leucocephala (Lam.) de Wit in the arid area of Saudi Arabia[J]. Journal of Arid Land, 2024, 16(7): 983-999.
[2] Reza DEIHIMFARD, Sajjad RAHIMI-MOGHADDAM, Farshid JAVANSHIR, Alireza PAZOKI. Quantifying major sources of uncertainty in projecting the impact of climate change on wheat grain yield in dryland environments[J]. Journal of Arid Land, 2023, 15(5): 545-561.
[3] Sakine KOOHI, Hadi RAMEZANI ETEDALI. Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset[J]. Journal of Arid Land, 2023, 15(4): 377-392.
[4] Mohsen SHARAFATMANDRAD, Azam KHOSRAVI MASHIZI. Evaluation of restoration success in arid rangelands of Iran based on the variation of ecosystem services[J]. Journal of Arid Land, 2023, 15(11): 1290-1314.
[5] Faraz GORGIN PAVEH, Hadi RAMEZANI ETEDALI, Brian COLLINS. Evaluation of CRU TS, GPCC, AgMERRA, and AgCFSR meteorological datasets for estimating climate and crop variables: A case study of maize in Qazvin Province, Iran[J]. Journal of Arid Land, 2022, 14(12): 1361-1376.
[6] Hushiar HAMARASH, Rahel HAMAD, Azad RASUL. Meteorological drought in semi-arid regions: A case study of Iran[J]. Journal of Arid Land, 2022, 14(11): 1212-1233.
[7] Brian COLLINS, Hadi RAMEZANI ETEDALI, Ameneh TAVAKOL, Abbas KAVIANI. Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957-2016 in Iran based on CRU TS gridded dataset[J]. Journal of Arid Land, 2021, 13(8): 858-878.
[8] Mansour A FOROUSHANI, Christian OPP, Michael GROLL. Spatial and temporal gradients in the rate of dust deposition and aerosol optical thickness in southwestern Iran[J]. Journal of Arid Land, 2021, 13(1): 1-22.
[9] Farzaneh KHAJOEI NASAB, Ahmadreza MEHRABIAN, Hossein MOSTAFAVI. Mapping the current and future distributions of Onosma species endemic to Iran[J]. Journal of Arid Land, 2020, 12(6): 1031-1045.
[10] SHAFIEZADEH Mohammad, MORADI Hossein, FAKHERAN Sima. Evaluating and modeling the spatiotemporal pattern of regional-scale salinized land expansion in highly sensitive shoreline landscape of southeastern Iran[J]. Journal of Arid Land, 2018, 10(6): 946-958.
[11] KAZEMZADEH Majid, MALEKIAN Arash. Homogeneity analysis of streamflow records in arid and semi-arid regions of northwestern Iran[J]. Journal of Arid Land, 2018, 10(4): 493-506.
[12] RAJAEI Fatemeh, E SARI Abbas, SALMANMAHINY Abdolrassoul, O RANDHIR Timothy, DELAVAR Majid, D BEHROOZ Reza, M BAVANI Alireza. Simulating long-term effect of Hyrcanian forest loss on phosphorus loading at the sub-watershed level[J]. Journal of Arid Land, 2018, 10(3): 457-469.
[13] SHAKERI Sirous, A ABTAHI Seyed. Potassium forms in calcareous soils as affected by clay minerals and soil development in Kohgiluyeh and Boyer-Ahmad Province, Southwest Iran[J]. Journal of Arid Land, 2018, 10(2): 217-232.
[14] JABERALANSAR Zahra, TARKESH Mostafa, BASSIRI Mehdi, POURMANAFI Saeid. Modelling the impact of climate change on rangeland forage production using a generalized regression neural network: a case study in Isfahan Province, Central Iran[J]. Journal of Arid Land, 2017, 9(4): 489-503.
[15] THOMAS Jacob, A EL-SHEIKH Mohamed, A ALATAR Abdulrehman. Endemics and endangered species in the biodiversity hotspot of the Shada Mountains, Saudi Arabia[J]. Journal of Arid Land, 2017, 9(1): 109-121.