Please wait a minute...
Journal of Arid Land
Review Articles     
Saline dust storms and their ecological impacts in arid regions
Jilili Abuduwaili, DongWei LIU, GuangYang WU
1 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Download:   PDF(210KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In many arid and semiarid regions, saline playas represent a significant source of unconsolidated sediments available for aeolian transport, and severe saline dust storms occur frequently due to human disturbance. In this study, saline dust storms are reviewed systematically from the aspects of concept, general characteristics, conditions of occurrence, distribution and ecological impact. Our researches showed that saline dust storms are a kind of chemical dust storm originating in dry lake beds in arid and semiarid regions; large areas of unconsolidated saline playa sediments and frequent strong winds are the basic factors to saline dust storm occurrence; there are differentiation characteristics in deposition flux and chemical composition with wind-blown distance during saline dust storm diffusion; and saline dust storm diffusion to some extent increases glacier melt and results in soil salinization in arid regions. An understanding of saline dust storms is important to guide disaster prevention and ecological rehabilitation.

Key wordsCaragana      ITS      trnL-F      phylogeny      cladistic biogeography      DIVA      distribution pattern     
Received: 10 March 2010      Published: 07 June 2010
Corresponding Authors:
Cite this article:

Jilili Abuduwaili, DongWei LIU, GuangYang WU. Saline dust storms and their ecological impacts in arid regions. Journal of Arid Land, 2010, 2(2): 144-150.

URL:

http://jal.xjegi.com/10.3724/SP.J.1227.2010.00144     OR     http://jal.xjegi.com/Y2010/V2/I2/144

[1] Mohammed SOUDDI, Haroun CHENCHOUNI, M'hammed BOUALLALA. Thriving green havens in baking deserts: Plant diversity and species composition of urban plantations in the Sahara Desert[J]. Journal of Arid Land, 2024, 16(9): 1270-1287.
[2] ZHANG Jun, ZHANG Yuanming, ZHANG Qi. Host plant traits play a crucial role in shaping the composition of epiphytic microbiota in the arid desert, Northwest China[J]. Journal of Arid Land, 2024, 16(5): 699-724.
[3] QU Wenjie, ZHAO Wenzhi, YANG Xinguo, WANG Lei, ZHANG Xue, QU Jianjun. Effects of wind speed, underlying surface, and seed morphological traits on the secondary seed dispersal in the Tengger Desert, China[J]. Journal of Arid Land, 2024, 16(4): 531-549.
[4] SHEN Jianxiang, WANG Xin, WANG Lei, WANG Jiahui, QU Wenjie, ZHANG Xue, CHANG Xuanxuan, YANG Xinguo, CHEN Lin, QIN Weichun, ZHANG Bo, NIU Jinshuai. Spatiotemporal characteristics of seed rain and soil seed bank of artificial Caragana korshinskii Kom. forest in the Tengger Desert, China[J]. Journal of Arid Land, 2024, 16(4): 550-566.
[5] PAN Yaqing, KANG Peng, QU Xuan, RAN Yichao, LI Xinrong. Effects of long-term fencing on soil microbial community structure and function in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 431-446.
[6] ZHOU Chongpeng, GONG Lu, WU Xue, LUO Yan. Nutrient resorption and its influencing factors of typical desert plants in different habitats on the northern margin of the Tarim Basin, China[J]. Journal of Arid Land, 2023, 15(7): 858-870.
[7] Mohammad Hossein TAGHIZADEH, Mohammad FARZAM, Jafar NABATI. Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss[J]. Journal of Arid Land, 2023, 15(2): 205-217.
[8] YANG Xinguo, WANG Entian, QU Wenjie, WANG Lei. Biocrust-induced partitioning of soil water between grass and shrub in a desert steppe of Northwest China[J]. Journal of Arid Land, 2023, 15(1): 63-76.
[9] Keiichi KIMURA, Akito KONO, Susumu YAMADA, Tomoyo F KOYANAGI, Toshiya OKURO. Grazing and heat stress protection of native grass by a sand-fixing shrub in the arid lands of northern China[J]. Journal of Arid Land, 2022, 14(8): 867-876.
[10] LIU Yabin, SHI Chuan, YU Dongmei, WANG Shu, PANG Jinghao, ZHU Haili, LI Guorong, HU Xiasong. Characteristics of root pullout resistance of Caragana korshinskii Kom. in the loess area of northeastern Qinghai-Tibet Plateau, China[J]. Journal of Arid Land, 2022, 14(7): 811-823.
[11] ZHANG Yu, ZHANG Mingjun, QU Deye, WANG Shengjie, Athanassios A ARGIRIOU, WANG Jiaxin, YANG Ye. Water use characteristics of different pioneer shrubs at different ages in western Chinese Loess Plateau: Evidence from δ2H offset correction[J]. Journal of Arid Land, 2022, 14(6): 653-672.
[12] Teresa NAVARRO, Hatem A SHABANA, Ali EL-KEBLAWY, Noelia HIDALGO-TRIANA. Delayed seed dispersal species and related traits in the desert of the United Arab Emirates[J]. Journal of Arid Land, 2021, 13(9): 962-976.
[13] CUI Shichao, ZHOU Kefa, ZHANG Guanbin, DING Rufu, WANG Jinlin, CHENG Yinyi, JIANG Guo. A new method of searching for concealed Au deposits by using the spectrum of arid desert plant species[J]. Journal of Arid Land, 2021, 13(11): 1183-1198.
[14] MA Gailing, GOU Qianqian, WANG Guohua, QU Jianjun. Succession of soil bacterial and fungal communities of Caragana korshinskii plantation in a typical agro-pastoral ecotone in northern China over a 50-a period[J]. Journal of Arid Land, 2021, 13(10): 1071-1086.
[15] Arvind BHATT, David J GALLACHER, Paulo R M SOUZA-FILHO. Germination strategies of annual and short-lived perennial species in the Arabian Desert[J]. Journal of Arid Land, 2020, 12(6): 1071-1082.