Research article |
|
|
|
|
Water use characteristics of different pioneer shrubs at different ages in western Chinese Loess Plateau: Evidence from δ2H offset correction |
ZHANG Yu1,2, ZHANG Mingjun1,2,*(), QU Deye1,2, WANG Shengjie1,2, Athanassios A ARGIRIOU3, WANG Jiaxin1,2, YANG Ye1,2 |
1College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China 2Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China 3Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR-26500 Patras, Greece |
|
|
Abstract Caragana korshinskii Kom. and Tamarix ramosissima Ledeb. are pioneer shrubs for water and soil conservation, and for windbreak and sand fixation in arid and semi-arid areas. Understanding the water use characteristics of different pioneer shrubs at different ages is of great importance for their survival when extreme rainfall occurs. In recent years, the stable isotope tracing technique has been used in exploring the water use strategies of plants. However, the widespread δ2H offsets of stem water from its potential sources result in conflicting interpretations of water utilization of plants in arid and semi-arid areas. In this study, we used three sets of hydrogen and oxygen stable isotope data (δ2H and δ18O, corrected δ2H_c1 based on SW-excess and δ18O, and corrected δ2H_c2 based on -8.1‰ and δ18O) as inputs for the MixSIAR model to explore the water use characteristics of C. korshinskii and T. ramosissima at different ages and in response to rainfall. The results showed that δ2H_c1 and δ18O have the best performance, and the contribution rate of deep soil water was underestimated because of δ2H offset. During the dry periods, C. korshinskii and T. ramosissima at different ages both obtained mostly water from deeper soil layers. After rainfall, the proportions of surface (0-10 cm) and shallow (10-40 cm) soil water for C. korshinskii and T. ramosissima at different ages both increased. Nevertheless, there were different response mechanisms of these two plants for rainfall. In addition, C. korshinskii absorbed various potential water sources, while T. ramosissima only used deep water. These flexible water use characteristics of C. korshinskii and T. ramosissima might facilitate the coexistence of plants once extreme rainfall occurs. Thus, reasonable allocation of different plants may be a good vegetation restoration program in western Chinese Loess Plateau.
|
Received: 11 March 2022
Published: 30 June 2022
|
Corresponding Authors:
* ZHANG Mingjun (E-mail: mjzhang2004@163.com)
|
|
|
[1] |
Allen S T, Kirchner J W, Braun S, et al. 2019. Seasonal origins of soil water used by trees. Hydrology and Earth System Sciences, 23(2): 1199-1210.
doi: 10.5194/hess-23-1199-2019
|
|
|
[2] |
Antunes C, Díaz-Barradas M C, Zunzunegui M, et al. 2018. Water source partitioning among plant functional types in a semi-arid dune ecosystem. Journal of Vegetation Science, 29(4): 671-683.
doi: 10.1111/jvs.12647
|
|
|
[3] |
Asbjornsen H, Shepherd G, Helmers M, et al. 2008. Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the corn belt region of the Midwestern U.S. Plant and Soil, 308(1-2): 69-92.
doi: 10.1007/s11104-008-9607-3
|
|
|
[4] |
Bai Y, Han X, Wu J, et al. 2004. Ecosystem stability and compensatory effects in the Inner Mongolian grassland. Nature, 431(7005): 181-184.
doi: 10.1038/nature02850
|
|
|
[5] |
Barbeta A, Jones S P, Clavé L, et al. 2019. Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest. Hydrology and Earth System Sciences, 23(4): 2129-2146.
doi: 10.5194/hess-23-2129-2019
|
|
|
[6] |
Barbeta A, Burlett R, Martín-Gómez P, et al. 2022. Evidence for distinct isotopic composition of sap and tissue water in tree stems: consequences for plant water source identification. New Phytologist, 233(3): 1121-1132.
doi: 10.1111/nph.17857
|
|
|
[7] |
Bowling D R, Schulze E S, Hall S J. 2017. Revisiting streamside trees that do not use stream water: can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source? Ecohydrology, 10(1): e1771, doi: 10.1002/eco.1771.
doi: 10.1002/eco.1771
|
|
|
[8] |
Brooks J R, Barnard H R, Coulomb R, et al. 2010. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geoscience, 3(2): 100-104.
doi: 10.1038/ngeo722
|
|
|
[9] |
Brum M, Vadeboncoeur M A, Ivanov V, et al. 2019. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. Journal of Ecology, 107(1): 318-333.
doi: 10.1111/1365-2745.13022
|
|
|
[10] |
Brunel J P, Walker G R, Kennett-Smith A K. 1995. Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment. Journal of Hydrology, 167(1-4): 351-368.
doi: 10.1016/0022-1694(94)02575-V
|
|
|
[11] |
Chang E, Li P, Li Z, et al. 2019. Using water isotopes to analyze water uptake during vegetation succession on abandoned cropland on the Loess Plateau, China. CATENA, 181: 104095, doi: 10.1016/j.catena.2019.104095.
doi: 10.1016/j.catena.2019.104095
|
|
|
[12] |
Chen H, Hu K, Nie Y, et al. 2017. Analysis of soil water movement inside a footslope and a depression in a Karst catchment, Southwest China. Scientific Reports, 7(1): 1-13.
doi: 10.1038/s41598-016-0028-x
|
|
|
[13] |
Chen Y, Helliker B R, Tang X, et al. 2020. Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water. Proceedings of the National Academy of Sciences of the United States of America, 117(52): 33345-33350.
|
|
|
[14] |
Chen Z, Wang G, Pan Y, et al. 2021. Water use patterns differed notably with season and slope aspect for Caragana korshinskii on the Loess Plateau of China. CATENA, 198: 105028, doi: 10.1016/j.catena.2020.105028.
doi: 10.1016/j.catena.2020.105028
|
|
|
[15] |
Chimner R A, Cooper D J. 2004. Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA. Plant and Soil, 260(1-2): 225-236.
doi: 10.1023/B:PLSO.0000030190.70085.e9
|
|
|
[16] |
Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702-1703.
pmid: 17814749
|
|
|
[17] |
Cui Y Q, Ma J Y, Sun W, et al. 2015. A preliminary study of water use strategy of desert plants in Dunhuang, China. Journal of Arid Land, 7(1): 73-81.
doi: 10.1007/s40333-014-0037-1
|
|
|
[18] |
Dai Y, Zheng X J, Tang L S, et al. 2015. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert. Plant and Soil, 389(1-2): 73-87.
doi: 10.1007/s11104-014-2342-z
|
|
|
[19] |
Dawson T E, Ehleringer J R. 1991. Streamside trees that do not use stream water. Nature, 350(6316): 335-337.
doi: 10.1038/350335a0
|
|
|
[20] |
Dawson T E, Pate J S. 1996. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia, 107: 13-20.
doi: 10.1007/BF00582230
pmid: 28307187
|
|
|
[21] |
Duan D Y, Hua Q Y, Song M H, et al. 2008. Water sources of dominant species in three alpine ecosystems on the Tibetan Plateau, China. Journal of Integrative Plant Biology, 50(3): 257-264.
doi: 10.1111/j.1744-7909.2007.00633.x
|
|
|
[22] |
Eggemeyer K D, Awada T, Harvey F E, et al. 2009. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology, 29(2): 157-169.
doi: 10.1093/treephys/tpn019
pmid: 19203941
|
|
|
[23] |
Ehleringer J R, Dawson T E. 1992. Water uptake by plants: perspectives from stable isotope composition. Plant, Cell and Environment, 15(9): 1073-1082.
doi: 10.1111/j.1365-3040.1992.tb01657.x
|
|
|
[24] |
Ellsworth P Z, Williams D G. 2007. Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil, 291(1-2): 93-107.
doi: 10.1007/s11104-006-9177-1
|
|
|
[25] |
Evaristo J, Jasechko S, McDonnell J J. 2015. Global separation of plant transpiration from groundwater and streamflow. Nature, 525(7567): 91-94.
doi: 10.1038/nature14983
|
|
|
[26] |
Fang X W, Turner N C, Xu D H, et al. 2013. Limits to the height growth of Caragana korshinskii resprouts. Tree Physiology, 33(3): 275-284.
doi: 10.1093/treephys/tpt006
|
|
|
[27] |
Gao X, Wu P, Zhao X, et al. 2011. Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. CATENA, 87(3): 357-367.
doi: 10.1016/j.catena.2011.07.004
|
|
|
[28] |
Gao X, Zhao X, Li H, et al. 2018. Exotic shrub species (Caragana korshinskii) is more resistant to extreme natural drought than native species (Artemisia gmelinii) in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, 263: 207-216.
doi: 10.1016/j.agrformet.2018.08.029
|
|
|
[29] |
Geris J, Tetzlaff D, McDonnell J J, et al. 2017. Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments. Science of the Total Environment, 595: 486-493.
doi: 10.1016/j.scitotenv.2017.03.275
|
|
|
[30] |
Goldsmith G R, Allen S T, Braun S, et al. 2019. Spatial variation in throughfall, soil, and plant water isotopes in a temperate forest. Ecohydrology, 12(2): e2059, doi: 10.1002/eco.2059.
doi: 10.1002/eco.2059
|
|
|
[31] |
Hannes D D, Hervé-Fernández P, Stahl C, et al. 2018. Liana and tree below-ground water competition-evidence for water resource partitioning during the dry season. Tree Physiology, 38(7): 1071-1083.
doi: 10.1093/treephys/tpy002
|
|
|
[32] |
Heras M, Espigares T, Merino-Martín L, et al. 2011. Water-related ecological impacts of rill erosion processes in Mediterranean-dry reclaimed slopes. CATENA, 84(3): 114-124.
doi: 10.1016/j.catena.2010.10.010
|
|
|
[33] |
Huo G, Zhao X, Gao X, et al. 2018. Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid plantations in China. Agriculture, Ecosystems and Environment, 265(26): 392-401.
doi: 10.1016/j.agee.2018.06.028
|
|
|
[34] |
Jia Z, Zhu Y, Liu L, et al. 2012. Different water use strategies of juvenile and adult Caragana intermedia plantations in the Gonghe Basin, Tibet Plateau. PLoS ONE, 7(9): e45902, doi: 10.1371/journal.pone.0045902.
doi: 10.1371/journal.pone.0045902
|
|
|
[35] |
Landwehr J M, Coplen T B. 2006. Line-conditioned excess:a new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. In: International Conference on Isotopes in Environmental Studies. Monte Carlo: International Atomic Energy Agency, 132-135.
|
|
|
[36] |
Landwehr J M, Coplen T B, Stewart D W. 2014. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA. Hydrological Processes, 28(21): 5382-5422.
doi: 10.1002/hyp.10004
|
|
|
[37] |
Leen J B, Berman E S F, Liebson L, et al. 2012. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes. Review of Scientific Instruments: 83(4), doi: 10.1063/1.4704843.
doi: 10.1063/1.4704843
|
|
|
[38] |
Li C, Guo J H, Zeng F, et al. 2015. Shoot and root architectural variance and adaptability of Tamarix ramosissimain different ages. Journal of Desert Research, 35(2): 365-372. (in Chinese)
|
|
|
[39] |
Li Y, Ma Y, Song X, et al. 2021. A δ2H offset correction method for quantifying root water uptake of riparian trees. Journal of Hydrology, 593: 125811, doi: 10.1016/j.jhydrol.2020.125811.
doi: 10.1016/j.jhydrol.2020.125811
|
|
|
[40] |
Lin G, Sternberg L da S L. 1993. Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants. In: Harold A M. Stable Isotopes and Plant Carbon-water Relations. California: Academic Press, 497-510.
|
|
|
[41] |
Martín-Gómez P, Serrano L, Ferrio J P. 2017. Short-term dynamics of evaporative enrichment of xylem water in woody stems: Implications for ecohydrology. Tree Physiology, 37(4): 511-522.
doi: 10.1093/treephys/tpw115
pmid: 27974650
|
|
|
[42] |
Moreno-Gutiérrez C, Dawson T E, Nicolás E, et al. 2012. Isotopes reveal contrasting water use strategies among coexisting plant species in a mediterranean ecosystem. New Phytologist, 196(2): 489-496.
doi: 10.1111/j.1469-8137.2012.04276.x
pmid: 22913668
|
|
|
[43] |
Nie Y P, Chen H S, Wang K L, et al. 2011. Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant and Soil, 341(1-2): 399-412.
doi: 10.1007/s11104-010-0653-2
|
|
|
[44] |
Oerter E J, Siebert G, Bowling D R, et al. 2019. Soil water vapour isotopes identify missing water source for streamside trees. Ecohydrology, 12(4): e2083, doi: 10.1002/eco.2083.
doi: 10.1002/eco.2083
|
|
|
[45] |
Ogle K, Reynolds J F. 2004. Plant responses to precipitation in desert ecosystems: Integrating functional types, pulses, thresholds, and delays. Oecologia, 141(2): 282-294.
doi: 10.1007/s00442-004-1507-5
|
|
|
[46] |
Porporato A, Daly E, Rodriguez-Iturbe I. 2004. Soil water balance and ecosystem response to climate change. The American Naturalist, 164(5): 625.
pmid: 15540152
|
|
|
[47] |
Rossatto D R, de Carvalho Ramos Silva L, Villalobos-Vega R, et al. 2012. Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environmental and Experimental Botany, 77: 259-266.
doi: 10.1016/j.envexpbot.2011.11.025
|
|
|
[48] |
Rothfuss Y, Javaux M. 2017. Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods. Biogeosciences, 14(8): 2199-2224.
doi: 10.5194/bg-14-2199-2017
|
|
|
[49] |
Schenk H J. 2008. Soil depth, plant rooting strategies and species' niches. New Phytologist, 178(2): 223-225.
doi: 10.1111/j.1469-8137.2008.02427.x
|
|
|
[50] |
Schultz N M, Griffis T J, Lee X, et al. 2011. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water. Rapid Communications in Mass Spectrometry, 25(21): 3360-3368.
doi: 10.1002/rcm.5236
|
|
|
[51] |
Sprenger M, Leistert H, Gimbel K, et al. 2016. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes. Reviews of Geophysics, 54(3): 674-704.
doi: 10.1002/2015RG000515
|
|
|
[52] |
Sprenger M, Tetzlaff D, Soulsby C. 2017. Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone. Hydrology and Earth System Sciences, 21(7): 3839-3856.
doi: 10.5194/hess-21-3839-2017
|
|
|
[53] |
Stock B C, Semmens B X. 2013. MixSIAR GUI User Manual. Version 3.1, 1-42. [2021-10-11]. https://doi.org/10.5281/zenodo.47719.1.
|
|
|
[54] |
Su P Y, Zhang M J, Qu D Y, et al. 2020. Contrasting water use strategies of Tamarix ramosissima in different habitats in the northwest of loess plateau, China. Water, 12(10): 2791.
doi: 10.3390/w12102791
|
|
|
[55] |
Sun S J, Meng P, Zhang J S, et al. 2011. Variation in soil water uptake and its effect on plant water status in Juglans regia L. during dry and wet seasons. Tree Physiology, 31(12): 1378-1389.
doi: 10.1093/treephys/tpr116
|
|
|
[56] |
Vargas A I, Schaffer B, Li Y H, et al. 2017. Testing plant use of mobile vs immobile soil water sources using stable isotope experiments. New Phytologist, 215(2): 582-594.
doi: 10.1111/nph.14616
pmid: 28556977
|
|
|
[57] |
Wang J, Fu B J, Lu N, et al. 2017. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609: 27-37.
doi: 10.1016/j.scitotenv.2017.07.133
|
|
|
[58] |
Wang J, Lu N, Fu B J. 2019. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666: 685-693.
doi: 10.1016/j.scitotenv.2019.02.262
|
|
|
[59] |
Williams D G, Ehleringer J R. 2000. Intra- and inter-specific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70(4): 517-537.
|
|
|
[60] |
Wu L, Su S, Wang H. 2006. Preliminary investigation into plant and vegetation types in afforestation region in southern and northern mountains of Lanzhou City. Journal of Desert Research, 26(4): 564-568. (in Chinese)
|
|
|
[61] |
Yang B, Wen X, Sun X. 2015. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agricultural and Forest Meteorology, 201: 218-228.
doi: 10.1016/j.agrformet.2014.11.020
|
|
|
[62] |
Yang L, Wei W, Chen L, et al. 2014. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. CATENA, 115: 123-133.
doi: 10.1016/j.catena.2013.12.005
|
|
|
[63] |
Yao J, Chen Y, Zhao Y, et al. 2020. Climatic and associated atmospheric water cycle changes over the Xinjiang, China. Journal of Hydrology, 585: 124823, doi: 10.1016/j.jhydrol.2020.124823.
doi: 10.1016/j.jhydrol.2020.124823
|
|
|
[64] |
Zhang Q, Yang J, Wang W, et al. 2021. Climatic warming and humidification in the arid region of Northwest China: multi-scale characteristics and impacts on ecological vegetation. Journal of Meteorological Research, 35(1): 113-127.
doi: 10.1007/s13351-021-0105-3
|
|
|
[65] |
Zhang Y, Zhang M J, Qu D Y, et al. 2020. Water use strategies of dominant species (Caragana korshinskii and Reaumuria soongorica) in natural shrubs based on stable isotopes in the Loess Hill, China. Water, 12(7): 1923.
doi: 10.3390/w12071923
|
|
|
[66] |
Zhou H, Zhao W, He Z. 2017. Water sources of Nitraria sibirica and response to precipitation in two desert habitats. Chinese Journal of Applied Ecology, 28(7): 2083-2092. (in Chinese)
doi: 10.13287/j.1001-9332.201707.021
pmid: 29741036
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|