Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (9): 905-917    DOI: 10.1007/s40333-021-0017-1
Research article     
Assessing the response of dryland barley yield to climate variability in semi-arid regions, Iran
Mohammad KHEIRI1, Jafar KAMBOUZIA1,*(), Reza DEIHIMFARD1, Saghi M MOGHADDAM2, Seyran ANVARI1
1Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
2Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 16500, Czech Republic
Download: HTML     PDF(733KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Precipitation and temperature are the most abiotic factors that greatly impact the yield of crop, particularly in dryland. Barley, as the main cereal is predominantly cultivated in dryland and the livelihood of smallholders depends on the production of this crop, particularly in arid and semi-arid regions. This study aimed to investigate the response of the grain yield of dryland barley to temperature and precipitation variations at annual, seasonal and monthly scales in seven counties of East and West Azerbaijan provinces in northwestern Iran during 1991-2010. Humidity index (HI) was calculated and its relationship with dryland barley yield was evaluated at annual and monthly scales. The results showed that the minimum, maximum and mean temperatures increased by 0.19°C/a, 0.11°C/a and 0.10°C/a, respectively, while annual precipitation decreased by 0.80 mm/a during 1991-2010. Climate in study area has become drier by 0.22/a in annual HI during the study period. Negative effects of increasing temperature on the grain yield of dryland barley were more severe than the positive effects of increasing precipitation. Besides, weather variations in April and May were related more to the grain yield of dryland barley than those in other months. The grain yield of dryland barley was more drastically affected by the variation of annual minimum temperature comparing with other weather variables. Furthermore, our findings illustrated that the grain yield of dryland barley increased by 0.01 t/hm2 for each unit increase in annual HI during 1991-2010. Finally, any increase in the monthly HI led to crop yield improvement in the study area, particularly in the drier counties, i.e., Myaneh, Tabriz and Khoy in Iran.



Key wordshumidity index      crop yield      spatiotemporal variation      temperature      precipitation     
Received: 24 March 2021      Published: 10 September 2021
Corresponding Authors: *Jafar KAMBOUZIA (E-mail: J_Kambouzia@sbu.ac.ir)
Cite this article:

Mohammad KHEIRI, Jafar KAMBOUZIA, Reza DEIHIMFARD, Saghi M MOGHADDAM, Seyran ANVARI. Assessing the response of dryland barley yield to climate variability in semi-arid regions, Iran. Journal of Arid Land, 2021, 13(9): 905-917.

URL:

http://jal.xjegi.com/10.1007/s40333-021-0017-1     OR     http://jal.xjegi.com/Y2021/V13/I9/905

Fig. 1 Location of the seven counties in the East and West Azerbaijan provinces, Iran
Fig. 2 Time trends of raw (dashed line) and detrended (solid line) barley grain yield in the seven counties during 1991-2010
Fig. 3 Spatial distribution of barley grain yield (a), weather variables (b-e) and annual HI (f) in the seven counties during 1991-2010. Tmin, annual minimum temperature; Tmax, annual maximum temperature; Tmean, annual mean temperature; P, precipitation; HI, humidity index.
County Tmin (°C) Tmax (°C) Tmean (°C) Precipitation (mm) Annual HI Barley grain yield (t/hm2)
Ahar 0.03* 0.06** 0.04* 1.47 -0.17 0.01*
Tabriz 0.11* 0.14** 0.13** -0.35 -0.15* -0.01
Maragheh 0.16** 0.18** 0.17** -1.52 -0.20* 0.02
Myaneh 0.15** 0.20** 0.18** -5.48** -0.40* 0.01
Urmia 0.01 0.08* 0.04* 2.20 -0.42 0.03**
Khoy 0.86 0.06** 0.08* -0.07** -0.11 0.00
Makou 0.04* 0.06* 0.05* -1.86 -0.08 0.01
Table 1 Slope of regression coefficient of the climate variables, annual HI and barley grain yield during 1991-2010
County Tmin-yield Tmax-yield Tmean-yield Precipitation-yield
r P-value r P-value r P-value r P-value
Ahar -0.22 0.44 -0.21 0.45 -0.22 0.44 -0.22 0.42
Tabriz -0.43 0.11 -0.47 0.08 -0.46 0.09 0.11 0.70
Maragheh -0.26 0.36 -0.17 0.54 -0.21 0.46 -0.24 0.39
Myaneh -0.39 0.15 -0.49 0.06 -0.46 0.08 0.43 0.11
Urmia 0.39 0.15 -0.53 0.04 0.47 0.07 -0.29 0.29
Khoy -0.28 0.31 -0.31 0.26 -0.33 0.23 0.26 0.34
Makou -0.54 0.04 -0.54 0.04 -0.54 0.04 -0.15 0.60
Table 2 Analysis of correlations between weather variables and barley grain yield at annual scale during 1991-2010
County Season Tmin-yield Tmax-yield Tmean-yield Precipitation-yield
r P-value r P-value r P-value r P-value
Ahar Winter -0.15 0.59 -0.13 0.66 -0.14 0.63 0.09 0.74
Spring -0.33 0.23 -0.31 0.26 -0.33 0.23 0.17 0.55
Summer -0.14 0.61 -0.01 0.98 -0.06 0.83 -0.37 0.17
Fall -0.02 0.93 -0.11 0.69 -0.08 0.78 0.09 0.76
Tabriz Winter -0.26 0.34 -0.33 0.23 -0.30 0.27 -0.01 0.98
Spring -0.48 0.07 -0.45 0.09 -0.47 0.08 0.15 0.65
Summer -0.25 0.37 -0.04 0.90 -0.14 0.61 0.40 0.14
Fall -0.27 0.34 -0.38 0.16 -0.35 0.20 0.17 0.51
Maragheh Winter 0.05 0.86 0.01 0.98 0.03 0.93 -0.07 0.81
Spring -0.40 0.14 -0.21 0.46 -0.29 0.30 0.13 0.65
Summer 0.09 0.76 0.32 0.25 0.21 0.21 0.34 0.22
Fall -0.58 0.03 -0.50 0.06 -0.54 0.04 0.36 0.19
Myaneh Winter -0.62 0.01 -0.63 0.01 -0.63 0.01 0.16 0.58
Spring -0.72 0.00 -0.59 0.02 -0.65 0.01 0.52 0.04
Summer -0.03 0.93 -0.22 0.43 -0.14 0.62 -0.48 0.07
Fall -0.44 0.10 -0.25 0.37 -0.36 0.19 0.47 0.08
Urmia Winter -0.02 0.93 0.24 0.38 0.22 0.44 -0.23 0.41
Spring -0.25 0.37 -0.22 0.42 -0.23 0.40 0.46 0.08
Summer 0.15 0.59 0.48 0.07 0.39 0.15 -0.32 0.25
Fall -0.36 0.19 -0.48 0.07 -0.48 0.07 -0.10 0.73
Khoy Winter -0.20 0.48 -0.10 0.73 -0.15 0.60 0.35 0.21
Spring -0.18 0.53 -0.53 0.04 -0.35 0.20 -0.16 0.57
Summer -0.09 0.74 0.21 0.45 0.07 0.81 -0.20 0.49
Fall -0.45 0.09 -0.49 0.07 -0.50 0.06 0.50 0.06
Makou Winter -0.39 0.16 -0.29 0.29 -0.35 0.21 0.30 0.28
Spring -0.44 0.10 -0.29 0.30 -0.36 0.19 0.19 0.18
Summer -0.02 0.95 0.03 0.91 0.02 0.96 -0.30 0.29
Fall -0.30 0.28 -0.30 0.22 -0.30 0.27 0.23 0.42
Table 3 Analysis of correlations between weather variables and barley grain yield at seasonal scale during 1991-2010
County Variable Month
Jan Feb Mar Apr May Jun Jul Oct Nov Dec
Ahar Tmin -0.34 0.00 -0.01 -0.09 -0.55* -0.12 -0.09 0.33 0.10 -0.28
Tmax -0.27 -0.05 -0.05 -0.16 -0.52* -0.02 0.18 0.18 0.10 -0.40
Tmean -0.31 -0.03 -0.03 -0.14 -0.58* -0.05 0.11 0.26 0.10 -0.35
P -0.25 0.03 0.22 -0.20 0.00 -0.14 -0.16 -0.13 0.00 0.35
Tabriz Tmin -0.49 -0.09 -0.09 -0.13 -0.60** -0.47 -0.07 0.03 -0.07 -0.29
Tmax -0.46 -0.23 -0.22 -0.25 -0.49 -0.37 0.16 -0.02 -0.09 -0.48
Tmean -0.49 -0.17 -0.17 -0.20 -0.54* -0.42 0.05 0.00 -0.09 -0.40
P -0.19 0.05 0.10 0.13 -0.00 0.20 -0.01 -0.29 0.05 0.60**
Maragheh Tmin -0.12 0.10 0.14 -0.21 -0.31 -0.46 0.29 -0.38 -0.05 -0.43
Tmax -0.14 -0.03 0.14 -0.31 -0.14 -0.08 0.39 -0.36 0.08 -0.44
Tmean -0.13 0.03 0.14 -0.27 -0.21 -0.25 0.35 -0.37 0.04 -0.43
P 0.04 0.30 -0.42 0.30 0.01 -0.22 -0.38 0.23 -0.44 0.22
Myaneh Tmin -0.16 0.14 0.05 -0.54* -0.57* -0.61** -0.03 -0.07 0.01 -0.58
Tmax -0.30 -0.16 -0.13 -0.56* -0.50 -0.39 -0.06 -0.11 -0.05 -0.48
Tmean -0.23 -0.04 -0.07 -0.59* -0.54* -0.50 -0.05 -0.10 -0.03 -0.57*
P -0.09 0.16 0.21 0.55* 0.11 -0.05 -0.23 0.35 0.28 0.29
Urmia Tmin -0.08 0.26 0.33 0.23 0.04 0.36 0.42 0.44 -0.03 -0.07
Tmax -0.01 0.24 0.35 -0.03 0.10 0.43 0.46 0.36 0.12 -0.13
Tmean -0.05 0.25 0.35 0.02 0.09 0.41 0.49 0.44 0.08 -0.11
P -0.30 -0.07 -0.09 -0.35 -0.18 -0.43 -0.42 0.01 -0.30 0.29
Khoy Tmin -0.49 0.03 0.08 -0.15 -0.10 -0.29 -0.12 0.06 -0.39 -0.32
Tmax -0.41 0.05 0.10 -0.40 -0.38 -0.16 0.26 -0.04 -0.29 -0.48
Tmean -0.47 0.04 0.10 -0.31 -0.18 -0.22 0.10 0.01 -0.35 -0.42
P -0.14 0.30 0.28 0.14 -0.18 -0.30 -0.12 0.39 0.30 0.44
Makou Tmin -0.54* -0.24 -0.21 -0.09 -0.76** -0.27 0.14 -0.14 -0.36 -0.13
Tmax -0.51 -0.17 -0.10 -0.11 -0.44 -0.08 0.19 -0.12 -0.18 -0.28
Tmean -0.53* -0.21 -0.15 -0.10 -0.58* -0.16 0.17 -0.11 -0.18 -0.20
P 0.50 0.19 0.01 -0.10 -0.47 -0.18 -0.38 -0.23 0.08 -0.20
Table 4 Analysis of correlations between weather variables and barley grain yield at monthly scale during 1991-2010
Month County
Ahar Tabriz Maragheh Myaneh Urmia Khoy Makou
Jan -0.01 -0.04 0.10 -0.04 -0.24 0.21 0.53*
Feb -0.04 -0.02 0.25 0.02 -0.18 0.23 0.19
Mar 0.26 0.11 -0.39 0.23 -0.20 0.26 0.03
Apr -0.14 0.16 0.32 0.53* -0.28 0.21 -0.06
May 0.44 0.45 0.56* 0.68** -0.11 -0.11 -0.36
Jun -0.12 0.21 -0.22 -0.03 -0.42 -0.28 -0.15
Jul -0.13 -0.02 -0.38 -0.23 0.40 -0.12 -0.38
Oct -0.14 -0.28 0.41 0.37 -0.01 0.38 -0.23
Nov -0.03 0.06 -0.45 0.29 -0.31 0.30 0.10
Dec 0.53* 0.66** 0.24 0.31 0.26 0.64** 0.29
Table 5 Analysis of correlations between HI and barley grain yield at monthly scale during 1991-2010
Fig. 4 Scattered plot of association between barley grain yield and annual HI (humidity index) in the seven counties during 1991-2010. * indicates significance at P<0.05 level.
[1]   Alexandrov V A, Hoogenboom G. 2001. Climate variation and crop production in Georgia, USA, during the twentieth century. Climate Research, 17:33-43.
doi: 10.3354/cr017033
[2]   Asseng S, Foster I, Turner N C. 2011. The impact of temperature variability on wheat yields. Global Change Biology, 17(2):997-1012.
doi: 10.1111/gcb.2010.17.issue-2
[3]   Asseng S, Ewert F, Martre P, et al. 2015. Rising temperatures reduce global wheat production. Nature Climate Change, 5:143-147.
doi: 10.1038/nclimate2470
[4]   Bannayan M, Sanjani S, Alizadeh A, et al. 2010. Association between climate indices, aridity index and rainfed crop yield in northeast of Iran. Field Crops Research, 118(2):105-114.
doi: 10.1016/j.fcr.2010.04.011
[5]   Bathiany S, Dakos V, Scheffer M, et al. 2018. Climate models predict increasing temperature variability in poor countries. Science Advances, 4(5), doi: 10.1126/sciadv.aar5809.
doi: 10.1126/sciadv.aar5809
[6]   Bisbis M B, Gruda N, Blanke M. 2018. Potential impacts of climate change on vegetable production and product quality-A review. Journal of Cleaner Production, 170:1602-1620.
doi: 10.1016/j.jclepro.2017.09.224
[7]   Brisson N, Gate P, Gouache D, et al. 2010. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Research, 119(1):201-212.
doi: 10.1016/j.fcr.2010.07.012
[8]   Cammarano D, Ceccarelli S, Grando S, et al. 2019. The impact of climate change on barley yield in the Mediterranean basin. European Journal of Agronomy, 106:1-11.
doi: 10.1016/j.eja.2019.03.002
[9]   Chen F W, Liu C W. 2012. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3):209-222.
doi: 10.1007/s10333-012-0319-1
[10]   Chen Y, Zhang Z, Wang P, et al. 2016. Identifying the impact of multi-hazards on crop yield-A case for heat stress and dry stress on winter wheat yield in northern China. European Journal of Agronomy, 73:55-63.
doi: 10.1016/j.eja.2015.10.009
[11]   Chen Y, Zhang Z, Tao F L, et al. 2017. Impacts of heat stress on leaf area index and growth duration of winter wheat in the North China Plain. Field Crops Research, 222:230-237.
doi: 10.1016/j.fcr.2017.06.007
[12]   Croitoru A E, Piticar A, Imbroane A M, et al. 2013. Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theoretical and Applied Climatology, 112(3):597-607.
doi: 10.1007/s00704-012-0755-2
[13]   d'Amour C B, Wenz L, Kalkuhl M, et al. 2016. Teleconnected food supply shocks. Environmental Research Letters, 11(3):035007.
[14]   Dawson I K, Russell J, Powell W, et al. 2015. Barley: a translational model for adaptation to climate change. New Phytologist, 206(3):913-931.
doi: 10.1111/nph.13266 pmid: 25605349
[15]   Esri. 2016. ArcGIS Desktop: Release 10.4. Redlands:Environmental Systems Research Institute.
[16]   Farooq M, Hussain M, Siddique K H. 2014. Drought stress in wheat during flowering and grain filling periods. Critical Reviews in Plant Sciences, 33(4):331-349.
doi: 10.1080/07352689.2014.875291
[17]   Fellmann T, Hélaine S, Nekhay O. 2014. Harvest failures, temporary export restrictions and global food security: the example of limited grain exports from Russia, Ukraine and Kazakhstan. Food Security, 6:727-742.
doi: 10.1007/s12571-014-0372-2
[18]   Hatfield J L, Boote K J, Kimball B A, et al. 2011. Climate impacts on agriculture: implications for crop production. Agronomy Journal, 103(2):351-370.
doi: 10.2134/agronj2010.0303
[19]   Jeong H G, Ahn J B, Lee J, et al. 2020. Improvement of daily precipitation estimations using PRISM with inverse-distance weighting. Theoretical and Applied Climatology, 139(3):923-934.
doi: 10.1007/s00704-019-03012-6
[20]   Joseph J, LaViola J R. 2003. An Experiment Comparing Double Exponential Smoothing and Kalman Filter-based Predictive Tracking Aalgorithms. Los Angeles: IEEE, 283.
[21]   Karimi V, Karami E, Keshavarz M. 2018. Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture, 17(1):1-15.
doi: 10.1016/S2095-3119(17)61794-5
[22]   Kheiri M, Soufizadeh S, Ghaffari A, et al. 2017. Association between temperature and precipitation with dryland wheat yield in northwest of Iran. Climatic Change, 141(4):703-717.
doi: 10.1007/s10584-017-1904-5
[23]   Kheiri M, Soufizadeh S, Moghaddam S M, et al. 2021. Exploring the impact of weather variability on phenology, length of growing period, and yield of contrast dryland wheat cultivars. Agricultural Research, https://doi.org/10.1007/s40003-020-00523-x
[24]   Lizaso J I, Ruiz-Ramos M, Rodriguez L, et al. 2018. Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, 216:129-140.
doi: 10.1016/j.fcr.2017.11.013
[25]   Lobell D B, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science, 333:616-620.
doi: 10.1126/science.1204531 pmid: 21551030
[26]   MAJ (Ministry of Agriculture-Jihad). 2018. Ministry of agriculture-Jahad. Distribution of cropping area and crop productivity in Iran. [2020-12-20]. https://www.maj.ir/Dorsapax/userfiles/Sub65/Amarnamehj1-97-98-site.pdf
[27]   Macdonald R B, Hall F G. 1980. Global crop monitoring forecasting. Science, 208(4445):670-679.
pmid: 17771086
[28]   Maleika W. 2020. Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. Applied Geomatics, 12(4):397-407.
doi: 10.1007/s12518-020-00307-6
[29]   Mesgaran M B, Madani K, Hashemi H, et al. 2017. Iran's land suitability for agriculture. Scientific Reports, 7(1):1-12.
doi: 10.1038/s41598-016-0028-x
[30]   Narasimhan B, Srinivasan R. 2005. Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitor. Agricultural and Forest Meteorology, 133(1-4):69-88.
doi: 10.1016/j.agrformet.2005.07.012
[31]   Nio S, Cawthray G, Wade L, et al. 2011. Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiology and Biochemistry, 49(10):1126-1137.
doi: 10.1016/j.plaphy.2011.05.011 pmid: 21741263
[32]   Padakandla S R. 2016. Climate sensitivity of crop yields in the former state of Andhra Pradesh, India. Ecological Indicators, 70:431-438.
doi: 10.1016/j.ecolind.2016.06.008
[33]   Plaut Z, Butow B J, Blumenthal C S, et al. 2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research, 86(2-3):185-198.
doi: 10.1016/j.fcr.2003.08.005
[34]   Qader S H, Dash J, Atkinson P M. 2018. Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq. Science of the Total Environment, 613- 614:250-262.
[35]   Rahimi J, Malekian A, Khalili A. 2019. Climate change impacts in Iran: assessing our current knowledge. Theoretical and Applied Climatology, 135(1):545-564.
doi: 10.1007/s00704-018-2395-7
[36]   Rosenzweig C, Tubiello F N. 1996. Effects of changes in minimum and maximum temperature on wheat yields in the central USA simulation study. Agricultural and Forest Meteorology, 80(2-4):215-230.
doi: 10.1016/0168-1923(95)02299-6
[37]   Schierhorn F, Hofmann M, Adrian I, et al. 2020. Spatially varying impacts of climate change on wheat and barley yields in Kazakhstan. Journal of Arid Environments, 178:104164.
[38]   Senapati N, Stratonovitch P, Paul M J, et al. 2019. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 70(9):2549-2560.
doi: 10.1093/jxb/ery226 pmid: 29901813
[39]   Shirmohammadi B, Malekian A, Salajeghah A, et al. 2020. Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran. Land Use Policy, 90:104299.
[40]   Siebert S, Ewert F. 2014. Future crop production threatened by extreme heat. Environmental Research Letters, 9(4):041001.
[41]   Tabari H, Talaee P H, Nadoushani S M, et al. 2014. A survey of temperature and precipitation based aridity indices in Iran. Quaternary International, 345:158-166.
doi: 10.1016/j.quaint.2014.03.061
[42]   Tao F L, Zhang Z, Zhang S, et al. 2015. Heat stress impacts on wheat growth and yield were reduced in the Huang-Huai-Hai Plain of China in the past three decades. European Journal of Agronomy, 71:44-52.
doi: 10.1016/j.eja.2015.08.003
[43]   Tao F L, Xiao D P, Zhang S, et al. 2017. Wheat yield benefited from increases in minimum temperature in the Huang-Huai-Hai Plain of China in the past three decades. Agricultural and Forest Meteorology, 239:1-14.
doi: 10.1016/j.agrformet.2017.02.033
[44]   Tewolde H, Fernandez C J, Erickson C A. 2006. Wheat cultivars adapted to post heading high temperature stress. Journal of Agronomy and Crop Science, 192(2):111-120.
doi: 10.1111/jac.2006.192.issue-2
[45]   Ugarte C, Calderini D F, Slafer G A. 2007. Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crops Research, 100(2-3):240-248.
doi: 10.1016/j.fcr.2006.07.010
[46]   Xiao D P, Shen Y J, Zhang H, et al. 2016. Comparison of winter wheat yield sensitivity to climate variables under irrigate and rain-fed conditions. Frontiers in Earth Science, 10:444-454.
[47]   Xiao D P, Bai H Z, Liu D L. 2018. Impact of future climate change on wheat production: a simulated case for China's wheat system. Sustainability, 10(4):1277.
doi: 10.3390/su10041277
[48]   Yang X H, Xie X J, Liu D L, et al. 2015. Spatial interpolation of daily rainfall data for local climate impact assessment over greater Sydney region. Advances in Meteorology, 563629.
[49]   Zarghami M, Abdi A, Babaeian I, et al. 2011. Impacts of climate change on runoffs in East Azerbaijan, Iran. Global and Planetary Change, 78(3-4):137-146.
doi: 10.1016/j.gloplacha.2011.06.003
[50]   Zhao C, Liu B, Piao S L, et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceeding of the National Academy of Sciences of the United States of America, 114(35):9326-9331.
[1] Mitiku A WORKU, Gudina L FEYISA, Kassahun T BEKETIE, Emmanuel GARBOLINO. Projecting future precipitation change across the semi-arid Borana lowland, southern Ethiopia[J]. Journal of Arid Land, 2023, 15(9): 1023-1036.
[2] ZHANG Lihua, GAO Han, WANG Junfeng, ZHAO Ruifeng, WANG Mengmeng, HAO Lianyi, GUO Yafei, JIANG Xiaoyu, ZHONG Lingfei. Plant property regulates soil bacterial community structure under altered precipitation regimes in a semi-arid desert grassland, China[J]. Journal of Arid Land, 2023, 15(5): 602-619.
[3] Sakine KOOHI, Hadi RAMEZANI ETEDALI. Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset[J]. Journal of Arid Land, 2023, 15(4): 377-392.
[4] ZHANG Yixin, LI Peng, XU Guoce, MIN Zhiqiang, LI Qingshun, LI Zhanbin, WANG Bin, CHEN Yiting. Temporal and spatial variation characteristics of extreme precipitation on the Loess Plateau of China facing the precipitation process[J]. Journal of Arid Land, 2023, 15(4): 439-459.
[5] LI Hongfang, WANG Jian, LIU Hu, MIAO Henglu, LIU Jianfeng. Responses of vegetation yield to precipitation and reference evapotranspiration in a desert steppe in Inner Mongolia, China[J]. Journal of Arid Land, 2023, 15(4): 477-490.
[6] Adnan ABBAS, Asher S BHATTI, Safi ULLAH, Waheed ULLAH, Muhammad WASEEM, ZHAO Chengyi, DOU Xin, Gohar ALI. Projection of precipitation extremes over South Asia from CMIP6 GCMs[J]. Journal of Arid Land, 2023, 15(3): 274-296.
[7] HAN Mengxue, ZHANG Lin, LIU Xiaoqiang. Subsurface irrigation with ceramic emitters improves wolfberry yield and economic benefits on the Tibetan Plateau, China[J]. Journal of Arid Land, 2023, 15(11): 1376-1390.
[8] WANG Yuxia, ZHANG Jing, YU Xiaojun. Effects of mulch and planting methods on Medicago ruthenica seed yield and soil physical-chemical properties[J]. Journal of Arid Land, 2022, 14(8): 894-909.
[9] WANG Fengjiao, FU Bojie, LIANG Wei, JIN Zhao, ZHANG Liwei, YAN Jianwu, FU Shuyi, GOU Fen. Assessment of drought and its impact on winter wheat yield in the Chinese Loess Plateau[J]. Journal of Arid Land, 2022, 14(7): 771-786.
[10] ABAY Peryzat, GONG Lu, CHEN Xin, LUO Yan, WU Xue. Spatiotemporal variation and correlation of soil enzyme activities and soil physicochemical properties in canopy gaps of the Tianshan Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(7): 824-836.
[11] LI Qian, MA Long, LIU Tingxi. Transformation among precipitation, surface water, groundwater, and mine water in the Hailiutu River Basin under mining activity[J]. Journal of Arid Land, 2022, 14(6): 620-636.
[12] DONG Jianhong, ZHANG Zhibin, LIU Benteng, ZHANG Xinhong, ZHANG Wenbin, CHEN Long. Spatiotemporal variations and driving factors of habitat quality in the loess hilly area of the Yellow River Basin: A case study of Lanzhou City, China[J]. Journal of Arid Land, 2022, 14(6): 637-652.
[13] SU Yuan, GONG Yanming, HAN Wenxuan, LI Kaihui, LIU Xuejun. Dependency of litter decomposition on litter quality, climate change, and grassland type in the alpine grassland of Tianshan Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(6): 691-703.
[14] CHEN Haiyan, CHEN Yaning, LI Dalong, LI Weihong, YANG Yuhui. Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains, Central Asia[J]. Journal of Arid Land, 2022, 14(3): 297-309.
[15] ZHAO Yanni, CHEN Rensheng, HAN Chuntan, WANG Lei. Adjustment of precipitation measurements using Total Rain weighing Sensor (TRwS) gauges in the cryospheric hydrometeorology observation (CHOICE) system of the Qilian Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(3): 310-324.