Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (4): 377-392    DOI: 10.1007/s40333-023-0097-1     CSTR: 32276.14.s40333-023-0097-1
Research article     
Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset
Sakine KOOHI, Hadi RAMEZANI ETEDALI()
Department of Water Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin 96818, Iran
Download: HTML     PDF(1598KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Investigation of the climate change effects on drought is required to develop management strategies for minimizing adverse social and economic impacts. Therefore, studying the future meteorological drought conditions at a local scale is vital. In this study, we assessed the efficiency of seven downscaled Global Climate Models (GCMs) provided by the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), and investigated the impacts of climate change on future meteorological drought using Standard Precipitation Index (SPI) in the Karoun River Basin (KRB) of southwestern Iran under two Representative Concentration Pathway (RCP) emission scenarios, i.e., RCP4.5 and RCP8.5. The results demonstrated that SPI estimated based on the Meteorological Research Institute Coupled Global Climate Model version 3 (MRI-CGCM3) is consistent with the one estimated by synoptic stations during the historical period (1990-2005). The root mean square error (RMSE) value is less than 0.75 in 77% of the synoptic stations. GCMs have high uncertainty in most synoptic stations except those located in the plain. Using the average of a few GCMs to improve performance and reduce uncertainty is suggested by the results. The results revealed that with the areas affected by wetness decreasing in the KRB, drought frequency in the North KRB is likely to increase at the end of the 21st century under RCP4.5 and RCP8.5 scenarios. At the seasonal scale, the decreasing trend for SPI in spring, summer, and winter shows a drought tendency in this region. The climate-induced drought hazard can have vast consequences, especially in agriculture and rural livelihoods. Accordingly, an increasing trend in drought during the growing seasons under RCP scenarios is vital for water managers and farmers to adopt strategies to reduce the damages. The results of this study are of great value for formulating sustainable water resources management plans affected by climate change.



Key wordsclimate change      meteorological drought      Global Climate Models (GCMs)      Standard Precipitation Index (SPI)      Representative Concentration Pathway (RCP)      NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP)      southwestern Iran     
Received: 04 March 2022      Published: 30 April 2023
Corresponding Authors: *Hadi RAMEZANI ETEDALI (E-mail: ramezani@eng.ikiu.ac.ir)
Cite this article:

Sakine KOOHI, Hadi RAMEZANI ETEDALI. Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset. Journal of Arid Land, 2023, 15(4): 377-392.

URL:

http://jal.xjegi.com/10.1007/s40333-023-0097-1     OR     http://jal.xjegi.com/Y2023/V15/I4/377

Fig. 1 Location and spatial distribution of synoptic stations in the Karoun River Basin (KRB)
Synoptic station Elevation (m) Average annual precipitation (mm) Annual average temperature (°C) Climate type
Abadan 6.6 174.3 25.9 Extra-arid
Ahvaz 22.5 238.0 26.0 Arid
Aligudarz 2022.1 394.8 13.2 Mediterranean
Borujen 2260.0 255.2 12.8 Semi-arid
Borujerd 1629.0 473.5 14.9 Mediterranean
Bostan 7.8 211.3 24.1 Arid
Khorramabad 1147.8 487.9 16.7 Semi-arid
Kuhrang 2365.0 1406.8 9.9 Humid
Masjedsoleyman 320.5 457.2 25.0 Semi-arid
Ramhormoz 150.5 330.1 27.5 Arid
Safiabad 82.9 349.5 24.6 Semi-arid
Shahrekord 2048.9 327.3 11.9 Semi-arid
Yasuj 1816.3 886.0 15.0 Humid
Table 1 Brief description of 13 synoptic stations in the Karoun River Basin (KRB)
NEX-GDDP
resolution
Original
resolution
Center GCM
0.25°×0.25° 2.80°×2.80° Canadian Centre for Climate Modelling and Analysis in Canada CanESM2
0.25°×0.25° 0.94°×1.25° National Center for Atmospheric Research in the United States CCSM4
0.25°×0.25° 1.40°×1.40° National Centre for Meteorological Research in France CNRM-CM5
0.25°×0.25° 2.00°×2.50° National Oceanic and Atmospheric Administration (NOAA),
geophysical fluid dynamics laboratory in the United States
GFDL-CM3
0.25°×0.25° 1.25°×2.50° Institute Pierre-Simon Laplace in France IPSL-CM5A-MR
0.25°×0.25° 1.40°×1.40° Meteorological Research Institute in Japan MRI-CGCM3
0.25°×0.25° 1.40°×1.40° Atmosphere and Ocean Research Institute in the University of Tokyo, National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology in Japan MIROC5
Table 2 Details and characteristics of Global Climate Models (GCMs) used in this study
Classification SPI Classification SPI
Near normal -0.50≤SPI≤0.00 Near normal 0.00≤SPI≤0.50
Abnormally dry -0.70≤SPI< -0.50 Abnormally wet 0.50<SPI≤0.70
Moderately dry -1.20≤SPI< -0.70 Moderately wet 0.70<SPI≤1.20
Severely dry -1.50≤SPI< -1.20 Severely wet 1.20<SPI≤1.50
Extremely dry -2.00≤SPI< -1.50 Extremely wet 1.50<SPI≤2.00
Exceptionally dry SPI< -2.00 Exceptionally wet SPI>2.00
Table 3 Classification of dry and wet conditions based on Standard Precipitation Index (SPI)
Fig. 2 Spatial distribution of root mean square error (RMSE) and correlation coefficient (CC) of SPI calculated based on Global Climate Models (GCMs) and synoptic stations as well as spatial distribution of standard deviation (SD) of SPI calculated from each Global Climate Model (GCM). (a1-a3), Canadian Earth System Model version 2 (CanESM2); (b1-b3), Community Climate System Model version 4 (CCSM4); (c1-c3), Center National for Research Meteorological Climate Model version 5 (CNRM-CM5); (d1-d3), Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL-CM3); (e1-e3), Institute Pierre Simon Laplace Climate Model phase 5 Atmospheric Mid Resolution (IPSL-CM5A-MR); (f1-f3), Model for Interdisciplinary Research on Climate version 5 (MIROC5); (g1-g3), Meteorological Research Institute Coupled Global Climate Model version 3 (MRI-CGCM3).
Fig. 3 Spatial distribution of RMSE (a), SD (b), and CC (c) of SPI calculated from the average of all GCMs and observations
Fig. 4 Matrix plot of coefficient of variation (CV) between GCMs and synoptic stations. Class 1 (-4.0-700.0 m), Class 2 (700.0-1660.0 m), Class 3 (1660.0-2430.0 m), and Class 4 (2430.0-4375.0 m) are four distinct elevation classes that are divided based on the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM).
Synoptic station GCM
Borujerd Borujen Aligudarz Ahvaz Abadan
0.00-0.24 0.04-0.26 -0.01-0.23 0.23-0.41 0.24-0.42 CanESM2
0.07-0.29 0.12-0.32 0.06-0.28 0.36-0.52 0.31-0.48 CCSM4
0.04-0.26 0.08-0.29 0.07-0.29 0.26-0.44 0.27-0.44 CNRM-CM5
0.06-0.28 0.12-0.33 0.04-0.27 0.24-0.42 0.30-0.47 GFDL-CM3
0.02-0.25 0.09-0.30 0.03-0.25 0.32-0.48 0.48-0.62 IPSL-CM5A-MR
0.03-0.26 0.06-0.28 0.03-0.25 0.25-0.43 0.27-0.45 MRI-CGCM3
0.05-0.27 0.08-0.29 0.07-0.28 0.22-0.40 0.28-0.45 MIROC5
Ramhormoz Masjedsoleyman Kuhrang Khorramabad Bostan GCM
0.19-0.38 0.20-0.38 0.05-0.27 0.01-0.25 0.21-0.40 CanESM2
0.25-0.43 0.21-0.40 0.10-0.31 0.10-0.31 0.28-0.45 CCSM4
0.22-0.41 0.22-0.41 0.08-0.30 0.05-0.27 0.22-0.40 CNRM-CM5
0.18-0.37 0.17-0.37 0.07-0.29 0.05-0.28 0.23-0.41 GFDL-CM3
0.31-0.48 0.19-0.38 0.06-0.28 0.02-0.25 0.32-0.48 IPSL-CM5A-MR
0.20-0.39 0.21-0.39 0.09-0.30 0.04-0.26 0.23-0.41 MRI-CGCM3
0.20-0.39 0.22-0.40 0.07-0.29 0.05-0.27 0.25-0.43 MIROC5
Yasuj Shahrekord Safiabad GCM
0.05-0.27 0.06-0.28 0.14-0.34 CanESM2
0.11-0.32 0.10-0.31 0.21-0.39 CCSM4
0.07-0.29 0.10-0.31 0.16-0.35 CNRM-CM5
0.13-0.33 0.08-0.29 0.16-0.36 GFDL-CM3
0.11-0.32 0.07-0.28 0.18-0.37 IPSL-CM5A-MR
0.07-0.28 0.08-0.29 0.15-0.35 MRI-CGCM3
0.10-0.31 0.06-0.28 0.18-0.37 MIROC5
Table 4 Results of 95% uncertainty bounds of each GCM for 13 synoptic stations during historical period
Fig. 5 Time series of SPI in each elevation class during 1990-2005. (a), Class 1 (Ramhormoz station); (b), Class 2 (Khorramabad station); (c), Class 3 (Borujen station); (d), Class 4 (Kuhrang station).
Fig. 6 Spatial distribution of drought frequency during 1990-2005 (a), 2009-2039 (b and e), 2040-2069 (c and f), and 2070-2099 (d and g) under RCP4.5 and RCP8.5 scenarios
Fig. 7 Spatial distribution of wetness frequency during 1990-2005 (a), 2009-2039 (b and e), 2040-2069 (c and f), and 2070-2099 (d and g) under RCP4.5 and RCP8.5 scenarios
Fig. 8 Seasonal variations of SPI under RCP4.5 and RCP8.5 scenarios in Kuhrang (a1 and a2), Borujen (b1 and b2), Yasuj (c1 and c2), Aligudarz (d1 and d2), Borujerd (e1 and e2), and Khorramabad (f1 and f2) stations. Bars represent standard errors.
[1]   Ababaei B, Ramezani Etedali H. 2019. Investigating climate change over 1957-2016 in an arid environment with three drought indexes. Theoretical and Applied Climatology, 137: 2977-2992.
doi: 10.1007/s00704-019-02793-0
[2]   Adamson P, Bird J. 2010. The Mekong: A drought-prone tropical environment? International Journal of Water Resources Development, 26(4): 579-594.
doi: 10.1080/07900627.2010.519632
[3]   Aziz A, Umar M, Mansha M, et al. 2018. Assessment of drought conditions using HJ-1A/1B data: a case study of Potohar region, Pakistan. Geomatics, Natural Hazards and Risk, 9(1): 1019-1036.
doi: 10.1080/19475705.2018.1499558
[4]   Bhalme H N, Mooley D A. 1980. Large-scale droughts/floods and monsoon circulation. Monthly Weather Review, 108(8): 1197-1211.
doi: 10.1175/1520-0493(1980)108&lt;1197:LSDAMC&gt;2.0.CO;2
[5]   Bower E, Meneghetti L, O'Connor K. 2015. Global Estimates 2015: People Displaced by Disasters. [2022-04-24]. https://www.internal-displacement.org/publications/global-estimates-2015-people-displaced-by-disasters.
[6]   Brown C E. 1998. Coefficient of variation. In: Brown C E. Applied Multivariate Statistics in Geohydrology and Related Sciences. Heidelberg: Springer.
[7]   Cao F Q, Gao T. 2019. Effect of climate change on the centennial drought over China using high-resolution NASA-NEX downscaled climate ensemble data. Theoretical and Applied Climatology, 138(1-2): 1189-1202.
doi: 10.1007/s00704-019-02895-9
[8]   Chikabvumbwa S R, Salehnia N, Manzanas R, et al. 2022. Assessing the effect of spatial-temporal droughts on dominant crop yield changes in Central Malawi. Environmental Monitoring and Assessment, 194: 63, doi: 10.1007/s10661-021-09709-4.
doi: 10.1007/s10661-021-09709-4 pmid: 34993655
[9]   Cook B I, Ault T R, Smerdon J E. 2015. Unprecedented 21st century drought risk in the American Southwest and Central plains. Science Advances, 1(1), doi: 10.1126/sciadv.1400082.
doi: 10.1126/sciadv.1400082
[10]   Dai A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3(1): 52-58.
doi: 10.1038/nclimate1633
[11]   Das S, Das J, Umamahesh N V. 2021. Identification of future meteorological drought hotspots over Indian region: A study based on NEX-GDDP data. International Journal of Climatology, 41(12): 5644-5662.
doi: 10.1002/joc.v41.12
[12]   Dehghan S, Salehnia N, Sayari N, et al. 2020. Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: A case study in Fars Province, Iran. Journal of Arid Land, 12(2): 318-330.
[13]   Edwards D C. 1997. Characteristics of 20th Century Drought in the United States at Multiple Time Scales. Colorado: Colorado State University.
[14]   Efron B. 1979. Bootstrap methods: another look at the Jackknife. The Annals of Statistics, 7(1): 1-26.
[15]   Efron B, Gong G. 1983. A leisurely look at the bootstrap, the Jackknife, and cross-validation. The American Statistician, 37(1): 36-48.
[16]   Efron B, Tibshirani R J. 1993. An Introduction to the Bootstrap. New York: Chapman and Hall Press.
[17]   Fattahi E, Habibi M, Kouhi M. 2015. Climate change impact on drought intensity and duration in West of Iran. Journal of Earth Science & Climatic Change, 6(10), doi: 10.4172/2157-7617.1000319.
doi: 10.4172/2157-7617.1000319
[18]   Feng S, Trnka M, Hayes M, et al. 2017. Why do different drought indices show distinct future drought risk outcomes in the U.S. great plains? Journal of Climate, 30(1): 265-278.
doi: 10.1175/JCLI-D-15-0590.1
[19]   Fooladi M, Golmohammadi M H, Safavi H R, et al. 2021. Fusion-based framework for meteorological drought modeling using remotely sensed datasets under climate change scenarios: Resilience, vulnerability, and frequency analysis. Journal of Environmental Management, 297: 113283, doi: 10.1016/j.jenvman.2021.113283.
doi: 10.1016/j.jenvman.2021.113283
[20]   Gaitán E, Monjo R, Pórtoles J, et al. 2020. Impact of climate change on drought in Aragon (NE Spain). Science of the Total Environment, 740: 140094, doi: 10.1016/j.scitotenv.2020.140094.
doi: 10.1016/j.scitotenv.2020.140094
[21]   Gibbs W J, Maher J V. 1967. Rainfall Deciles as Drought Indicates. Melbourne: Bureau of Meteorology Press.
[22]   Haile G G, Tang Q, Sun S, et al. 2019. Droughts in East Africa: causes, impacts and resilience. Earth-Science Reviews, 193: 146-161.
doi: 10.1016/j.earscirev.2019.04.015
[23]   Haile G G, Tang Q, Hosseini Moghari S M, et al. 2020. Projected impacts of climate change on drought patterns over East Africa. Earth's Future, 8(7), doi: 10.1029/2020EF001502.
doi: 10.1029/2020EF001502
[24]   Hayes M, Svoboda M, Wall N, et al. 2011. The lincoln declaration on drought indices: universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92(4): 485-488.
doi: 10.1175/2010BAMS3103.1
[25]   Hyndman R J, Koehler A B. 2006. Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4): 679-688.
doi: 10.1016/j.ijforecast.2006.03.001
[26]   Ionita M, Scholz P, Chelcea S. 2016. Assessment of droughts in Romania using the standardized precipitation index. Natural Hazards, 81: 1483-1498.
doi: 10.1007/s11069-015-2141-8
[27]   IPCC Intergovernmental Panel on Climate Change. 2013. Climate change 2013:the physical science basis. In:Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland.
[28]   Karamouz M, Nazif S, Falahi M. 2013. Hydrology and Hydroclimatology Principles and Applications (1st ed.). Florida: CRC Press.
[29]   Khan J U, Islam A K M S, Das M K, et al. 2020. Future changes in meteorological drought characteristics over Bangladesh projected by the CMIP 5 multi-model ensemble. Climatic Change, 162(2): 667-685.
doi: 10.1007/s10584-020-02832-0
[30]   Li Y S, Lu H, Yang K, et al. 2021. Meteorological and hydrological droughts in Mekong river basin and surrounding areas under climate change. Journal of Hydrology: Regional Studies, 36: 100873, doi: 10.1016/j.ejrh.2021.100873.
doi: 10.1016/j.ejrh.2021.100873
[31]   Madani K. 2014. Water management in Iran: what is causing the looming crisis? Journal of Environmental Studies and Sciences, 4(4): 315-328.
doi: 10.1007/s13412-014-0182-z
[32]   Maraun D. 2016. Bias correcting climate change simulations - a critical review. Current Climate Change Reports, 2: 211-220.
doi: 10.1007/s40641-016-0050-x
[33]   McKee T B, Doesken N J, Kleist J. 1993. The relationship of drought frequency and duration to time scales. In:8th Conference on Applied Climatology. Anaheim, USA.
[34]   Mirgol B, Nazari M, Ramezani Etedali H, et al. 2021. Past and future drought trends, duration, and frequency in the semi-arid Urmia lake basin under a changing climate. Meteorological Applications, 28(4): 1-19.
[35]   Modarresi Rad A, AghaKouchak A, Navari M, et al. 2021. Progress, challenges, and opportunities in remote sensing of drought. In: Wu H, Lettenmaier D P, Tang Q H, et al. Global Drought and Flood: Observation, Modeling, and Prediction. Global Drought and Flood: Observation, Modeling, and Prediction. Massachusetts: American Geophysical Union.
[36]   Nam W H, Hayes M J, Svoboda M D, et al. 2015. Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management, 160: 106-117.
doi: 10.1016/j.agwat.2015.06.029
[37]   Noorisameleh Z, Khaledi S, Shakiba A, et al. 2020. Comparative evaluation of impacts of climate change and droughts on river flow vulnerability in Iran. Water Science and Engineering, 13(4): 265-274.
doi: 10.1016/j.wse.2020.05.001
[38]   Osuch M, Romanowicz R J, Lawrence D, et al. 2016. Trends in projections of standardized precipitation indices in a future climate in Poland. Hydrology and Earth System Sciences, 20(5): 1947-1969.
doi: 10.5194/hess-20-1947-2016
[39]   Padiyedath Gopalan S, Kawamura A, Amaguchi H, et al. 2019. A bootstrap approach for the parameter uncertainty of an urban-specific rainfall-runoff model. Journal of Hydrology, 579, doi: 10.1016/j.jhydrol.2019.124195.
doi: 10.1016/j.jhydrol.2019.124195
[40]   Pearson K. 1894. On the dissection of asymmetrical frequency curves. Philosophical Transactions of the Royal Society A, 185: 71-100.
[41]   Pearson K. 1896. Mathematical contributions to the theory of evolution-on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London, 60: 489-498.
[42]   Rahimi J, Ebrahimpour M, Khalili A. 2013. Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Applied Climatology, 112: 409-418.
doi: 10.1007/s00704-012-0741-8
[43]   Salehnia N, Hosseini F, Farid A, et al. 2019. Comparing the performance of dynamical and statistical downscaling on historical run precipitation data over a semi-arid region. Asia-Pacific Journal of Atmospheric Sciences, 55: 737-749.
doi: 10.1007/s13143-019-00112-1
[44]   Salehnia N, Salehnia N, Saradari Torshizi A, et al. 2020. Rainfed wheat (Triticum aestivum L.) yield prediction using economical, meteorological, and drought indicators through pooled panel data and statistical downscaling. Ecological Indicators, 111, doi: 10.1016/j.ecolind.2019.105991.
doi: 10.1016/j.ecolind.2019.105991
[45]   Schwalm C R, Anderegg W R L, Michalak A M, et al. 2017. Global patterns of drought recovery. Nature, 548: 202-205.
doi: 10.1038/nature23021
[46]   Sheffield J, Goteti G, Wood E F. 2006. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate, 19: 3088-3111.
doi: 10.1175/JCLI3790.1
[47]   Shelton M. 2018. Hydroclimatology Perspectives and Applications. Cambridge: Cambridge University Press.
[48]   Soltani M, Laux P, Kunstmann H, et al. 2016. Assessment of climate variations in temperature and precipitation extreme events over Iran. Theoretical and Applied Climatology, 126(3-4): 775-795.
doi: 10.1007/s00704-015-1609-5
[49]   Song Y H, Chung E S, Shiru M S. 2020. Uncertainty analysis of monthly precipitation in GCMs using multiple bias correction methods under different RCPs. Sustainability, 12(18), doi: 10.3390/su12187508.
doi: 10.3390/su12187508
[50]   SPI Standardized Precipitation Index. 2020. Copernicus European Drought Observatory Report, European Commission, Joint Research Centre. [2022-01-10]. https://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_spi.pdf.
[51]   Sternberg T, Thomas D, Middleton N. 2011. Drought dynamics on the Mongolian steppe, 1970-2006. International Journal of Climatology, 31(12): 1823-1830.
[52]   Sunyer M A, Hundecha Y, Lawrence D, et al. 2015. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrology and Earth System Sciences, 19(4): 1827-1847.
doi: 10.5194/hess-19-1827-2015
[53]   Thrasher B, Maurer E P, McKellar C, et al. 2012. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrology and Earth System Sciences, 16(9): 3309-3314.
doi: 10.5194/hess-16-3309-2012
[54]   Thrasher B, Nemani R. 2015. NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) Dataset. [2022-01-25]. https://www.nasa.gov/nex/gddp.
[55]   Vaghefi S A, Keykhai M, Jahanbakhshi F, et al. 2019. The future of extreme climate in Iran. Scientific Reports, 9(1), doi: 10.1038/s41598-018-38071-8.
doi: 10.1038/s41598-018-38071-8
[56]   Vahedifard F, AghaKouchak A, Ragno E, et al. 2017. Lessons from the Oroville dam. Science, 355(6330): 1139-1140.
doi: 10.1126/science.aan0171 pmid: 28302817
[57]   Vaittinada Ayar P, Vrac M, Bastin S, et al. 2016. Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: present climate evaluations. Climate Dynamics, 46: 1301-1329.
doi: 10.1007/s00382-015-2647-5
[58]   Van Dijk A I J M, Beck H E, Crosbie R S, et al. 2013. The millennium drought in southeast Australia (2001-2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resources Research, 49(2): 1040-1057.
doi: 10.1002/wrcr.20123
[59]   Vicente-Serrano S M, Beguería S, López-Moreno J I. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7): 1696-1718.
doi: 10.1175/2009JCLI2909.1
[60]   Wang J S, Wang W, Cheng H, et al. 2021. Propagation from meteorological to hydrological drought and its influencing factors in the Huaihe River Basin. Water, 13(14), doi: 10.3390/w13141985.
doi: 10.3390/w13141985
[61]   Ward P J, Marleen C D R, Mård J, et al. 2020. The need to integrate flood and drought disaster risk reduction strategies. Water Security, 11, doi: 10.1016/j.wasec.2020.100070.
doi: 10.1016/j.wasec.2020.100070
[62]   WMO World Meteorological Organization, GWP (Global Water Partnership). 2016. Handbook of Drought Indicators and Indices. [2022-01-25]. https://library.wmo.int/doc_num.php?explnum_id=3057.
[63]   Wilby R L, Harris I. 2006. A framework for assessing uncertainties in climate change impacts: low flow scenarios for the river Thames, UK. Water Resources Research, 420(2), doi: 10.1029/2005WR004065.
doi: 10.1029/2005WR004065
[64]   Wilhite D A. 2000. Drought as a Natural Hazard:Concepts and Definitions. Drought:A Global Assessment. Nebraska: Nebraska University Press.
[65]   Wilks D S. 2019. Statistical Methods in the Atmospheric Sciences. [2022-01-25]. https://www.sciencedirect.com/book/9780128158234/statistical-methods-in-the-atmospheric-sciences.
[66]   Wood A W, Maurer E P, Kumar A, et al. 2002. Long-range experimental hydrologic forecasting for the eastern United States. Journal of Geophysical Research-Atmospheres, 107, doi: 10.1029/2001JD000659.
doi: 10.1029/2001JD000659
[67]   Wood A W, Leung L R, Sridhar V, et al. 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62: 189-216.
doi: 10.1023/B:CLIM.0000013685.99609.9e
[68]   Wu C, Yeh P J F, Chen Y Y, et al. 2020. Future precipitation-driven meteorological drought changes in the CMIP 5 multi-model ensembles under 1.5°C and 2°C global warming. Journal of Hydrometeorology, 21(9): 2177-2196.
doi: 10.1175/JHM-D-19-0299.1
[69]   Wu C, Yeh P J F, Ju J, et al. 2021. Assessing the spatiotemporal uncertainties in future meteorological droughts from CMIP 5 models, emission scenarios, and bias corrections. Journal of Climate, 34(5): 1903-1922.
doi: 10.1175/JCLI-D-20-0411.1
[70]   Wu H, Hayes M J, Weiss A, et al. 2001. An evaluation of the standardized precipitation index, the China-Z index and the statistical Z-score. International Journal of Climatology, 21(6): 745-758.
doi: 10.1002/(ISSN)1097-0088
[71]   Xu B B, Ju J L, Wu C H, et al. 2019. Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China. Atmospheric Research, 226: 122-137.
doi: 10.1016/j.atmosres.2019.04.018
[1] CHEN Zhuo, SHAO Minghao, HU Zihao, GAO Xin, LEI Jiaqiang. Potential distribution of Haloxylon ammodendron in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(9): 1255-1269.
[2] SUN Chao, BAI Xuelian, WANG Xinping, ZHAO Wenzhi, WEI Lemin. Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022[J]. Journal of Arid Land, 2024, 16(8): 1044-1061.
[3] YAN Yujie, CHENG Yiben, XIN Zhiming, ZHOU Junyu, ZHOU Mengyao, WANG Xiaoyu. Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023[J]. Journal of Arid Land, 2024, 16(8): 1062-1079.
[4] YANG Jianhua, LI Yaqian, ZHOU Lei, ZHANG Zhenqing, ZHOU Hongkui, WU Jianjun. Effects of temperature and precipitation on drought trends in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(8): 1098-1117.
[5] HAN Qifei, XU Wei, LI Chaofan. Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(8): 1118-1129.
[6] WANG Tongxia, CHEN Fulong, LONG Aihua, ZHANG Zhengyong, HE Chaofei, LYU Tingbo, LIU Bo, HUANG Yanhao. Glacier area change and its impact on runoff in the Manas River Basin, Northwest China from 2000 to 2020[J]. Journal of Arid Land, 2024, 16(7): 877-894.
[7] DU Lan, TIAN Shengchuan, ZHAO Nan, ZHANG Bin, MU Xiaohan, TANG Lisong, ZHENG Xinjun, LI Yan. Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China[J]. Journal of Arid Land, 2024, 16(7): 925-942.
[8] Haq S MARIFATUL, Darwish MOHAMMED, Waheed MUHAMMAD, Kumar MANOJ, Siddiqui H MANZER, Bussmann W RAINER. Predicting potential invasion risks of Leucaena leucocephala (Lam.) de Wit in the arid area of Saudi Arabia[J]. Journal of Arid Land, 2024, 16(7): 983-999.
[9] Seyed Morteza MOUSAVI, Hossein BABAZADEH, Mahdi SARAI-TABRIZI, Amir KHOSROJERDI. Assessment of rehabilitation strategies for lakes affected by anthropogenic and climatic changes: A case study of the Urmia Lake, Iran[J]. Journal of Arid Land, 2024, 16(6): 752-767.
[10] LI Chuanhua, ZHANG Liang, WANG Hongjie, PENG Lixiao, YIN Peng, MIAO Peidong. Influence of vapor pressure deficit on vegetation growth in China[J]. Journal of Arid Land, 2024, 16(6): 779-797.
[11] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[12] YANG Zhiwei, CHEN Rensheng, LIU Zhangwen, ZHAO Yanni, LIU Yiwen, WU Wentong. Spatiotemporal variability of rain-on-snow events in the arid region of Northwest China[J]. Journal of Arid Land, 2024, 16(4): 483-499.
[13] ZHANG Mingyu, CAO Yu, ZHANG Zhengyong, ZHANG Xueying, LIU Lin, CHEN Hongjin, GAO Yu, YU Fengchen, LIU Xinyi. Spatiotemporal variation of land surface temperature and its driving factors in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(3): 373-395.
[14] WANG Baoliang, WANG Hongxiang, JIAO Xuyang, HUANG Lintong, CHEN Hao, GUO Wenxian. Runoff change in the Yellow River Basin of China from 1960 to 2020 and its driving factors[J]. Journal of Arid Land, 2024, 16(2): 168-194.
[15] LIU Xinyu, LI Xuemei, ZHANG Zhengrong, ZHAO Kaixin, LI Lanhai. A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains[J]. Journal of Arid Land, 2024, 16(2): 195-219.