Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (6): 653-672    DOI: 10.1007/s40333-022-0018-8     CSTR: 32276.14.s40333-022-0018-8
Research article     
Water use characteristics of different pioneer shrubs at different ages in western Chinese Loess Plateau: Evidence from δ2H offset correction
ZHANG Yu1,2, ZHANG Mingjun1,2,*(), QU Deye1,2, WANG Shengjie1,2, Athanassios A ARGIRIOU3, WANG Jiaxin1,2, YANG Ye1,2
1College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
2Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
3Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR-26500 Patras, Greece
Download: HTML     PDF(3889KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Caragana korshinskii Kom. and Tamarix ramosissima Ledeb. are pioneer shrubs for water and soil conservation, and for windbreak and sand fixation in arid and semi-arid areas. Understanding the water use characteristics of different pioneer shrubs at different ages is of great importance for their survival when extreme rainfall occurs. In recent years, the stable isotope tracing technique has been used in exploring the water use strategies of plants. However, the widespread δ2H offsets of stem water from its potential sources result in conflicting interpretations of water utilization of plants in arid and semi-arid areas. In this study, we used three sets of hydrogen and oxygen stable isotope data (δ2H and δ18O, corrected δ2H_c1 based on SW-excess and δ18O, and corrected δ2H_c2 based on -8.1‰ and δ18O) as inputs for the MixSIAR model to explore the water use characteristics of C. korshinskii and T. ramosissima at different ages and in response to rainfall. The results showed that δ2H_c1 and δ18O have the best performance, and the contribution rate of deep soil water was underestimated because of δ2H offset. During the dry periods, C. korshinskii and T. ramosissima at different ages both obtained mostly water from deeper soil layers. After rainfall, the proportions of surface (0-10 cm) and shallow (10-40 cm) soil water for C. korshinskii and T. ramosissima at different ages both increased. Nevertheless, there were different response mechanisms of these two plants for rainfall. In addition, C. korshinskii absorbed various potential water sources, while T. ramosissima only used deep water. These flexible water use characteristics of C. korshinskii and T. ramosissima might facilitate the coexistence of plants once extreme rainfall occurs. Thus, reasonable allocation of different plants may be a good vegetation restoration program in western Chinese Loess Plateau.



Key wordsstable isotope      Caragana korshinskii      Tamarix ramosissima      water uptake pattern      isotope depletion     
Received: 11 March 2022      Published: 30 June 2022
Corresponding Authors: * ZHANG Mingjun (E-mail: mjzhang2004@163.com)
Cite this article:

ZHANG Yu, ZHANG Mingjun, QU Deye, WANG Shengjie, Athanassios A ARGIRIOU, WANG Jiaxin, YANG Ye. Water use characteristics of different pioneer shrubs at different ages in western Chinese Loess Plateau: Evidence from δ2H offset correction. Journal of Arid Land, 2022, 14(6): 653-672.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0018-8     OR     http://jal.xjegi.com/Y2022/V14/I6/653

Fig. 1 Sample location on the western Chinese Loess Plateau (a) and sample sites of soil, xylem, and rainfall (b)
Plant Planting year (a) Height (m) Crown width (m)
Juvenile C. korshinskii 2 0.7 0.9
Intermediate C. korshinskii 4 1.0 1.4
Adult C. korshinskii 8 1.8 3.0
Juvenile T. ramosissima 6 2.2 1.5
Intermediate T. ramosissima 15 3.0 2.6
Adult T. ramosissima 24 4.0 5.0
Table 1 Morphological traits of C. korshinskii and T. ramosissima at different ages
Fig. 2 Variations in the soil water content of juvenile C. korshinskii (a1-a3), intermediate C. korshinskii (b1-b3), adult C. korshinskii (c1-c3), juvenile T. ramosissima (d1-d3), intermediate T. ramosissima (e1-e3), and adult T. ramosissima (f1-f3)
Fig. 3 Relationships between δ2H and δ18O of rainfall, soil water, and plant xylem water for juvenile C. korshinskii (a), intermediate C. korshinskii (b), adult C. korshinskii (c), juvenile T. ramosissima (d), intermediate T. ramosissima (e), and adult T. ramosissima (f). SWL is the soil water line based on soil water isotope values, and LMWL is the local meteoric water line. GMWL (δ2H=8δ18O+10) is plotted for reference. Insets show the linear regression relationship between δ2H (δ2H, δ2H_c1, and δ2H_c2) and δ18O in plant xylem water.
Fig. 4 Temporal variation (a) and plant species difference (b) in SW-excess. The extents of the boxes show the 25th and 75th percentiles, whiskers show the range within 1.5IQR (interquartile range), and the black rhombus denote the outliers.
Fig. 5 Relative proportions of water sources used by juvenile C. korshinskii (a1-a3), intermediate C. korshinskii (b1-b3), and adult C. korshinskii (c1-c3) with the MixSIAR model based on δ2H and δ18O, δ2H_c1 and δ18O, and δ2H_c2 and δ18O
Fig. 6 Relative proportions of water sources used by juvenile T. ramosissima (a1-a3), intermediate T. ramosissima (b1-b3), and adult T. ramosissima (c1-c3) with the MixSIAR model based on δ2H and δ18O, δ2H_c1 and δ18O, and δ2H_c2 and δ18O
Input dataset AIC BIC RMSE
δ2H and δ18O 287.56 291.71 14.28
δ2H_c1 and δ18O 267.25 271.40 13.22
δ2H_c2 and δ18O 289.00 293.16 13.74
Table 2 Performance of water source contribution using three input datasets to the MixSIAR model
Sample δ2H (‰) δ18O (‰)
Min Max Mean Min Max Mean
Precipitation -126.82 -28.73 -49.91* -18.06 1.58 -8.21*
Soil water Juvenile C. korshinskii -82.43 -24.28 -50.48 -12.88 5.07 -4.69
Intermediate C. korshinskii -86.68 -6.93 -48.77 -13.34 7.76 -5.27
Adult C. korshinskii -87.52 -22.63 -56.60 -14.53 4.18 -7.01
Juvenile T. ramosissima -80.11 0.63 -46.60 -12.26 10.34 -4.27
Intermediate T. ramosissima -76.72 -10.00 -43.73 -11.96 12.45 -1.06
Adult T. ramosissima -80.36 -9.70 -39.03 -12.35 9.85 -0.38
Plant xylem water Juvenile C. korshinskii -71.40 -27.33 -47.89 -8.64 0.22 -3.83
Intermediate C. korshinskii -63.97 -27.04 -45.48 -7.67 -2.34 -4.55
Adult C. korshinskii -58.48 -33.58 -47.17 -7.30 -2.44 -5.27
Juvenile T. ramosissima -69.87 -49.46 -62.16 -9.80 -6.00 -7.64
Intermediate T. ramosissima -70.12 -48.69 -57.84 -9.83 -4.94 -6.81
Adult T. ramosissima -70.25 -19.40 -56.61 -9.78 1.50 6.60
Table S1 Isotopic composition of different types of water body
Input data mode Contributions (%)
0-10 cm 10-40 cm 40-100 cm 100-200 cm
Mean SD Mean SD Mean SD Mean SD
δ2H and δ18O 29.67 12.71 22.72 14.33 22.22 12.12 25.38 14.76
δ2H_c1 and δ18O 28.80 12.01 20.78 15.04 23.11 12.47 27.31 14.34
δ2H_c2 and δ18O 26.80 12.07 25.31 14.67 20.65 11.7 27.23 15.00
Table S2 Contributions of three modes of data input to the MixSIAR model
Plant Date Contribution of the 0-40 cm soil water (%)
δ2H and δ18O δ2H_c1 and δ18O δ2H_c2 and δ18O
Juvenile C. korshinskii 19 Jul (1 d after rainfall) 79.8 49.6 86.0
21 Jul (3 d after rainfall) 51.6 46.4 47.8
23 Jul (5 d after rainfall) 54.5 50.0 43.3
Intermediate C. korshinskii 19 Jul (1 d after rainfall) 83.7 83.4 86.8
21 Jul (3 d after rainfall) 71.3 45.2 91.6
23 Jul (5 d after rainfall) 54.2 48.2 62.9
Adult C. korshinskii 19 Jul (1 d after rainfall) 53.8 23.7 87.9
21 Jul (3 d after rainfall) 32.0 33.9 23.2
23 Jul (5 d after rainfall) 58.1 60.0 50.1
Juvenile C. korshinskii 24 Aug (1 d after rainfall) 11.1 10.8 8.2
26 Aug (3 d after rainfall) 93.6 91.0 86.8
28 Aug (5 d after rainfall) 94.0 93.6 89.5
Intermediate C. korshinskii 24 Aug (1 d after rainfall) 61.6 61.1 85.2
26 Aug (3 d after rainfall) 78.8 52.4 54.4
28 Aug (5 d after rainfall) 87.6 81.9 72.6
Adult C. korshinskii 24 Aug (1 d after rainfall) 55.8 49.1 54.2
26 Aug (3 d after rainfall) 22.9 21.8 17.7
28 Aug (5 d after rainfall) 31.6 30.4 19.5
Table S3 Contribution of the 0-40 cm soil water for C. korshinskii at different ages after rainfall
Plant Date Contribution of the 0-40 cm soil water (%)
δ2H and δ18O δ2H_c1 and δ18O δ2H_c2 and δ18O
Juvenile T. ramosissim 19 Jul (1 d after rainfall) 77.6 58.9 54.0
21 Jul (3 d after rainfall) 21.2 27.3 7.8
23 Jul (5 d after rainfall) 21.0 17.5 34.4
Intermediate T. ramosissim 19 Jul (1 d after rainfall) 95.3 93.6 2.9
21 Jul (3 d after rainfall) 53.8 72.1 35.0
23 Jul (5 d after rainfall) 46.6 42.9 24.6
Adult T. ramosissim 19 Jul (1 d after rainfall) 90.1 89.0 89.0
21 Jul (3 d after rainfall) 99.1 99.0 99.0
23 Jul (5 d after rainfall) 27.7 22.3 35.9
Juvenile T. ramosissim 24 Aug (1 d after rainfall) 55.3 47.3 45.6
26 Aug (3 d after rainfall) 97.1 94.7 94.1
28 Aug (5 d after rainfall) 66.4 99.6 99.4
Intermediate T. ramosissim 24 Aug (1 d after rainfall) 60.9 67.5 43.5
26 Aug (3 d after rainfall) 35.8 39.7 65.3
28 Aug (5 d after rainfall) 82.3 81.2 79.7
Adult T. ramosissim 24 Aug (1 d after rainfall) 79.1 74.1 73.2
26 Aug (3 d after rainfall) 93.7 93.1 91.5
28 Aug (5 d after rainfall) 8.4 12.0 12.1
Table S4 Contribution of the 0-40 cm soil water for T. ramosissim at different ages after rainfall
Plant Depth
(cm)
Rainfall
(7 d amount)
VPD
(7d mean)
0-10 cm
SWC
10-40 cm
SWC
40-100 cm
SWC
100-200 cm
SWC
Juvenile
C. korshinskii
0-10 -0.365 0.174 -0.375 0.177 -0.039 -0.014
10-40 -0.118 -0.072 -0.095 -0.686* -0.488 -0.416
40-100 -0.081 0.008 -0.345 -0.615 -0.412 -0.382
100-200 0.639 -0.211 0.826** 0.579 0.626 0.530
Intermediate C. korshinskii 0-10 0.332 -0.602 -0.244 -0.342 -0.387 -0.335
10-40 -0.234 0.210 0.795** 0.659* -0.618 0.587
40-100 -0.242 0.398 -0.067 0.066 -0.068 -0.007
100-200 -0.032 0.351 -0.636* -0.405 -0.217 -0.284
Adult
C. korshinskii
0-10 0.019 -0.198 -0.090 0.035 0.228 0.333
10-40 -0.286 -0.106 -0.284 -0.148 0.039 -0.140
40-100 -0.169 0.258 0.460 0.316 -0.013 -0.345
100-200 0.255 -0.046 -0.213 -0.250 -0.197 0.113
Juvenile
T. ramosissim
0-10 0.183 0.251 0.405 0.414 0.231 0.161
10-40 0.153 -0.610 -0.046 -0.078 -0.316 -0.412
40-100 0.475 -0.047 -0.410 -0.427 -0.357 -0.174
100-200 -0.688* 0.199 0.008 0.034 0.294 0.263
Intermediate T. ramosissim 0-10 0.117 0.288 -0.027 0.343 0.669* 0.718*
10-40 0.598 -0.440 0.049 -0.306 -0.588 -0.580
40-100 -0.876** -0.250 0.688* 0.685* 0.156 0.174
100-200 -0.083 0.246 -0.370 -0.421 -0.214 -0.298
Adult
T. ramosissim
0-10 0.110 0.799* 0.579 0.454 0.383 0.366
10-40 -0.712* -0.263 0.339 0.321 0.255 0.514
40-100 0.626 -0.603 -0.589 -0.500 -0.349 -0.584
100-200 -0.773 -0.295 -0.109 -0.046 -0.151 0.151
Table S5 Correlation between contribution calculated by δ2H_c2 and δ18O input into the MixSIAR model and cumulative rainfall amount of 7 d before sampling
Fig. S1 Variation of monthly precipitation weighted δ2H and δ18O. No precipitation data in February, March, April, and November.
Fig. S2 Variation of soil water δ2H in juvenile C. korshinskii (a1-a3), intermediate C. korshinskii (b1-b3), adult C. korshinskii (c1-c3), and juvenile T. ramosissima (d1-d3), intermediate T. ramosissima (e1-e3), and adult T. ramosissima (f1-f3)
Fig. S3 Variation of soil water δ18O in juvenile C. korshinskii (a1-a3), intermediate C. korshinskii (b1-b3), adult C. korshinskii (c1-c3), juvenile T. ramosissima (d1-d3), intermediate T. ramosissima (e1-e3), and adult T. ramosissima (f1-f3)
Fig. S4 Linear regression relationship between δ2H and δ18O in soil water after rainfall on 17-18 July and 23 August in juvenile, intermediate, and adult C. korshinskii (a-c), and juvenile, intermediate, and adult T. ramosissima (d-f). LMWL is the local meteoric water line.
[1]   Allen S T, Kirchner J W, Braun S, et al. 2019. Seasonal origins of soil water used by trees. Hydrology and Earth System Sciences, 23(2): 1199-1210.
doi: 10.5194/hess-23-1199-2019
[2]   Antunes C, Díaz-Barradas M C, Zunzunegui M, et al. 2018. Water source partitioning among plant functional types in a semi-arid dune ecosystem. Journal of Vegetation Science, 29(4): 671-683.
doi: 10.1111/jvs.12647
[3]   Asbjornsen H, Shepherd G, Helmers M, et al. 2008. Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the corn belt region of the Midwestern U.S. Plant and Soil, 308(1-2): 69-92.
doi: 10.1007/s11104-008-9607-3
[4]   Bai Y, Han X, Wu J, et al. 2004. Ecosystem stability and compensatory effects in the Inner Mongolian grassland. Nature, 431(7005): 181-184.
doi: 10.1038/nature02850
[5]   Barbeta A, Jones S P, Clavé L, et al. 2019. Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest. Hydrology and Earth System Sciences, 23(4): 2129-2146.
doi: 10.5194/hess-23-2129-2019
[6]   Barbeta A, Burlett R, Martín-Gómez P, et al. 2022. Evidence for distinct isotopic composition of sap and tissue water in tree stems: consequences for plant water source identification. New Phytologist, 233(3): 1121-1132.
doi: 10.1111/nph.17857
[7]   Bowling D R, Schulze E S, Hall S J. 2017. Revisiting streamside trees that do not use stream water: can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source? Ecohydrology, 10(1): e1771, doi: 10.1002/eco.1771.
doi: 10.1002/eco.1771
[8]   Brooks J R, Barnard H R, Coulomb R, et al. 2010. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geoscience, 3(2): 100-104.
doi: 10.1038/ngeo722
[9]   Brum M, Vadeboncoeur M A, Ivanov V, et al. 2019. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. Journal of Ecology, 107(1): 318-333.
doi: 10.1111/1365-2745.13022
[10]   Brunel J P, Walker G R, Kennett-Smith A K. 1995. Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment. Journal of Hydrology, 167(1-4): 351-368.
doi: 10.1016/0022-1694(94)02575-V
[11]   Chang E, Li P, Li Z, et al. 2019. Using water isotopes to analyze water uptake during vegetation succession on abandoned cropland on the Loess Plateau, China. CATENA, 181: 104095, doi: 10.1016/j.catena.2019.104095.
doi: 10.1016/j.catena.2019.104095
[12]   Chen H, Hu K, Nie Y, et al. 2017. Analysis of soil water movement inside a footslope and a depression in a Karst catchment, Southwest China. Scientific Reports, 7(1): 1-13.
doi: 10.1038/s41598-016-0028-x
[13]   Chen Y, Helliker B R, Tang X, et al. 2020. Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water. Proceedings of the National Academy of Sciences of the United States of America, 117(52): 33345-33350.
[14]   Chen Z, Wang G, Pan Y, et al. 2021. Water use patterns differed notably with season and slope aspect for Caragana korshinskii on the Loess Plateau of China. CATENA, 198: 105028, doi: 10.1016/j.catena.2020.105028.
doi: 10.1016/j.catena.2020.105028
[15]   Chimner R A, Cooper D J. 2004. Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA. Plant and Soil, 260(1-2): 225-236.
doi: 10.1023/B:PLSO.0000030190.70085.e9
[16]   Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702-1703.
pmid: 17814749
[17]   Cui Y Q, Ma J Y, Sun W, et al. 2015. A preliminary study of water use strategy of desert plants in Dunhuang, China. Journal of Arid Land, 7(1): 73-81.
doi: 10.1007/s40333-014-0037-1
[18]   Dai Y, Zheng X J, Tang L S, et al. 2015. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert. Plant and Soil, 389(1-2): 73-87.
doi: 10.1007/s11104-014-2342-z
[19]   Dawson T E, Ehleringer J R. 1991. Streamside trees that do not use stream water. Nature, 350(6316): 335-337.
doi: 10.1038/350335a0
[20]   Dawson T E, Pate J S. 1996. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia, 107: 13-20.
doi: 10.1007/BF00582230 pmid: 28307187
[21]   Duan D Y, Hua Q Y, Song M H, et al. 2008. Water sources of dominant species in three alpine ecosystems on the Tibetan Plateau, China. Journal of Integrative Plant Biology, 50(3): 257-264.
doi: 10.1111/j.1744-7909.2007.00633.x
[22]   Eggemeyer K D, Awada T, Harvey F E, et al. 2009. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology, 29(2): 157-169.
doi: 10.1093/treephys/tpn019 pmid: 19203941
[23]   Ehleringer J R, Dawson T E. 1992. Water uptake by plants: perspectives from stable isotope composition. Plant, Cell and Environment, 15(9): 1073-1082.
doi: 10.1111/j.1365-3040.1992.tb01657.x
[24]   Ellsworth P Z, Williams D G. 2007. Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil, 291(1-2): 93-107.
doi: 10.1007/s11104-006-9177-1
[25]   Evaristo J, Jasechko S, McDonnell J J. 2015. Global separation of plant transpiration from groundwater and streamflow. Nature, 525(7567): 91-94.
doi: 10.1038/nature14983
[26]   Fang X W, Turner N C, Xu D H, et al. 2013. Limits to the height growth of Caragana korshinskii resprouts. Tree Physiology, 33(3): 275-284.
doi: 10.1093/treephys/tpt006
[27]   Gao X, Wu P, Zhao X, et al. 2011. Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. CATENA, 87(3): 357-367.
doi: 10.1016/j.catena.2011.07.004
[28]   Gao X, Zhao X, Li H, et al. 2018. Exotic shrub species (Caragana korshinskii) is more resistant to extreme natural drought than native species (Artemisia gmelinii) in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, 263: 207-216.
doi: 10.1016/j.agrformet.2018.08.029
[29]   Geris J, Tetzlaff D, McDonnell J J, et al. 2017. Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments. Science of the Total Environment, 595: 486-493.
doi: 10.1016/j.scitotenv.2017.03.275
[30]   Goldsmith G R, Allen S T, Braun S, et al. 2019. Spatial variation in throughfall, soil, and plant water isotopes in a temperate forest. Ecohydrology, 12(2): e2059, doi: 10.1002/eco.2059.
doi: 10.1002/eco.2059
[31]   Hannes D D, Hervé-Fernández P, Stahl C, et al. 2018. Liana and tree below-ground water competition-evidence for water resource partitioning during the dry season. Tree Physiology, 38(7): 1071-1083.
doi: 10.1093/treephys/tpy002
[32]   Heras M, Espigares T, Merino-Martín L, et al. 2011. Water-related ecological impacts of rill erosion processes in Mediterranean-dry reclaimed slopes. CATENA, 84(3): 114-124.
doi: 10.1016/j.catena.2010.10.010
[33]   Huo G, Zhao X, Gao X, et al. 2018. Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid plantations in China. Agriculture, Ecosystems and Environment, 265(26): 392-401.
doi: 10.1016/j.agee.2018.06.028
[34]   Jia Z, Zhu Y, Liu L, et al. 2012. Different water use strategies of juvenile and adult Caragana intermedia plantations in the Gonghe Basin, Tibet Plateau. PLoS ONE, 7(9): e45902, doi: 10.1371/journal.pone.0045902.
doi: 10.1371/journal.pone.0045902
[35]   Landwehr J M, Coplen T B. 2006. Line-conditioned excess:a new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. In: International Conference on Isotopes in Environmental Studies. Monte Carlo: International Atomic Energy Agency, 132-135.
[36]   Landwehr J M, Coplen T B, Stewart D W. 2014. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA. Hydrological Processes, 28(21): 5382-5422.
doi: 10.1002/hyp.10004
[37]   Leen J B, Berman E S F, Liebson L, et al. 2012. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes. Review of Scientific Instruments: 83(4), doi: 10.1063/1.4704843.
doi: 10.1063/1.4704843
[38]   Li C, Guo J H, Zeng F, et al. 2015. Shoot and root architectural variance and adaptability of Tamarix ramosissimain different ages. Journal of Desert Research, 35(2): 365-372. (in Chinese)
[39]   Li Y, Ma Y, Song X, et al. 2021. A δ2H offset correction method for quantifying root water uptake of riparian trees. Journal of Hydrology, 593: 125811, doi: 10.1016/j.jhydrol.2020.125811.
doi: 10.1016/j.jhydrol.2020.125811
[40]   Lin G, Sternberg L da S L. 1993. Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants. In: Harold A M. Stable Isotopes and Plant Carbon-water Relations. California: Academic Press, 497-510.
[41]   Martín-Gómez P, Serrano L, Ferrio J P. 2017. Short-term dynamics of evaporative enrichment of xylem water in woody stems: Implications for ecohydrology. Tree Physiology, 37(4): 511-522.
doi: 10.1093/treephys/tpw115 pmid: 27974650
[42]   Moreno-Gutiérrez C, Dawson T E, Nicolás E, et al. 2012. Isotopes reveal contrasting water use strategies among coexisting plant species in a mediterranean ecosystem. New Phytologist, 196(2): 489-496.
doi: 10.1111/j.1469-8137.2012.04276.x pmid: 22913668
[43]   Nie Y P, Chen H S, Wang K L, et al. 2011. Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant and Soil, 341(1-2): 399-412.
doi: 10.1007/s11104-010-0653-2
[44]   Oerter E J, Siebert G, Bowling D R, et al. 2019. Soil water vapour isotopes identify missing water source for streamside trees. Ecohydrology, 12(4): e2083, doi: 10.1002/eco.2083.
doi: 10.1002/eco.2083
[45]   Ogle K, Reynolds J F. 2004. Plant responses to precipitation in desert ecosystems: Integrating functional types, pulses, thresholds, and delays. Oecologia, 141(2): 282-294.
doi: 10.1007/s00442-004-1507-5
[46]   Porporato A, Daly E, Rodriguez-Iturbe I. 2004. Soil water balance and ecosystem response to climate change. The American Naturalist, 164(5): 625.
pmid: 15540152
[47]   Rossatto D R, de Carvalho Ramos Silva L, Villalobos-Vega R, et al. 2012. Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environmental and Experimental Botany, 77: 259-266.
doi: 10.1016/j.envexpbot.2011.11.025
[48]   Rothfuss Y, Javaux M. 2017. Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods. Biogeosciences, 14(8): 2199-2224.
doi: 10.5194/bg-14-2199-2017
[49]   Schenk H J. 2008. Soil depth, plant rooting strategies and species' niches. New Phytologist, 178(2): 223-225.
doi: 10.1111/j.1469-8137.2008.02427.x
[50]   Schultz N M, Griffis T J, Lee X, et al. 2011. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water. Rapid Communications in Mass Spectrometry, 25(21): 3360-3368.
doi: 10.1002/rcm.5236
[51]   Sprenger M, Leistert H, Gimbel K, et al. 2016. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes. Reviews of Geophysics, 54(3): 674-704.
doi: 10.1002/2015RG000515
[52]   Sprenger M, Tetzlaff D, Soulsby C. 2017. Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone. Hydrology and Earth System Sciences, 21(7): 3839-3856.
doi: 10.5194/hess-21-3839-2017
[53]   Stock B C, Semmens B X. 2013. MixSIAR GUI User Manual. Version 3.1, 1-42. [2021-10-11]. https://doi.org/10.5281/zenodo.47719.1.
[54]   Su P Y, Zhang M J, Qu D Y, et al. 2020. Contrasting water use strategies of Tamarix ramosissima in different habitats in the northwest of loess plateau, China. Water, 12(10): 2791.
doi: 10.3390/w12102791
[55]   Sun S J, Meng P, Zhang J S, et al. 2011. Variation in soil water uptake and its effect on plant water status in Juglans regia L. during dry and wet seasons. Tree Physiology, 31(12): 1378-1389.
doi: 10.1093/treephys/tpr116
[56]   Vargas A I, Schaffer B, Li Y H, et al. 2017. Testing plant use of mobile vs immobile soil water sources using stable isotope experiments. New Phytologist, 215(2): 582-594.
doi: 10.1111/nph.14616 pmid: 28556977
[57]   Wang J, Fu B J, Lu N, et al. 2017. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609: 27-37.
doi: 10.1016/j.scitotenv.2017.07.133
[58]   Wang J, Lu N, Fu B J. 2019. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666: 685-693.
doi: 10.1016/j.scitotenv.2019.02.262
[59]   Williams D G, Ehleringer J R. 2000. Intra- and inter-specific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70(4): 517-537.
[60]   Wu L, Su S, Wang H. 2006. Preliminary investigation into plant and vegetation types in afforestation region in southern and northern mountains of Lanzhou City. Journal of Desert Research, 26(4): 564-568. (in Chinese)
[61]   Yang B, Wen X, Sun X. 2015. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agricultural and Forest Meteorology, 201: 218-228.
doi: 10.1016/j.agrformet.2014.11.020
[62]   Yang L, Wei W, Chen L, et al. 2014. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. CATENA, 115: 123-133.
doi: 10.1016/j.catena.2013.12.005
[63]   Yao J, Chen Y, Zhao Y, et al. 2020. Climatic and associated atmospheric water cycle changes over the Xinjiang, China. Journal of Hydrology, 585: 124823, doi: 10.1016/j.jhydrol.2020.124823.
doi: 10.1016/j.jhydrol.2020.124823
[64]   Zhang Q, Yang J, Wang W, et al. 2021. Climatic warming and humidification in the arid region of Northwest China: multi-scale characteristics and impacts on ecological vegetation. Journal of Meteorological Research, 35(1): 113-127.
doi: 10.1007/s13351-021-0105-3
[65]   Zhang Y, Zhang M J, Qu D Y, et al. 2020. Water use strategies of dominant species (Caragana korshinskii and Reaumuria soongorica) in natural shrubs based on stable isotopes in the Loess Hill, China. Water, 12(7): 1923.
doi: 10.3390/w12071923
[66]   Zhou H, Zhao W, He Z. 2017. Water sources of Nitraria sibirica and response to precipitation in two desert habitats. Chinese Journal of Applied Ecology, 28(7): 2083-2092. (in Chinese)
doi: 10.13287/j.1001-9332.201707.021 pmid: 29741036
[1] SHEN Jianxiang, WANG Xin, WANG Lei, WANG Jiahui, QU Wenjie, ZHANG Xue, CHANG Xuanxuan, YANG Xinguo, CHEN Lin, QIN Weichun, ZHANG Bo, NIU Jinshuai. Spatiotemporal characteristics of seed rain and soil seed bank of artificial Caragana korshinskii Kom. forest in the Tengger Desert, China[J]. Journal of Arid Land, 2024, 16(4): 550-566.
[2] PAN Yaqing, KANG Peng, QU Xuan, RAN Yichao, LI Xinrong. Effects of long-term fencing on soil microbial community structure and function in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 431-446.
[3] XIE Yida, WANG Feiteng, LIU Shuangshuang. Oxygen and hydrogen isotope characteristics of different water bodies in the Burqin River Basin of the Altay Mountains, China[J]. Journal of Arid Land, 2024, 16(10): 1365-1379.
[4] Mutawakil OBEIDAT, Ahmad AL-AJLOUNI, Eman BANI-KHALED, Muheeb AWAWDEH, Muna ABU-DALO. Integrating stable isotopes and factor analysis to delineate the groundwater provenance and pollution sources in the northwestern part of the Amman-Al Zarqa Basin, Jordan[J]. Journal of Arid Land, 2023, 15(12): 1490-1509.
[5] CHEN Juan, WANG Xing, SONG Naiping, WANG Qixue, WU Xudong. Water utilization of typical plant communities in desert steppe, China[J]. Journal of Arid Land, 2022, 14(9): 1038-1054.
[6] YANG Ye, ZHANG Mingjun, ZHANG Yu, WANG Shengjie, WANG Jiaxin. Evaluating the soil evaporation loss rate in a gravel-sand mulching environment based on stable isotopes data[J]. Journal of Arid Land, 2022, 14(8): 925-939.
[7] LIU Yabin, SHI Chuan, YU Dongmei, WANG Shu, PANG Jinghao, ZHU Haili, LI Guorong, HU Xiasong. Characteristics of root pullout resistance of Caragana korshinskii Kom. in the loess area of northeastern Qinghai-Tibet Plateau, China[J]. Journal of Arid Land, 2022, 14(7): 811-823.
[8] CHEN Haiyan, CHEN Yaning, LI Dalong, LI Weihong, YANG Yuhui. Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains, Central Asia[J]. Journal of Arid Land, 2022, 14(3): 297-309.
[9] HU Haiying, ZHU Lin, LI Huixia, XU Dongmei, XIE Yingzhong. Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China[J]. Journal of Arid Land, 2021, 13(2): 109-122.
[10] MA Gailing, GOU Qianqian, WANG Guohua, QU Jianjun. Succession of soil bacterial and fungal communities of Caragana korshinskii plantation in a typical agro-pastoral ecotone in northern China over a 50-a period[J]. Journal of Arid Land, 2021, 13(10): 1071-1086.
[11] DONG Zhengwu, LI Shengyu, ZHAO Ying, LEI Jiaqiang, WANG Yongdong, LI Congjuan. Stable oxygen-hydrogen isotopes reveal water use strategies of Tamarix taklamakanensis in the Taklimakan Desert, China[J]. Journal of Arid Land, 2020, 12(1): 115-129.
[12] Benman YANG, Ruoshui WANG, Huijie XIAO, Qiqi CAO, Tao LIU. Spatio-temporal variations of soil water content and salinity around individual Tamarix ramosissima in a semi-arid saline region of the upper Yellow River, Northwest China[J]. Journal of Arid Land, 2018, 10(1): 101-114.
[13] ZHAO Wei, MA Jinzhu, GU Chunjie, QI Shi, ZHU Gaofeng, HE Jiahua. The distribution of isotopes and chemicals in precipitation in Shule River Basin, northwestern China: an implication for water cycle and groundwater recharge[J]. Journal of Arid Land, 2016, 8(6): 973-985.
[14] WU Huawu, LI Xiaoyan, LI Jing, JIANG Zhiyun, LI Guangyong, LIU Lei. Evaporative enrichment of stable isotopes (δ18O and δD) in lake water and the relation to lake-level change of Lake Qinghai, Northeast Tibetan Plateau of China[J]. Journal of Arid Land, 2015, 7(5): 623-635.
[15] YongQin CUI, JianYing MA, Wei SUN, JiaHuan SUN, ZhengHu DUAN. A preliminary study of water use strategy of desert plants in Dunhuang, China[J]. Journal of Arid Land, 2015, 7(1): 73-81.