Please wait a minute...
Journal of Arid Land  2025, Vol. 17 Issue (5): 696-713    DOI: 10.1007/s40333-025-0015-9    
Research article     
Diversity and plant growth-promoting properties of culturable bacteria associated with three halophytes in an arid land, Northwest China
HUANG Yin1,2,3, ZHANG Xiaoye1,4, MA Jinbiao1,2, JIAO Haocheng1,3, Murad MUHAMMAD1,3, Rashidin ABDUGHENI1,2, Vyacheslav SHURIGIN1,2, Dilfuza EGAMBERDIEVA1,5, LI Li1,2,*()
1State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4College of Life Sciences, Shihezi University, Shihezi 832003, China
5Medical School, Central Asian University, Tashkent 111221, Uzbekistan
Download: HTML     PDF(1256KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Salt-tolerant bacteria associated with halophytes enhance plant resistance and adaptation to environmental stress. The purpose of this study was to investigate the diversity and plant-beneficial traits of bacteria associated with three halophytes in an arid land, Northwest China. The bacterial strains were isolated from the roots, shoots, rhizosphere, and bulk soil of three halophytes, i.e., Salicornia europaea L., Kalidium foliatum (Pall.) Moq., and Suaeda aralocaspica (Bunge) Freitag & Schütze, collected from the saline soils near to the Wujiaqu City, Xinjiang, Northwest China. A total of 567 strains were isolated and identified from these three halophytes belonging to 4 phyla, 6 classes, 25 orders, 36 families, and 66 genera, including 147 potential novel species. A total of 213 strains exhibited one or more plant growth- promoting properties, while 20 strains demonstrated multiple in vitro plant growth-promoting activities, including phosphate solubilization, nitrogen fixation, siderophore production, and production of hydrolytic enzymes such as protease and cellulase. Our findings showed that halophytes in the arid land harbor diverse bacteria with the potential to enhance plant growth and adaptability under challenging environmental conditions.



Key wordshalophytes      endophytic bacteria      rhizosphere bacteria      diversity      functional strains     
Received: 27 September 2024      Published: 31 May 2025
Corresponding Authors: *LI Li (E-mail: lili.bobo@outlook.com)
Cite this article:

HUANG Yin, ZHANG Xiaoye, MA Jinbiao, JIAO Haocheng, Murad MUHAMMAD, Rashidin ABDUGHENI, Vyacheslav SHURIGIN, Dilfuza EGAMBERDIEVA, LI Li. Diversity and plant growth-promoting properties of culturable bacteria associated with three halophytes in an arid land, Northwest China. Journal of Arid Land, 2025, 17(5): 696-713.

URL:

http://jal.xjegi.com/10.1007/s40333-025-0015-9     OR     http://jal.xjegi.com/Y2025/V17/I5/696

Sample Salicornia europaea L.
(P1)
Kalidium foliatum (Pall.) Moq.
(P2)
Suaeda aralocaspica (Bunge)
Freitag & Schütze (P3)
Root and shoot (PE) P1PE P2PE P3PE
Rhizosphere soil (RR) P1RR P2RR P3RR
Bulk soil (RS) P1RS P2RS P3RS
Table 1 Sample information and abbreviation from the three halophytes
Fig. 1 Community composition of culturable bacteria from the three halophytes at phylum (a), class (b), and genus (c) (top 20 dominant genera) levels
Fig. 2 Community composition at the genus level (top 20 dominant genera) (a) and flower diagram (b) at the species level of culturable bacteria isolated from different samples of the three halophytes (P1, P2, and P3). PE, RR, and RS indicate samples form root and shoot, rhizosphere soil, and bulk soil, respecitively. The detailed sample information is shown in Table 1. The abbreviations are the same in the following tables and figures.
Group Index P1PE P2PE P3PE P1RR P2RR P3RR P1RS P2RS P3RS
Taxa Phylum 3 3 3 3 3 4 3 4 3
Class 4 5 4 4 4 5 4 5 3
Order 6 11 16 11 15 13 9 12 11
Family 6 16 18 13 17 15 11 14 12
Genus 7 24 25 16 21 20 18 22 16
Isolates 23 67 101 53 77 80 48 60 58
Diversity Richness 13.00 36.00 47.00 28.00 42.00 37.00 27.00 35.00 27.00
Shannon 2.36 3.39 3.57 3.02 3.47 3.40 3.04 3.29 2.98
Simpson 0.88 0.96 0.96 0.93 0.96 0.96 0.94 0.95 0.93
Pielou 0.92 0.93 0.93 0.91 0.93 0.94 0.92 0.92 0.90
Table 2 Taxa and diversity of culturable bacteria
Fig. 3 Phylogenetic tree of potential novel bacterial strains. The effective sequence length was 538 bp. Bar, the number of substitutions per sample.
Fig. 4 Diversity of potentially novel bacterial strains isolated at the genus level
Fig. 5 Screening results in bacterial strains solubilizing phosphate, producing siderophores, protease, and cellulase. ''‒'' indicates negative solubilization ability (E=1); ''+'' indicates weak solubilization ability (1<E≤2); ''++'' indicates moderate solubilization ability (2<E≤3); and ''+++'' indicates strong solubilization ability (E>3). E is the ability to solubilize phosphate and produce siderophores, protease, and cellulose.
Fig. 6 Ability of nitrogen fixation and salt tolerance in bacterial strains. ''‒'' indicates negative and ''+'' indicates positive for nitrogen fixation and salt tolerance ability.
Sampling site Unique species of culturable bacteria
P1PE Alkalihalobacillus pseudofirmus, Bacillus atrophaeus, Corynebacterium mucifaciens, Kocuria polaris, Kushneria marisflavi, Streptomyces murinus, and Streptomyces xiangtanensis
P2PE Advenella kashmirensis subsp. methylica, Arthrobacter gandavensis, Brevibacterium anseongense, Brevibacterium antiquum, Brevibacterium epidermidis, Brevibacterium sediminis, Citricoccus alkalitolerans, Corynebacterium glyciniphilum, Frigoribacterium endophyticum, Gordonia neofelifaecis, Gordonia terrae, Gracilibacillus ureilyticus, Kushneria pakistanensis, Mammaliicoccus sciuri, Microbacterium hydrocarbonoxydans, Mycolicibacterium frederiksbergense, Oceanobacillus picturae, Pelagibacterium luteolum, Salinicola corii, and Streptomyces melanosporofaciens
P3PE Aeromicrobium halocynthiae, Corynebacterium afermentans subsp. lipophilum, Demequina activiva, Demequina aestuarii, Halomonas titanicae, Luteimonas huabeiensis, Lysobacter spongiicola, Microbacterium amylolyticum, Microbacterium pumilum, Nesterenkonia halobia, Nocardiopsis alba, Ornithinimicrobium pekingense, Priestia filamentosa, Promicromonospora xylanilytica, Pseudarthrobacter oxydans, Rhizobium marinum subsp. pelagicum, Staphylococcus cohnii, Staphylococcus saprophyticus subsp. bovis, Streptomyces albidoflavus, Streptomyces daqingensis, Streptomyces microflavus, Streptomyces pseudovenezuelae, and Streptomyces violascens
P1RR Halobacillus litoralis, Lipingzhangella halophila, Paracoccus marcusii, Planococcus plakortidis, and Streptomyces sodiiphilus
P2RR Georgenia yuyongxinii, Halomonas stenophila, Marinococcus salis, Prauserella aidingensis, Streptomyces anulatus, Streptomyces diacarni, Streptomyces indonesiensis, Streptomyces rimosus subsp. rimosus, and Zhihengliuella salsuginis
P3RR Anaerobacillus isosaccharinicus, Chelativorans xinjiangense, Halomonas olivaria, Microbacterium suaedae, Nocardiopsis chromatogenes, Planococcus salinarum, and Streptomyces monticola
P1RS Haloechinothrix halophila, Halomonas montanilacus, Halomonas sulfidaeris, Marinobacter lipolyticus, Nesterenkonia aurantiaca, Paenisporosarcina quisquiliarum, Planococcus antarcticus, Planomicrobium iranicum, Streptomyces albospinus, and Virgibacillus salarius
P2RS Arthrobacter ruber, Exiguobacterium mexicanum, Galbibacter mesophilus, Halomonas huangheensis, Isoptericola salitolerans, Myceligenerans xiligouense, Nocardioides marinus, Streptomyces aqsuensis, Streptomyces artemisiae, Streptomyces flocculus, and Streptomyces lopnurensis
P3RS Alcanivorax xenomutans, Halomonas elongata, Halomonas ventosae, Salininema proteolyticum, Streptomyces cellulosae, Streptomyces flavovirens, Streptomyces lusitanus, and Streptomyces panacagri
Table S1 Unique species of culturable bacteria in different sites
Strain Phosphorus Siderophore Hydrolytic enzyme Nitrogen fixation Salt-tolerant concentration
Protease Cellulase 5.00% 10.00% 15.00% 20.00%
EGI P1B004 + + + + + + +
EGI P1B007 + + + + +
EGI P1B018 + + + +
EGI P1B021 + +
EGI P1B030 + + + +
EGI P1B031 +
EGI P1B032 + +
EGI P1B037 + + + +
EGI P1B041 + + + + +
EGI P1B044 +++ +++ + + + +
EGI P1B047 + +
EGI P1B048 + + + + +
EGI P1B049 + + + + +
EGI P1B050 +
EGI P1B053 + + + +
EGI P1B057 ++ + ++ + + + +
EGI P1B059 + + +
EGI P1B060 + + +
EGI P1B065 + + + + +
EGI P1B067 + + + + +
EGI P1B068 + ++ + + +
EGI P1B072 + + + + +
EGI P1B073 + + + + +
EGI P1B074 + + +
EGI P1B076 +
EGI P1B078 + + + + + +
EGI P1B079 + + + +
EGI P1B081 ++ + + + + + + +
EGI P1B088 + + ++ +++ + +
EGI P1B089 + + ++ +++ + +
EGI P1B090 + +
EGI P1B091 + + ++ + + +
EGI P1B094 + + + + +
EGI P1B101 + + + +
EGI P1K001 + + + + + +
EGI P1K005 ++ + + + + + +
EGI P1K006 + + ++ + + + +
EGI P1K020 + + +
EGI P1K021 +++ + + +
EGI P1K024 + + + +
EGI P1K025 + + + + +
EGI P1K026 + + + + +
EGI P1K028 + + + +
EGI P1K029 + + +
EGI P1K030 + + + +
EGI P1K031 +
EGI P1K036 + + + + +
EGI P1K037 + + + + + +
EGI P1K039 + + +
EGI P1K041 + + + +
EGI P1K042 + + + + + +
EGI P1K043 + + + +
EGI P1K047 +++ + + + +
EGI P1K050 ++ + + + +
EGI P1K052 + + + + + + + +
EGI P1K056 + + +
EGI P1K057 + ++ ++ + + +
EGI P1K058 + + + + +
EGI P1K061 + + + + +
EGI P1K065 + + +
EGI P1K067 + + +
EGI P1S002 + + +++ + + + +
EGI P1S006 + + + +
EGI P1S007 + + + +
EGI P1S009 + + ++ + +
EGI P1S012 + + +
EGI P1S013 ++ ++ + + + + +
EGI P1S017 + + +++ + + +
EGI P1S018 + + + + + + +
EGI P1S019 + + + + + + + +
EGI P1S022 + + + + +
EGI P1S023 + + +
EGI P2B001 + + + ++ + + + +
EGI P2B006 + + + + + + +
EGI P2B012 + + + + +
EGI P2B013 + + + + + +
EGI P2B016 + + + +
EGI P2B027 + + +++ + + +
EGI P2B029 + + + + +
EGI P2B034 + +
EGI P2B035 + +
EGI P2B038 + + + + + + +
EGI P2B040 + +
EGI P2B042 + + + +
EGI P2B045 + + + +
EGI P2B046 + + + + + +
EGI P2B047 + + +++ +++ + + +
EGI P2B049 + + ++ + + +
EGI P2B050 + + + + +
EGI P2B054 ++ + + +++ + + +
EGI P2B055 ++ + + + +
EGI P2B056 + + + ++ + + +
EGI P2B057 + + + +
EGI P2B058 + + + +
EGI P2B059 + + +
EGI P2B075 + + + + +
EGI P2B077 + +
EGI P2B079 + + + + + +
EGI P2K001 + + + + + + + +
EGI P2K007 + + ++ +++ + +
EGI P2K008 + + +
EGI P2K009 + + + + +
EGI P2K011 + + + +
EGI P2K012 + +++ + + +
EGI P2K017 + + + +
EGI P2K019 + + + +
EGI P2K020 + + + + +
EGI P2K022 + + +
EGI P2K028 + + +++ + + + +
EGI P2K030 + +++ + +
EGI P2K031 + + + + +
EGI P2K032 ++ + + + + +
EGI P2K034 + + + +
EGI P2K035 + + +++ + + +
EGI P2K039 + +
EGI P2K040 + + + + +
EGI P2K041 + + + +
EGI P2K043 + + + + +
EGI P2K047 + + ++ ++ + + +
EGI P2K050 + + +
EGI P2K052 + + + + +
EGI P2K053 + + + +
EGI P2K054 + + + +
EGI P2K055 + + + +
EGI P2K059 + + +++ + +
EGI P2K060 + + + + +
EGI P2K061 + + + +
EGI P2K064 + + + + +
EGI P2K068 + + + + +
EGI P2K071 + +
EGI P2K074 + + + + +
EGI P2K075 + + +
EGI P2K076 + + +++ + + +
EGI P2S006 + + + +
EGI P2S007 + + + +
EGI P2S008 + + + +++ + + + +
EGI P2S009 + + ++ + + + +
EGI P2S010 + + +
EGI P2S013 + + +
EGI P2S019 + + + +
EGI P2S020 + + +
EGI P2S022 + +++ +
EGI P2S024 + + +++ + + + + +
EGI P2S027 + + + ++ + + +
EGI P2S034 + + +++ + + + +
EGI P2S036 ++ + +
EGI P2S040 ++ + + + +
EGI P2S043 + + + + + +
EGI P2S045 + + + + +
EGI P2S051 + + + +
EGI P2S052 + + + + +
EGI P3B002 + + + +
EGI P3B004 + + + + + + + +
EGI P3B010 + +++ + + + +
EGI P3B011 + + + +
EGI P3B014 +++ + + +
EGI P3B023 +++ + +
EGI P3B024 + + +
EGI P3B025 + + + ++ + + + +
EGI P3B026 + + ++ +++ + +
EGI P3B033 + + ++ + + +
EGI P3B035 + + + + + +
EGI P3B037 + + + +
EGI P3B039 + + + +
EGI P3B040 + + + + + +
EGI P3B044 + + + +
EGI P3B047 + + + + + +
EGI P3B048 + + ++ + + + +
EGI P3B055 + + + + +
EGI P3B056 + + + +
EGI P3B057 + +
EGI P3B058 + + + + +
EGI P3K001 + ++ + + + + + +
EGI P3K005 +++ +
EGI P3K007 + + + + +
EGI P3K008 + + + +
EGI P3K009 +++ + + +
EGI P3K010 + +++ + +
EGI P3K011 + + + +
EGI P3K014 + + +
EGI P3K015 + +
EGI P3K016 + + + +
EGI P3K021 + + + + +
EGI P3K023 + ++ + + + + +
EGI P3K026 + + + + + +
EGI P3K027 + + + +
EGI P3K030 + + + + + + +
EGI P3K034 + + + +
EGI P3K035 + + + + +
EGI P3K036 + ++ + + +
EGI P3K041 + + +++ +
EGI P3K045 + + + + +
EGI P3K046 + + + + + +
EGI P3K047 + + + +
EGI P3K051 + + +
EGI P3K056 + + + + + + +
EGI P3K057 + + + +
EGI P3K058 + + + +
EGI P3K059 + + + +
EGI P3S001 + + + + + + + +
EGI P3S003 + + + + + +
EGI P3S005 + +
EGI P3S009 + + + +
EGI P3S010 + + + +
EGI P3S014 + + + +
EGI P3S015 + + + + + + + +
EGI P3S024 + + +
EGI P3S026 + + + +
EGI P3S031 + + + +
EGI P3S037 + + + + +
EGI P3S039 + +
EGI P3S042 + + +
EGI P3S046 + + + +
Table S2 Potential plant-beneficial traits of bacteria associated with the three halophytes
[1]   Abdelfadil M R, Patz S, Kolb S, et al. 2024. Unveiling the influence of salinity on bacterial microbiome assembly of halophytes and crops. Environmental Microbiome, 19(1): 49, doi: 10.1186/s40793-024-00592-3.
pmid: 39026296
[2]   Abdelshafy Mohamad O A, Li L, Ma J B, et al. 2018. Halophilic actinobacteria biological activity and potential applications. In: Egamberdieva D, Birkeland N K, Panosyan H, et al. Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Microorganisms for Sustainability. Springer: Singapore, 8: 333-364.
[3]   Abdelshafy Mohamad O A, Ma J B, Liu Y H, et al. 2020. Beneficial endophytic bacterial populations associated with medicinal plant Thymus vulgaris alleviate salt stress and confer resistance to Fusarium oxysporum. Frontiers in Plant Science, 11: 47, doi: 10.3389/FPLS.2020.00047.
pmid: 32117385
[4]   Alexander D B, Zuberer D A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12: 39-45.
[5]   Al-Rashdi A, Al-Hinai F S, Al-Harrasi M M A, et al. 2022. The potential of endophytic bacteria from Prosopis cineraria for the control of Pythium aphanidermatum-induced damping-off in cucumber under saline water irrigation. Journal of Plant Pathology, 105: 39-56.
[6]   Benidire L, Madline A, Pereira S I A, et al. 2021. Synergistic effect of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the establishment of vegetation cover and amelioration of mine tailings. Chemosphere, 262: 127803, doi: 10.1016/j.chemosphere.2020.127803.
[7]   Bibi F, Strobel G A, Yasir M, et al. 2018. Halophytes-associated endophytic and rhizospheric bacteria: Diversity, antagonism and metabolite production. Biocontrol Science and Technology, 28(2): 192-213.
[8]   Bredow C, Azevedo J L D, Pamphile J A, et al. 2015. In silico analysis of the 16S rRNA gene of endophytic bacteria, isolated from the aerial parts and seeds of important agricultural crops. Genetics and Molecular Research, 14(3): 9703-9721.
doi: 10.4238/2015.August.19.3 pmid: 26345903
[9]   Camacho-Sanchez M, Camacho M, Redondo-Gomez S, et al. 2022. Bacterial assemblage in Mediterranean salt marshes: Disentangling the relative importance of seasonality, zonation and halophytes. Science of the Total Environment, 846: 157514, doi: 10.1016/j.scitotenv.2022.157514.
[10]   Chaudhary D R, Rathore A P, Sharma S. 2020. Effect of halotolerant plant growth promoting rhizobacteria inoculation on soil microbial community structure and nutrients. Applied Soil Ecology, 150: 103461, doi: 10.1016/j.apsoil.2019.103461.
[11]   Chen J Q, Zhao G Y, Wei Y H, et al. 2021. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Scientific Reports, 11: 9081, doi: 10.1038/s41598-021-88635-4.
pmid: 33907268
[12]   Christakis C A, Daskalogiannis G, Chatzaki A, et al. 2021. Endophytic bacterial isolates from halophytes demonstrate phytopathogen biocontrol and plant growth promotion under high salinity. Frontiers in Plant Science, 12: 681567, doi: 10.3389/fmicb.2021.681567.
[13]   Compant S, Clébment C, Sessitsch A. 2010. Plant growth-promoting bacteria in the rhizo- and endo-sphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5): 669-678.
[14]   Dif G, Belaouni H A, Yekkour A, et al. 2021. Performance of halotolerant bacteria associated with Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L. ameliorate tomato plant growth and tolerance to saline stress: From selective isolation to genomic analysis of potential determinants. World Journal of Microbiology and Biotechnology, 38: 16, doi: 10.1007/s11274-021-03203-2.
[15]   Ebadi A, Khoshkholgh Sima N A, Olamaee M, et al. 2018. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria. Journal of Environmental Management, 219: 260-268.
doi: S0301-4797(18)30507-3 pmid: 29751257
[16]   Etesami H, Beattie G A. 2018. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in Microbiology, 9: 148, doi: 10.3389/fmicb.2018.00148.
pmid: 29472908
[17]   Flowers T J, Colmer T D. 2008. Salinity tolerance in halophytes. New Phytologist, 179(4): 945-963.
doi: 10.1111/j.1469-8137.2008.02531.x pmid: 18565144
[18]   Gao L, Ma J B, Liu Y H, et al. 2021. Diversity and biocontrol potential of cultivable endophytic bacteria associated with halophytes from the west Aral Sea Basin. Microorganisms, 9(7): 1448, doi: 10.3390/microorganisms9071448.
[19]   Gao L, Huang Y, Liu Y H, et al. 2022. Bacterial community structure and potential microbial coexistence mechanism associated with three halophytes adapting to the extremely hypersaline environment. Microorganisms, 10(6): 1124, doi: 10.3390/microorganisms10061124.
[20]   Gontia-Mishra I, Sapre S, Tiwari S. 2017. Diversity of halophilic bacteria and actinobacteria from India and their biotechnological applications. Indian Journal of Geo-Marine Sciences, 46(8): 1575-1587.
[21]   Hadj Brahim A, Ben Ali M, Daoud L, et al. 2022. Biopriming of durum wheat seeds with endophytic diazotrophic bacteria enhances tolerance to fusarium head blight and salinity. Microorganisms, 10(5): 970, doi: 10.3390/microorganisms10050970.
[22]   Hrynkiewicz K, Patz S, Ruppel S. 2019. Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs. Journal of Advanced Research, 19: 49-56.
doi: 10.1016/j.jare.2019.05.002 pmid: 31341669
[23]   Hwang H H, Chien P R, Huang F C, et al. 2022. A plant endophytic bacterium Priestia megaterium strain BP-R2 isolated from the halophyte Bolboschoenus planiculmis enhances plant growth under salt and drought stresses. Microorganisms, 10(10): 2047, doi: 10.3390/microorganisms10102047.
[24]   Iguchi H, Yurimoto H, Sakai Y. 2015. Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms, 3(2): 137-151.
doi: 10.3390/microorganisms3020137 pmid: 27682083
[25]   Kearl J, Mcnary C, Lowman J S, et al. 2019. Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Frontiers in Microbiology, 10: 1849, doi: 10.3389/fmicb.2019.01849.
pmid: 31474952
[26]   Khoshkholgh Sima N A, Ebadi A, Reiahisamani N, et al. 2019. Bio-based remediation of petroleum-contaminated saline soils: Challenges, the current state-of-the-art and future prospects. Journal of Environmental Management, 250: 109476, doi: 10.1016/j.jenvman.2019.109476.
[27]   Kim M, Oh H S, Park S C, et al. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 64: 346-351.
doi: 10.1099/ijs.0.059774-0 pmid: 24505072
[28]   Li L, Mohamad O A A, Ma J B, et al. 2018. Synergistic plant-microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie van Leeuwenhoek, 111: 1735-1748.
[29]   Liu Y H, Guo J W, Li L, et al. 2017. Endophytic bacteria associated with endangered plant Ferula sinkiangensis K. M. Shen in an arid land: Diversity and plant growth-promoting traits. Journal of Arid Land, 9: 432-445.
[30]   Mast Y, Stegmann E. 2019. Actinomycetes: The antibiotics producers. Antibiotics, 8(3): 105, doi: 10.3390/antibiotics8030105.
[31]   Musa Z, Ma J B, Egamberdieva D, et al. 2020. Diversity and antimicrobial potential of cultivable endophytic actinobacteria associated with the medicinal plant Thymus roseus. Frontiers in Microbiology, 11: 191, doi: 10.3389/fmicb.2020.00191.
[32]   Paul D, Sinha S N. 2017. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Annals of Agrarian Science, 15(1): 130-136.
[33]   Poroshina M N, Doronina N V, Kaparullina E N, et al. 2015. Advenella kashmirensis subsp. methylica PK1, a facultative methylotroph from Carex rhizosphere. Microbiology, 84: 73-79.
[34]   Qiu L P, Kong W B, Zhu H S, et al. 2022. Halophytes increase rhizosphere microbial diversity, network complexity and function in inland saline ecosystem. Science of the Total Environment, 831: 154944, doi: 10.1016/j.scitotenv.2022.154944.
[35]   Razzaghi Komaresofla B, Alikhani H A, Etesami H, et al. 2019. Improved growth and salinity tolerance of the halophyte Salicornia sp. by co-inoculation with endophytic and rhizosphere bacteria. Applied Soil Ecology, 138: 160-170.
doi: 10.1016/j.apsoil.2019.02.022
[36]   Sen M, Sen S P. 1965. Interspecific transformation in azotobacter. Journal of General Microbiology, 41(1): 1-6.
pmid: 5883695
[37]   Singh A. 2022. Soil salinity: A global threat to sustainable development. Soil Use and Management, 38: 39-67.
[38]   Teather R M, Wood P J. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43(4): 777-780.
doi: 10.1128/aem.43.4.777-780.1982 pmid: 7081984
[39]   Thompson T P, Gilmore B F. 2024. Exploring halophilic environments as a source of new antibiotics. Critical Reviews in Microbiology, 50(3): 341-370.
[40]   Tiru M, Muleta D, Berecha G, et al. 2013. Antagonistic effects of rhizobacteria against coffee wilt disease caused by Gibberella xylarioides. Asian Journal of Plant Pathology, 7(3): 109-122.
[41]   Tkacz A, Cheema J, Chandra G, et al. 2015. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. The ISME Journal, 9: 2349-2359.
[42]   van der Meij A, Worsley S F, Hutchings M I, et al. 2017. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews, 41(3): 392-416.
doi: 10.1093/femsre/fux005 pmid: 28521336
[43]   Walsh P S, Metzger D A, Higuchi R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10(4): 506-513.
pmid: 1867860
[44]   Wang Z H, Zhang H H, Liu L, et al. 2022. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiol, 22: 296, doi: 10.1186/s12866-022-02715-7.
pmid: 36494624
[45]   Xiong Y W, Li X W, Wang T T, et al. 2020. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicology and Environmental Safety, 194: 110374, doi: 10.1016/j.ecoenv.2020.110374.
[46]   Yuan Z L, Druzhinina I S, Labbe J, et al. 2016. Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Scientific Reports, 6: 32467, doi: 10.1038/srep32467.
pmid: 27572178
[47]   Zhang G L, Bai J H, Zhai Y J, et al. 2024. Microbial diversity and functions in saline soils: A review from a biogeochemical perspective. Journal of Advanced Research, 59: 129-140.
[48]   Zhang T T, Hu F, Ma L. 2019. Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth. Open Life Sciences, 14(1): 246-254.
[49]   Zhang Y C, Yao T. 2020. Study on the abilities of phosphorus solubilizing and indoleacetic acid secretion of phosphorus solubilizing bacteria. Grassland and Turf, 40(2): 17-22.
[50]   Zhao Y T, Wang G D, Zhao M L, et al. 2022. Direct and indirect effects of soil salinization on soil seed banks in salinizing wetlands in the Songnen Plain, China. Science of the Total Environment, 819: 152035, doi: 10.1016/j.scitotenv.2021.152035.
[1] LI Shuangxiong, CHAI Jiali, YAO Tuo, LI Changning, LEI Yang. Degradation of alpine meadows exacerbated plant community succession and soil nutrient loss on the Qinghai-Xizang Plateau, China[J]. Journal of Arid Land, 2025, 17(3): 368-380.
[2] Mohammed SOUDDI, Haroun CHENCHOUNI, M'hammed BOUALLALA. Thriving green havens in baking deserts: Plant diversity and species composition of urban plantations in the Sahara Desert[J]. Journal of Arid Land, 2024, 16(9): 1270-1287.
[3] Asmaa S ABO HATAB, Yassin M AL-SODANY, Kamal H SHALTOUT, Soliman A HAROUN, Mohamed M EL-KHALAFY. Assessment of plant diversity of endemic species of the Saharo-Arabian region in Egypt[J]. Journal of Arid Land, 2024, 16(7): 1000-1021.
[4] DU Lan, TIAN Shengchuan, ZHAO Nan, ZHANG Bin, MU Xiaohan, TANG Lisong, ZHENG Xinjun, LI Yan. Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China[J]. Journal of Arid Land, 2024, 16(7): 925-942.
[5] ZHANG Jun, ZHANG Yuanming, ZHANG Qi. Host plant traits play a crucial role in shaping the composition of epiphytic microbiota in the arid desert, Northwest China[J]. Journal of Arid Land, 2024, 16(5): 699-724.
[6] ZHANG Jian, GUO Xiaoqun, SHAN Yujie, LU Xin, CAO Jianjun. Effects of land-use patterns on soil microbial diversity and composition in the Loess Plateau, China[J]. Journal of Arid Land, 2024, 16(3): 415-430.
[7] YE He, HONG Mei, XU Xuehui, LIANG Zhiwei, JIANG Na, TU Nare, WU Zhendan. Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 447-459.
[8] YANG Ao, TU Wenqin, YIN Benfeng, ZHANG Shujun, ZHANG Xinyu, ZHANG Qing, HUANG Yunjie, HAN Zhili, YANG Ziyue, ZHOU Xiaobing, ZHUANG Weiwei, ZHANG Yuanming. Predicting changes in the suitable habitats of six halophytic plant species in the arid areas of Northwest China[J]. Journal of Arid Land, 2024, 16(10): 1380-1408.
[9] SUN Lin, YU Zhouchang, TIAN Xingfang, ZHANG Ying, SHI Jiayi, FU Rong, LIANG Yujie, ZHANG Wei. Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau, China[J]. Journal of Arid Land, 2023, 15(9): 1107-1128.
[10] M'hammed BOUALLALA, Souad NEFFAR, Lyès BRADAI, Haroun CHENCHOUNI. Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?[J]. Journal of Arid Land, 2023, 15(6): 667-694.
[11] ZHANG Lihua, GAO Han, WANG Junfeng, ZHAO Ruifeng, WANG Mengmeng, HAO Lianyi, GUO Yafei, JIANG Xiaoyu, ZHONG Lingfei. Plant property regulates soil bacterial community structure under altered precipitation regimes in a semi-arid desert grassland, China[J]. Journal of Arid Land, 2023, 15(5): 602-619.
[12] KUDURETI Ayijiamali, ZHAO Shuai, Dina ZHAKYP, TIAN Changyan. Responses of soil fauna community under changing environmental conditions[J]. Journal of Arid Land, 2023, 15(5): 620-636.
[13] TONG Shan, CAO Guangchao, ZHANG Zhuo, ZHANG Jinhu, YAN Xin. Soil microbial community diversity and distribution characteristics under three vegetation types in the Qilian Mountains, China[J]. Journal of Arid Land, 2023, 15(3): 359-376.
[14] ZHAO Mengqi, SU Huan, HUANG Yin, Rashidin ABDUGHENI, MA Jinbiao, GAO Jiangtao, GUO Fei, LI Li. Plant growth-promoting properties and anti-fungal activity of endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta in arid lands[J]. Journal of Arid Land, 2023, 15(11): 1405-1420.
[15] GOU Qianqian, MA Gailing, QU Jianjun, WANG Guohua. Diversity of soil bacteria and fungi communities in artificial forests of the sandy-hilly region of Northwest China[J]. Journal of Arid Land, 2023, 15(1): 109-126.