Please wait a minute...
Journal of Arid Land  2025, Vol. 17 Issue (5): 624-643    DOI: 10.1007/s40333-025-0014-x    
Research article     
Variations of soil moisture and its influencing factors in arid and semi-arid areas, China
NIU Jiqiang1,2,*(), LIU Zijian1, CHEN Feiyan1,2, LIU Gangjun3, ZHOU Junli4, ZHOU Peng5,6, LI Hongrui1, LI Mengyang1
1School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
2Henan Key Technology Engineering Research Center of Microwave Remote Sensing and Resource Environment Monitoring, Xinyang Normal University, Xinyang 464000, China
3School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne 3001, Australia
4Henan Remote Sensing Institute, Zhengzhou 450000, China
5Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Beijing Normal University, Beijing 100875, China
6Institute of Disaster Risk Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Download: HTML     PDF(4035KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Soil moisture (SM) is a critical variable in terrestrial ecosystems, especially in arid and semi-arid areas where water sources are limited. Despite its importance, understanding the spatiotemporal variations and influencing factors of SM in these areas remains insufficient. This study investigated the spatiotemporal variations and influencing factors of SM in arid and semi-arid areas of China by utilizing the extended triple collation (ETC), Mann-Kendall test, Theil-Sen estimator, ridge regression analysis, and other relevant methods. The following findings were obtained: (1) at the pixel scale, the long-term monthly SM data from the European Space Agency Climate Change Initiative (ESA CCI) exhibited the highest correlation coefficient of 0.794 and the lowest root mean square error (RMSE) of 0.014 m3/m3; (2) from 2000 to 2022, the study area experienced significant increase in annual average SM, with a rate of 0.408×10-3 m3/(m3•a). Moreover, higher altitudes showed a notable upward trend, with SM increasing rates at 0.210×10-3 m³/(m3•a) between 1000 and 2000 m, 0.530×10-3 m3/(m3•a) between 2000 and 4000 m, and 0.760×10-3 m3/(m3•a) at altitudes above 4000 m; (3) land surface temperature (LST), root zone soil moisture (RSM) (10-40 cm depth), and normalized difference vegetation index (NDVI) were identified as the primary factors influencing annual average SM, which accounted for 34.37%, 24.16%, and 22.64% relative contributions, respectively; and (4) absolute contribution of LST was more significant in subareas at higher altitudes, with average absolute contributions of 0.800×10-3 m3/(m3•a) between 2000 and 4000 m and 0.500×10-2 m3/(m3•a) above 4000 m. This study reveals the spatiotemporal variations and main influencing factors of SM in Chinese arid and semi-arid areas, highlighting the more pronounced absolute contribution of LST to SM in high-altitude areas, providing valuable insights for ecological research and water resource management in these areas.



Key wordssoil moisture      arid and semi-arid areas      remote sensing      extended triple collation      ridge regression analysis     
Received: 13 September 2024      Published: 31 May 2025
Corresponding Authors: *NIU Jiqiang (E-mail: niujiqiang@xynu.edu.cn)
Cite this article:

NIU Jiqiang, LIU Zijian, CHEN Feiyan, LIU Gangjun, ZHOU Junli, ZHOU Peng, LI Hongrui, LI Mengyang. Variations of soil moisture and its influencing factors in arid and semi-arid areas, China. Journal of Arid Land, 2025, 17(5): 624-643.

URL:

http://jal.xjegi.com/10.1007/s40333-025-0014-x     OR     http://jal.xjegi.com/Y2025/V17/I5/624

Fig. 1 Geographic location and digital elevation data of the study area. Note that the figure is based on the standard map (No. GS(2019)1822) of the Map Service System (https://bzdt.ch.mnr.gov.cn/), and the boundary has not been modified.
Data Data type Temporal coverage
(yyyy-mm-dd)
Spatial resolution Temporal resolution
ESA CCI SM Remote sensing 1978-01-01-Present 0.25° daily
ERA5-Land SM Reanalysis 1950-01-01-Present 0.25° daily/monthly
GLDAS SM Land model 2000-01-01-Present 0.25° daily/monthly
Precipitation Remote sensing 2000-06-01-2024-06-01 0.10° monthly
LST and RSM Land model 2000-01-01-2024-03-31 0.25° monthly
Evapotranspiration Land model 1980-01-01-2022-12-31 0.10° monthly
NDVI Remote sensing 2000-02-18-2024-06-09 1 km 16 d
Table 1 Basic data information used in this study
Fig. 2 Coefficient of determination (R2) and root mean square error (RMSE) of SM data products with unknown true SM. (a and b), ESA CCI; (c and d), GLDAS; (e and f), ERA5-Land; (g and h), the box plot represents R2 and RMSE of the three datasets against the true SM. Box boundaries indicate the 25th and 75th percentiles, and whiskers below and above the box indicate the 10th and 90th percentiles, respectively. The lines across the boxes indicate the median values, and the points represent the mean values. Blank areas indicate no data or unsatisfied extended triple collation (ETC) condition.
Fig. 3 Linear trend of mean SM in arid and semi-arid areas, China from 2000 to 2022
Fig. 4 Trend characteristics of SM in arid and semi-arid areas, China from 2000 to 2022. (a and b), spatial distributions of Theil-Sen slope and its re-classification; (c and d), spatial distribution and its statistics of the Mann-Kendall test. Z value is the standardized value of test statistic, and an absolute value greater than 1.96 indicates a significant trend.
Fig. 5 Average SM trends in different altitude areas from 2000 to 2022. (a), higher altitude area; (b), high altitude area; (c), low altitude area; (d), lower altitude area; (e), statistical results of the Mann-Kendall test.
Fig. 6 Spatial patterns (a-e) and trends (f-j) of precipitation (Pre), land surface temperature (LST), evaporation (E), NDVI, and root zone soil moisture (RSM) in arid and semi-arid areas, China from 2000 to 2022
Fig. 7 Relative contributions of Pre (a), LST (b), E (c), NDVI (d), and RSM (e) to annual SM in arid and semi-arid areas, China from 2000 to 2022, and probability density function (PDF) of relative contribution of the five factors (f)
Fig. 8 Spatial distribution (a) and area percentage (b) of dominant factors with the largest relative contribution to annual SM variations across different altitude areas from 2000 to 2022. ASA, arid and semi-arid areas of China.
Fig. 9 Spatial distribution and statistics of absolute contribution of five factors to SM in arid and semi-arid areas, China from 2000 to 2022. (a and b), Pre; (c and d), LST; (e and f), E; (g and h), NDVI; (i and j), RSM.
[1]   Albergel C, Rosnay P, Gruhier C, et al. 2012. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sensing of Environment, 118: 215-226.
[2]   Allen R G, Pereira L S, Raes D, et al. 1998. Crop evapotranspiration-guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations, Rome, 56.
[3]   Cai J Z, Zhang Y Z, Li Y, et al. 2017. Analyzing the characteristics of soil moisture using GLDAS Data: A case study in eastern China. Applied Sciences, 7(6): 566, doi: 10.3390/app7060566.
[4]   Chen F, Crow W T, Bindlish R, et al. 2018. Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation. Remote Sensing of Environment, 214: 1-13.
doi: 10.1016/j.rse.2018.05.008 pmid: 32601510
[5]   Cheng S J, Huang J P. 2016. Enhanced soil moisture drying in transitional regions under a warming climate. Journal of Geophysical Research: Atmospheres, 121(6): 2542-2555.
[6]   Cheng Y, Zhang L J, Zhang Z Q, et al. 2022. Spatiotemporal variation and influence factors of vegetation cover in the Yellow River basin (1982-2021) based on GIMMS NDVI and MOD13A1. Water, 14(20): 3274, doi: 10.3390/w14203274.
[7]   Deng Y H, Wang S J, Bai X Y, et al. 2020a. Variation trend of global soil moisture and its cause analysis. Ecological Indicators, 110(10): 105939, doi: 10.1016/j.ecolind.2019.105939.
[8]   Deng Y H, Wang S J, Bai X Y, et al. 2020b. Vegetation greening intensified soil drying in some semi-arid and arid areas of the world. Agricultural and Forest Meteorology, 292-293: 108103, doi: 10.1016/j.agrformet.2020.108103.
[9]   Dorigo W, Jeu R, Chung D, et al. 2012. Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture. Geophysical Research Letters, 39(18): 52988, doi: 10.1029/2012gl052988.
[10]   Dorigo W, Wagner W, Albergel C, et al. 2017. ESA CCI soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203: 185-215.
[11]   Dorigo W A, Gruber A, De Jeu R A M, et al. 2015. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sensing of Environment, 162: 380-395.
[12]   Entekhabi D, Njoku E G, O'Neill P E, et al. 2010. The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5): 704-716.
[13]   Fang X W, Luo S Q, Lyu S H, et al. 2021. Numerical modeling of the responses of soil temperature and soil moisture to climate change over the Tibetan Plateau, 1961-2010. International Journal of Climatology, 41(8): 4134-4150.
[14]   Feng X M, Fu B J, Piao S L, et al. 2016. Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6(11): 1019-1022.
[15]   Gaona J, Quintana-Seguí P, Escorihuela M J, et al. 2022. Interactions between precipitation, evapotranspiration and soil-moisture-based indices to characterize drought with high-resolution remote sensing and land-surface model data. Natural Hazards and Earth System Sciences, 22(10): 3461-3485.
[16]   Gruber A, Scanlon T, van der Schalie R, et al. 2019. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth System Science Data, 11(2): 717-739.
[17]   Guo W W, Huang S Z, Huang Q, et al. 2023. Precipitation and vegetation transpiration variations dominate the dynamics of agricultural drought characteristics in China. Science of the Total Environment, 898: 165480, doi: 10.1016/j.scitotenv.2023.165480.
[18]   Han S, Liu B C, Shi C X, et al. 2020. Evaluation of CLDAS and GLDAS datasets for near-surface air temperature over major land areas of China. Sustainability, 12(10): 4311, doi: 10.3390/su12104311.
[19]   Han X, Li X, Hendricks Franssen H J, et al. 2012. Spatial horizontal correlation characteristics in the land data assimilation of soil moisture. Hydrology and Earth System Sciences, 16(5): 1349-1363.
[20]   Hu F M, Wei Z S, Zhang W, et al. 2020. A spatial downscaling method for SMAP soil moisture through visible and shortwave- infrared remote sensing data. Journal of Hydrology, 590(12): 125360, doi: 10.1016/j.jhydrol.2020.125360.
[21]   Huang X R, Bao A M, Guo H, et al. 2022. Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China. Journal of Arid Land, 14(5): 502-520.
doi: 10.1007/s40333-022-0056-2
[22]   Jung C, Lee Y, Cho Y, et al. 2017. A study of spatial soil moisture estimation using a multiple linear regression model and MODIS land surface temperature data corrected by conditional merging. Remote Sensing, 9(8): 870, doi: 10.3390/rs9080870.
[23]   Kang J, Jin R, Li X, et al. 2018. Spatial upscaling of sparse soil moisture observations based on ridge regression. Remote Sensing, 10(2): 192, doi: 10.3390/rs10020192.
[24]   Klaus S, Wouter D, Richard D. 2010. Triple collocation-a new tool to determine the error structure of global soil moisture products. In: 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 4426-4429.
[25]   Lal P, Singh G, Das N N, et al. 2022. Assessment of ERA5-land volumetric soil water layer product using in situ and SMAP soil moisture observations. Geoscience and Remote Sensing Letters, 19: 2508305, doi: 10.1109/LGRS.2022.3223985.
[26]   Lal P, Shekhar A, Gharun M, et al. 2023. Spatiotemporal evolution of global long-term patterns of soil moisture. Science of the Total Environment, 867(16): 161470, doi: 10.1016/j.scitotenv.2023.161470.
[27]   Li W W, Yan D H, Weng B S, et al. 2024. Nonlinear effects of surface soil moisture changes on vegetation greenness over the Tibetan Plateau. Remote Sensing of Environment, 302(11): 113971, doi: 10.1016/j.rse.2023.113971.
[28]   Li X Y, Liu L C, Duan Z H, et al. 2013. Spatio-temporal variability in remotely sensed surface soil moisture and its relationship with precipitation and evapotranspiration during the growing season in the Loess Plateau, China. Environmental Earth Sciences, 71(4): 1809-1820.
[29]   Li Y, Piao S L, Li L Z X, et al. 2018. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Science Advances, 4(5): 4182, doi: 10.1126/sciadv.aar4182.
pmid: 29750196
[30]   Lin X, Huang S Z, Li J F, et al. 2023. Feedback dynamics between precipitation, temperature, and soil moisture in China and their possible driving mechanisms under a changing environment. Atmospheric Research, 294(10): 106983, doi: 10.1016/j.atmosres.2023.106983.
[31]   Liu J Y, Zhang J W, Kong D D, et al. 2021. Contributions of anthropogenic forcing to evapotranspiration changes over 1980-2020 using GLEAM and CMIP6 simulations. Journal of Geophysical Research: Atmospheres, 126(22): 35367, doi: 10.1029/2021jd035367.
[32]   Luo X R, Li S D, Yang W N, et al. 2023. Spatio-temporal changes in global root zone soil moisture from 1981 to 2017. Journal of Hydrology, 626(13): 130297, doi: 10.1016/j.jhydrol.2023.130297.
[33]   Ma H J, Zeng J Y, Chen N C, et al. 2019. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 231(11): 111215, doi: 10.1016/j.rse.2019.111215.
[34]   Mann H B. 1945. Nonparametric tests against trend. Econometrica, 13(3): 245-259.
[35]   Mao T N, Wei S G, Li Q L, et al. 2022. A spatial downscaling method for remote sensing soil moisture based on random forest considering soil moisture memory and mass conservation. Remote Sensing, 14(16): 3858, doi: 10.3390/rs14163858.
[36]   McColl K A, Vogelzang J, Konings A G, et al. 2014. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophysical Research Letters, 41(17): 6229-6236.
[37]   McColl K A, Alemohammad S H, Akbar R, et al. 2017. The global distribution and dynamics of surface soil moisture. Nature Geoscience, 10(2): 100-104.
doi: 10.1038/NGEO2868
[38]   Meng X Y, Wang H, Chen J, et al. 2019. High-resolution simulation and validation of soil moisture in the arid region of Northwest China. Scientific Reports, 9(17): 17227, doi: 10.1038/s41598-019-52923-x.
[39]   Miao Y B, Niu J Z, Wang D, et al. 2024. Greening of China and possible vegetation effects on soil moisture. Ecological Indicators, 158(11): 111382, doi: 10.1016/j.ecolind.2023.111382.
[40]   Miralles D G, Holmes T R H, De Jeu R A M, et al. 2011. Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15(2): 453-469.
[41]   Muñoz-Sabater J, Isaksen L, Balsamo G, et al. 2012. Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. Journal of Hydrometeorology, 13(5): 1442-1460.
[42]   Muñoz-Sabater J, Dutra E, Agustí-Panareda A, et al. 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9): 4349-4383.
[43]   Njoku E G, Jackson T J, Lakshmi V, et al. 2003. Soil moisture retrieval from AMSR-E. Transactions on Geoscience and Remote Sensing, 41(2): 215-229.
[44]   Ojha N, Mahmoodi A, Mialon A, et al. 2024. Assessment of SMOS root zone soil moisture: A comparative study using SMAP, ERA5, and GLDAS. IEEE Access, 12: 76121-76132.
[45]   Owe M, de Jeu R Holmes T. 2008. Multisensor historical climatology of satellite-derived global land surface moisture. Journal of Geophysical Research: Earth Surface, 113(F1): F01002, doi: 10.1029/2007jf000769.
[46]   Peng J, Loew A. 2017. Recent advances in soil moisture estimation from remote sensing. Water, 9(7): 530, doi: 10.3390/w9070530.
[47]   Piao S L, Wang X H, Park T, et al. 2019. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 1(1): 14-27.
[48]   Rahmani A, Golian S, Brocca L. 2016. Multiyear monitoring of soil moisture over Iran through satellite and reanalysis soil moisture products. International Journal of Applied Earth Observation and Geoinformation, 48: 85-95.
[49]   Rodell M, Houser P R, Jambor U, et al. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381-394.
[50]   Sen P K. 1968. Estimates of the regression coefficient based on Kendall's Tau. Journal of the American Statistical Association, 63(324): 1379-1389.
[51]   Seneviratne S I, Corti T, Davin E L, et al. 2010. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3-4): 125-161.
[52]   Stoffelen A. 1998. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. Journal of Geophysical Research: Oceans, 103(C4): 7755-7766.
[53]   Su C H, Ryu D, Crow W T, et al. 2014. Beyond triple collocation: Applications to soil moisture monitoring. Journal of Geophysical Research: Atmospheres, 119(11): 6419-6439.
[54]   Tang G Q, Clark M P, Papalexiou S M, et al. 2020. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sensing of Environment, 240(11): 111697, doi: 10.1016/j.rse.2020.111697.
[55]   Tian J X, Zhang Z X, Zhao T B, et al. 2022. Warmer and wetter climate induced by the continual increase in atmospheric temperature and precipitable water vapor over the arid and semi-arid regions of Northwest China. Journal of Hydrology: Regional Studies, 42(10): 101151, doi: 10.1016/j.ejrh.2022.101151.
[56]   Villegas J C, Breshears D D, Zou C B, et al. 2010. Ecohydrological controls of soil evaporation in deciduous drylands: How the hierarchical effects of litter, patch and vegetation mosaic cover interact with phenology and season. Journal of Arid Environments, 74(5): 595-602.
[57]   Wagner W, Dorigo W, de Jeu R, et al. 2012. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1(7): 315-3212.
[58]   Wang S, Fu B J, Gao G Y, et al. 2013. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. CATENA, 101: 122-128.
[59]   Wang X H, Wang B T, Xu X Y, et al. 2018a. Spatial and temporal variations in surface soil moisture and vegetation cover in the Loess Plateau from 2000 to 2015. Ecological Indicators, 95: 320-330.
[60]   Wang Y Q, Shao M A, Zhu Y J, et al. 2018b. A new index to quantify dried soil layers in water-limited ecosystems: A case study on the Chinese Loess Plateau. Geoderma, 322: 1-11.
[61]   Wu W R, Geller M A, Dickinson R E. 2002. The response of soil moisture to long-term variability of precipitation. Journal of Hydrometeorology, 3(5): 604-613.
[62]   Wu X J, Shen Y P, Zhang W, et al. 2020. Fast warming has accelerated snow cover loss during spring and summer across the Northern Hemisphere over the past 52 years (1967-2018). Atmosphere, 11(7): 728, doi: 10.3390/atmos11070728.
[63]   Wu Z Y, Feng H H, He H, et al. 2021. Evaluation of soil moisture climatology and anomaly components derived from ERA5-Land and GLDAS-2.1 in China. Water Resources Management, 35(2): 629-643.
[64]   Xu L, Zheng C L, Ma Y. 2020. Variations in precipitation extremes in the arid and semi-arid regions of China. International Journal of Climatology, 41(3): 1542-1554.
[65]   Xu L, Gao G Y, Wang X F, et al. 2023. Distinguishing the effects of climate change and vegetation greening on soil moisture variability along aridity gradient in the drylands of northern China. Agricultural and Forest Meteorology, 343(10): 109786, doi: 10.1016/j.agrformet.2023.109786.
[66]   Yang L, Wei W, Chen L D, et al. 2014. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. CATENA, 115: 123-133.
[67]   Yao X L, Jiang Q, Liu Y, et al. 2021. Spatiotemporal variation of soil moisture in Northern China based on climate change initiative data. Agronomy Journal, 113(2): 774-785.
doi: 10.1002/agj2.20479
[68]   Yue S, Pilon P, Cavadias G. 2002. Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1-4): 254-271.
[69]   Zhang G X, Su X L, Ayantobo O O, et al. 2021. Drought monitoring and evaluation using ESA CCI and GLDAS-Noah soil moisture datasets across China. Theoretical and Applied Climatology, 144(3-4): 1407-1418.
[70]   Zhang H, Kattel G R, Wang G J, et al. 2023a. Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China. Journal of Arid Land, 15(7): 871-885.
[71]   Zhang K, Wang Q Q, Chao L J, et al. 2019. Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China. Journal of Hydrology, 574: 903-914.
doi: 10.1016/j.jhydrol.2019.04.087
[72]   Zhang L M, Yang Y P, Liu Y X Y, et al. 2023b. Evaluation of long time-series soil moisture products using extended triple collocation and in situ measurements in China. Atmosphere, 14(9): 1351, doi: 10.3390/atmos14091351.
[73]   Zhang M Y, Cao Y, Zhang Z Y, et al. 2024. Spatiotemporal variation of land surface temperature and its driving factors in Xinjiang, China. Journal of Arid Land, 16(3): 373-395.
doi: 10.1007/s40333-024-0072-5
[74]   Zhang S L, Yang D W, Yang Y T, et al. 2018. Excessive afforestation and soil drying on China's Loess Plateau. Journal of Geophysical Research: Biogeosciences, 123(3): 923-935.
[75]   Zhao B, Mao K B, Cai Y L, et al. 2020. A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017. Earth System Science Data, 12(4): 2555-2577.
[76]   Zhao P Q. 2021. Analysis of ecosystem pattern and driving force of Loess Plateau in Longdong. Journal of Xinyang Normal University, 34(1): 61-67. (in Chinese)
[77]   Zhao Y, Chen Y N, Wu C Y, et al. 2023. Exploring the contribution of environmental factors to evapotranspiration dynamics in the Three-River-Source region, China. Journal of Hydrology, 626(13): 130222, doi: 10.1016/j.jhydrol.2023.130222.
[78]   Zhao Y X, Shi H X. 2022. Temporal and spatial variation characteristics of soil moisture in spring in the arid regions of Northwest China in the past 60s years. Journal of Geoscience and Environment Protection, 10(12): 273-282.
[79]   Zhou S, Williams A P, Lintner B R, et al. 2021. Soil moisture-atmosphere feedbacks mitigate declining water availability in drylands. Nature Climate Change, 11(1): 38-44.
[80]   Zhu L L, Ma G Y, Zhang Y H, et al. 2022. Accelerated decline of snow cover in China from 1979 to 2018 observed from space. Science of the Total Environment, 814(15): 152491, doi: 10.1016/j.scitotenv.2021.152491.
[81]   Zhu L Y, Wang H Q, Tong C, et al. 2019. Evaluation of ESA active, passive and combined soil moisture products using upscaled ground measurements. Sensors (Basel), 19(12): 2718, doi: 10.3390/s19122718.
[1] Mashael MAASHI, Nada ALZABEN, Noha NEGM, Venkatesan VEERAMANI, Sabarunisha Sheik BEGUM, Geetha PALANIAPPAN. Forecasting land use changes in crop classification and drought using remote sensing[J]. Journal of Arid Land, 2025, 17(5): 575-589.
[2] HE Yuanrong, CHEN Yuhang, ZHONG Liang, LAI Yangfeng, KANG Yuting, LUO Ming, ZHU Yunfei, ZHANG Ming. Spatiotemporal evolution of ecological environment quality and its drivers in the Helan Mountain, China[J]. Journal of Arid Land, 2025, 17(2): 224-244.
[3] Suzan ISMAIL, Hamid MALIKI. Spatiotemporal landscape pattern changes and their effects on land surface temperature in greenbelt with semi-arid climate: A case study of the Erbil City, Iraq[J]. Journal of Arid Land, 2024, 16(9): 1214-1231.
[4] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[5] MAO Zhengjun, WANG Munan, CHU Jiwei, SUN Jiewen, LIANG Wei, YU Haiyong. Feature extraction and analysis of reclaimed vegetation in ecological restoration area of abandoned mines based on hyperspectral remote sensing images[J]. Journal of Arid Land, 2024, 16(10): 1409-1425.
[6] ZHAO Xiaohan, HAN Dianchen, LU Qi, LI Yunpeng, ZHANG Fangmin. Spatiotemporal variations in ecological quality of Otindag Sandy Land based on a new modified remote sensing ecological index[J]. Journal of Arid Land, 2023, 15(8): 920-939.
[7] Orhan DENGİZ, İnci DEMİRAĞ TURAN. Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem[J]. Journal of Arid Land, 2023, 15(7): 779-796.
[8] QIANG Yuquan, ZHANG Jinchun, XU Xianying, LIU Hujun, DUAN Xiaofeng. Stem sap flow of Haloxylon ammodendron at different ages and its response to physical factors in the Minqin oasis-desert transition zone, China[J]. Journal of Arid Land, 2023, 15(7): 842-857.
[9] ZHANG Hui, Giri R KATTEL, WANG Guojie, CHUAI Xiaowei, ZHANG Yuyang, MIAO Lijuan. Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China[J]. Journal of Arid Land, 2023, 15(7): 871-885.
[10] Khouloud ZAGOUB, Khouloud KRICHEN, Mohamed CHAIEB, Lobna F MNIF. Morphological and physiological responses to drought stress of carob trees in Mediterranean ecosystems[J]. Journal of Arid Land, 2023, 15(5): 562-577.
[11] LONG Yi, JIANG Fugen, DENG Muli, WANG Tianhong, SUN Hua. Spatial-temporal changes and driving factors of eco- environmental quality in the Three-North region of China[J]. Journal of Arid Land, 2023, 15(3): 231-252.
[12] SUN Liquan, GUO Huili, CHEN Ziyu, YIN Ziming, FENG Hao, WU Shufang, Kadambot H M SIDDIQUE. Check dam extraction from remote sensing images using deep learning and geospatial analysis: A case study in the Yanhe River Basin of the Loess Plateau, China[J]. Journal of Arid Land, 2023, 15(1): 34-51.
[13] WANG Yuxia, ZHANG Jing, YU Xiaojun. Effects of mulch and planting methods on Medicago ruthenica seed yield and soil physical-chemical properties[J]. Journal of Arid Land, 2022, 14(8): 894-909.
[14] HUANG Xiaoran, BAO Anming, GUO Hao, MENG Fanhao, ZHANG Pengfei, ZHENG Guoxiong, YU Tao, QI Peng, Vincent NZABARINDA, DU Weibing. Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China[J]. Journal of Arid Land, 2022, 14(5): 502-520.
[15] YAO Kaixuan, Abudureheman HALIKE, CHEN Limei, WEI Qianqian. Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang[J]. Journal of Arid Land, 2022, 14(3): 262-283.