Most Downloaded

Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

Most Downloaded in Recent Year
Please wait a minute...
For Selected: Toggle Thumbnails
Estimation of meteorological drought indices based on AgMERRA precipitation data and station-observed precipitation data
Journal of Arid Land    2017, 9 (6): 797-809.   DOI: 10.1007/s40333-017-0070-y
Abstract651)   HTML22)    PDF (475KB)(5776)      

Meteorological drought is a natural hazard that can occur under all climatic regimes. Monitoring the drought is a vital and important part of predicting and analyzing drought impacts. Because no single index can represent all facets of meteorological drought, we took a multi-index approach for drought monitoring in this study. We assessed the ability of eight precipitation-based drought indices (SPI (Standardized Precipitation Index), PNI (Percent of Normal Index), DI (Deciles index), EDI (Effective drought index), CZI (China-Z index), MCZI (Modified CZI), RAI (Rainfall Anomaly Index), and ZSI (Z-score Index)) calculated from the station-observed precipitation data and the AgMERRA gridded precipitation data to assess historical drought events during the period 1987-2010 for the Kashafrood Basin of Iran. We also presented the Degree of Dryness Index (DDI) for comparing the intensities of different drought categories in each year of the study period (1987-2010). In general, the correlations among drought indices calculated from the AgMERRA precipitation data were higher than those derived from the station-observed precipitation data. All indices indicated the most severe droughts for the study period occurred in 2001 and 2008. Regardless of data input source, SPI, PNI, and DI were highly inter-correlated (R2=0.99). Furthermore, the higher correlations (R2=0.99) were also found between CZI and MCZI, and between ZSI and RAI. All indices were able to track drought intensity, but EDI and RAI showed higher DDI values compared with the other indices. Based on the strong correlation among drought indices derived from the AgMERRA precipitation data and from the station-observed precipitation data, we suggest that the AgMERRA precipitation data can be accepted to fill the gaps existed in the station-observed precipitation data in future studies in Iran. In addition, if tested by station-observed precipitation data, the AgMERRA precipitation data may be used for the data-lacking areas.

Reference | Related Articles | Metrics
Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015
GUO Bing, ZANG Wenqian, YANG Fei, HAN Baomin, CHEN Shuting, LIU Yue, YANG Xiao, HE Tianli, CHEN Xi, LIU Chunting, GONG Rui
Journal of Arid Land    2020, 12 (1): 1-17.   DOI: 10.1007/s40333-019-0070-1
Abstract301)   HTML20)    PDF (861KB)(813)      

The vegetation ecosystem of the Qinghai-Tibet Plateau in China, considered to be the ′′natural laboratory′′ of climate change in the world, has undergone profound changes under the stress of global change. Herein, we analyzed and discussed the spatial-temporal change patterns and the driving mechanisms of net primary productivity (NPP) in the Qinghai-Tibet Plateau from 2000 to 2015 based on the gravity center and correlation coefficient models. Subsequently, we quantitatively distinguished the relative effects of climate change (such as precipitation, temperature and evapotranspiration) and human activities (such as grazing and ecological construction) on the NPP changes using scenario analysis and Miami model based on the MOD17A3 and meteorological data. The average annual NPP in the Qinghai-Tibet Plateau showed a decreasing trend from the southeast to the northwest during 2000-2015. With respect to the inter-annual changes, the average annual NPP exhibited a fluctuating upward trend from 2000 to 2015, with a steep increase observed in 2005 and a high fluctuation observed from 2005 to 2015. In the Qinghai-Tibet Plateau, the regions with the increase in NPP (change rate higher than 10%) were mainly concentrated in the Three-River Source Region, the northern Hengduan Mountains, the middle and lower reaches of the Yarlung Zangbo River, and the eastern parts of the North Tibet Plateau, whereas the regions with the decrease in NPP (change rate lower than -10%) were mainly concentrated in the upper reaches of the Yarlung Zangbo River and the Ali Plateau. The gravity center of NPP in the Qinghai-Tibet Plateau has moved southwestward during 2000-2015, indicating that the increment and growth rate of NPP in the southwestern part is greater than those of NPP in the northeastern part. Further, a significant correlation was observed between NPP and climate factors in the Qinghai-Tibet Plateau. The regions exhibiting a significant correlation between NPP and precipitation were mainly located in the central and eastern Qinghai-Tibet Plateau, and the regions exhibiting a significant correlation between NPP and temperature were mainly located in the southern and eastern Qinghai-Tibet Plateau. Furthermore, the relative effects of climate change and human activities on the NPP changes in the Qinghai-Tibet Plateau exhibited significant spatial differences in three types of zones, i.e., the climate change-dominant zone, the human activity-dominant zone, and the climate change and human activity interaction zone. These research results can provide theoretical and methodological supports to reveal the driving mechanisms of the regional ecosystems to the global change in the Qinghai-Tibet Plateau.

Table and Figures | Reference | Related Articles | Metrics
Identification of sand and dust storm source areas in Iran
CAO Hui, LIU Jian, WANG Guizhou, YANG Guang, LUO Lei
Journal of Arid Land    2015, 7 (5): 567-578.   DOI: 10.1007/s40333-015-0127-8
Abstract1593)      PDF (485KB)(4576)      
Sand and dust storms (SDS) are common phenomena in arid and semi-arid areas. In recent years, SDS frequencies and intensities have increased significantly in Iran. A research on SDS sources is important for understanding the mechanisms of dust generation and assessing its socio-economic and environmental impacts. In this paper, we developed a new approach to identify SDS source areas in Iran using a combination of nine related datasets, namely drought events, temperature, precipitation, location of sandy soils, SDS frequency, human-induced soil degradation (HISD), human influence index (HII), rain use efficiency (RUE) and net primary productivity (NPP) loss. To identify SDS source areas, we firstly normalized these datasets under uniform criteria including layer reprojection using Lambert conformal conic projection, data conversion from shapefile to raster, Min-Max Normalization with data range from 0 to 1, and data interpolation by Kriging and images resampling (resolution of 1 km). After that, a score map for the possibility of SDS sources was generated through overlaying multiple datasets under average weight allocation criterion, in which each item obtained weight equally. In the score map, the higher the score, the more possible a specific area could be regarded as SDS source area. Exceptions mostly came from large cities, like Tehran and Isfahan. As a result, final SDS source areas were mapped out, and Al-Howizeh/Al-Azim marshes and Sistan Basin were identified as main SDS source areas in Iran. The SDS source area in Al-Howizeh/Al-Azim marshes still keeps expanding. In addition, Al-Howizeh/Al-Azim marshes are now suffering rapid land degradation due to natural and human-induced factors and might totally vanish in the near future. Sistan Basin also demonstrates the impacts of soil degradation and wind erosion. With appropriate intensity, duration, wind speed and altitude of the dust storms, sand particles uplifting from this area might have developed into extreme dust storms, especially during the summer.
Reference | Related Articles | Metrics
Assessment of desertification in Eritrea: land degradation based on Landsat images
G GHEBREZGABHER Mihretab, Taibao YANG, Xuemei YANG, Congqiang WANG
Journal of Arid Land    2019, 11 (3): 319-331.   DOI: 10.1007/s40333-019-0096-4
Abstract378)   HTML32)    PDF (461KB)(826)      

Remote sensing is an effective way in monitoring desertification dynamics in arid and semi-arid regions. In this study, we used a decision tree method based on NDVI (normalized difference vegetation index), SAVI (soil adjusted vegetation index), and vegetation cover proportion to quantify and analyze the desertification in Eritrea using Landsat data of the 1970s, 1980s and 2014. The results demonstrate that the NDVI value and the annual mean precipitation declined while the temperature increased over the past 40 a. Strongly desertified land increased from 4.82×104 km2 (38.5%) in the 1970s to 8.38×104 km2(66.9%) in 2014: approximately 85% of the land of the countrywas under serious desertification, which significantly occurred in arid and semi-arid lowlands of the country (eastern, northern, and western lowlands)withrelatively scarce precipitation and high temperature. The non-desertified area, mostly located in the sub-humid eastern escarpment, also declined from approximately 2.1% to 0.5%. The study concludes that the desertification is a cause of serious land degradation in Eritrea and may link to climate changes, such as low and unpredictable precipitation, and prolonged drought.

Reference | Related Articles | Metrics
Effects of biochar on water movement characteristics in sandy soil under drip irrigation
Shenghai PU, Guangyong LI, Guangmu TANG, Yunshu ZHANG, Wanli XU, Pan LI, Guangping FENG, Feng DING
Journal of Arid Land    2019, 11 (5): 740-753.   DOI: 10.1007/s40333-019-0106-6
Abstract171)   HTML4)    PDF (869KB)(412)      

Biochar addition can improve the physical and hydraulic characteristics of sandy soil. This study investigated the effects of biochar on water holding capacity and water movement in sandy soil under drip irrigation. By indoor simulation experiments, the effects of biochar application at five levels (0%, 1%, 2%, 4%and 6%) on the soil water retention curve, infiltration characteristics of drip irrigation and water distribution were tested and analyzed. The results showed thatbiochar addition rate was positively correlated with water holding capacity of sandy soil and soil available water. Within the same infiltration time, with an increasing amount of added biochar, the diffusion distance of the horizontal wetting front (HWF) tended to decrease, but the infiltration distance of vertical wetting front (VWF) initially declined and then rose. The features of wetted bodies changed from "broad-shallow" to "narrow-deep" type. The relationship between the transport distance of HWF and VWF and the infiltration time was described by a power function. At the same distance from the point source, the larger was the amount of added biochar, the higher was the soil water content. Biochar had a great influence on the water content of the layer with biochar (0-200mm) and had some effects at 200-250mm without biochar; but had less influence on the soil water content deeper than 250mm. For the application rate of biochar of 4%, most water was retained within 0-250mm soil layer. However, when biochar application amount was high (6%), it would be helpful for water infiltration. During the improvement of sandy soil, biochar application rate of 4% in the plow layer had the best effect.

Reference | Related Articles | Metrics
Environmental factors influencing snowfall and snowfall prediction in the Tianshan Mountains, Northwest China
Xueting ZHANG, Xuemei LI, Lanhai LI, Shan ZHANG, Qirui QIN
Journal of Arid Land    2019, 11 (1): 15-28.   DOI: 10.1007/s40333-018-0110-2
Abstract403)   HTML7)    PDF (484KB)(1019)      

Snowfall is one of the dominant water resources in the mountainous regions and is closely related to the development of the local ecosystem and economy. Snowfall predication plays a critical role in understanding hydrological processes and forecasting natural disasters in the Tianshan Mountains, where meteorological stations are limited. Based on climatic, geographical and topographic variables at 27 meteorological stations during the cold season (October to April) from 1980 to 2015 in the Tianshan Mountains located in Xinjiang of Northwest China, we explored the potential influence of these variables on snowfall and predicted snowfall using two methods: multiple linear regression (MLR) model (a conventional measuring method) and random forest (RF) model (a non-parametric and non-linear machine learning algorithm). We identified the primary influencing factors of snowfall by ranking the importance of eight selected predictor variables based on the relative contribution of each variable in the two models. Model simulations were compared using different performance indices and the results showed that the RF model performed better than the MLR model, with a much higher R2 value (R2=0.74; R2, coefficient of determination) and a lower bias error (RSR=0.51; RSR, the ratio of root mean square error to standard deviation of observed dataset). This indicates that the non-linear trend is more applicable for explaining the relationship between the selected predictor variables and snowfall. Relative humidity, temperature and longitude were identified as three of the most important variables influencing snowfall and snowfall prediction in both models, while elevation, aspect and latitude were of secondary importance, followed by slope and wind speed. These results will be beneficial to understand hydrological modeling and improve management and prediction of water resources in the Tianshan Mountains.

Reference | Related Articles | Metrics
Impact factors of soil wind erosion in the center of Taklimakan Desert
Qing HE, XingHua YANG, Ali Mamtimin, ShiHao TANG
Journal of Arid Land    DOI: 10.3724/SP.J.1227.2011.00009
Abstract3647)      PDF (239KB)(5471)      
The development and progress of soil wind erosion are influenced by the factors of climate, terrain, soil and vegetation, etc. This paper, taking Tazhong region, a town in the centre of the Taklimakan Desert, as an example and using comparative and quantitative methods, discussed the effects of climate, surface roughness (including vegetation cover) and surface soil properties on soil wind erosion. The results showed that the climate factor index C of annual wind erosion is 28.3, while the maximum of C is 13.9 in summer and it is only 0.7 in winter. The value of C has a very good exponential relationship with the wind speed. In Tazhong region, the surface roughness height is relatively small with a mean of 6.32 × 10-5 m, which is in favor of soil wind erosion. The wind erosion is further enhanced by its sandy soil types, soil particle size, lacking of vegetation and low soil moisture content. The present situation of soil wind erosion is the result of concurrent effects of climate, vegetation and surface soil properties.
Related Articles | Metrics
A look into the past, present and future potential distributions of Talinopsis frutescens, a North American endemic lineage closely related to Cactaceae
Journal of Arid Land    2020, 12 (1): 104-114.   DOI: 10.1007/s40333-019-0019-4
Abstract162)   HTML2)    PDF (317KB)(656)      

Talinopsis frutescens (Anacampserotaceae, a family that is close related to Cactaceae) is a succulent species endemic to North America. The aim of this study was to explore, using Ecological Niche Modeling (ENM), changes in potential distribution ranges considering different climate scenarios: past conditions during the Last Inter Glacial (LIG) and the Last Glacial Maximum (LGM), the present and projections for 2070 (RCP 2.6 to 8.5). A pattern of contraction is observed during the LIG, which agrees with other studies focused in species from arid environments. This pattern was followed by a migration towards the south during the LGM and a possible recent expansion to the north as is observed in the present scenario. All future projections show the same contraction and fragmentation patterns, resulting in three discontinuous areas: the northern part of the Chihuahuan Desert, the southern-central part of the Mexican Plateau, and the smallest one in the Tehuacán-Cuicatlán Valley. Our projections for future scenarios agree with other studies and support that global climate change tends to alter the current distribution of arid environment species.

Table and Figures | Reference | Related Articles | Metrics
Desert vegetationdistribution and species-environment relationshipsinan oasis-desert ecotone ofnorthwestern China
Peng ZHAO, Jianjun QU, Xianying XU, Qiushi YU, Shengxiu JIANG, Heran ZHAO
Journal of Arid Land    2019, 11 (3): 461-476.   DOI: 10.1007/s40333-019-0055-0
Abstract217)   HTML15)    PDF (452KB)(724)      

Environmental heterogeneity significantly affects the structure of ecological communities. Exploring vegetationdistribution and its relationship with environmental factorsis essential to understanding the abiotic mechanism(s)driving vegetation succession, especially in the ecologically fragile areas. In this study, based on the quantitative analysis of plant community and environmental factors in 68 plots at 10 different transects in the Minqin oasis-desert ecotone (ODE) of northwestern China, we investigated desert vegetation distribution and species-environment relationships using multivariate analysis.Two-way indicator species analysis (TWINSPAN), detrended correspondence analysis (DCA), and canonical correspondence analysis (CCA) methods were used. A total of 28 species, belonging to 27 genera in 8families,were identified. Chenopodiaceae, Zygophyllaceae, Gramineae, and Leguminosae were the largest families. Annual and perennial herbs accounted for 28.60% of the total number of plants, while shrubs (42.90%) werethe most dominant. Nitrariatangutorum was the constructive species of the desert plant community. We divided the 68plots surveyed in this study into 7 community types,according to the results of TWINSPAN. The distribution of these 7 communities in theDCAordination graph showed that species with a similar ecotype were clustered together. Results of CCA indicated that groundwater wasthe dominant factor influencing vegetation distribution, while distance between plot and oasis(Dis) and soil electrical conductivity (EC)were the local second-order factors. Our study suggests that optimizing the utilization of groundwater in oases is key to controlling the degradation of desert vegetation.The favorable topographic conditions of sand dunes should be fully utilized for vegetal dune stabilization, and the influence of soil salinity on the selection of afforestation tree species should be considered.

Reference | Related Articles | Metrics
Rangelands of Central Asia: challenges and opportunities
Journal of Arid Land    2016, 8 (1): 93-108.   DOI: 10.1007/s40333-015-0057-5
Abstract1398)      PDF (258KB)(2031)      
Rangelands of Central Asia (referring to Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan in this study), the largest contiguous area of grazed land in the world, serve as an important source of livelihood for pastoral and agro-pastoral communities in this region. They also play an important role in absorbing CO 2 as a global carbon sink. However, unsustainable management of rangelands has led to their degradation hugely by downgrading their potential agro-ecological, environmental and socio-economical roles. This paper reviewed the rangeland degradation in Central Asia, a topic which so far has received only scant coverage in the international scientific literature. It also provided examples of successful experiences and outlined possible options that land managers can adopt to enhance the sustainable management of these vast degraded rangelands. The experiences and lessons described in this paper may also be relevant for other degraded rangeland areas, especially in the developing countries. The causes of rangeland degradation within the Central Asian region are numerous, complex and inter-related. Therefore, while addressing the factors associated with improper rangeland management may shed some light on the causes of rangeland degradation, the scope of this paper would not be all-encompassing for the major causes of degradation. There is a need to develop and widely apply the viable and locally accepted and adapted packages of technical, institutional and policy options for sustainable rangeland management. Incentivizing the collective action of small-scale pastoralists who group together to facilitate access to remote pastures can reduce the degree of overgrazing within community pastures, such as those near the settlements. We also found that migratory grazing through pooling of resources among small-scale pastoralists can increase household income. After their independence, most Central Asian countries adopted various rangeland tenure arrangements. However, the building of enhanced capacities of pasture management and effective local rangeland governance structures can increase the likelihood, which will be sustainable and equitable. Finally, this paper presented several promising technical options, aiming at reversing the trend of rangeland degradation in Central Asia.
Reference | Related Articles | Metrics
Performance of different drought indices for agriculture drought in the North China Plain
Xianfeng LIU, Xiufang ZHU, Yaozhong PAN, Jianjun BAI, Shuangshuang LI
Journal of Arid Land    2018, 10 (4): 507-516.   DOI: 10.1007/s40333-018-0005-2
Abstract500)   HTML12)    PDF (400KB)(1595)      

The Palmer drought severity index (PDSI), standardized precipitation index (SPI), and standardized precipitation evapotranspiration index (SPEI) are used worldwide for drought assessment and monitoring. However, substantial differences exist in the performance for agricultural drought among these indices and among regions. Here, we performed statistical assessments to compare the strengths of different drought indices for agricultural drought in the North China Plain. Small differences were detected in the comparative performances of SPI and SPEI that were smaller at the long-term scale than those at the short-term scale. The correlation between SPI/SPEI and PDSI considerably increased from 1- to 12-month lags, and a slight decreasing trend was exhibited during 12- and 24-month lags, indicating a 12-month scale in the PDSI, whereas the SPI was strongly correlated with the SPEI at 1- to 24-month lags. Interestingly, the correlation between the trend of temperature and the mean absolute error and its correlation coefficient both suggested stronger relationships between SPI and the SPEI in areas of rapid climate warming. In addition, the yield-drought correlations tended to be higher for the SPI and SPEI than that for the PDSI at the station scale, whereas small differences were detected between the SPI and SPEI in the performance on agricultural systems. However, large differences in the influence of drought conditions on the yields of winter wheat and summer maize were evident among various indices during the crop-growing season. Our findings suggested that multi-indices in drought monitoring are needed in order to acquire robust conclusions.

Reference | Related Articles | Metrics
Mechanisms of bush encroachment and its inter-connection with rangeland degradation in semi-arid African ecosystems: a review
Journal of Arid Land    2017, 9 (2): 299-312.   DOI: 10.1007/s40333-016-0023-x
Abstract903)   HTML1)    PDF (159KB)(1815)      

Many studies show that semi-arid rangelands throughout the world have been rapidly converted from a grassland state to a bush encroachment state during the past 50 years. Bush encroachment includes the spread of local woody species and/or incursion of woody species introduced from other ecosystems into semi-arid savannas and grassland ecosystems. Rangeland degradation due to bush encroachment causes several challenges, affecting the production of livestock and pastoral people livelihoods in most parts of Africa. Scientists have long been attempting to develop schematic and mathematical theories to explain the observed phenomenon of bush encroachment, and several theories were proposed and developed. The well-regarded theories include: (1) Walter’s two-layer model, (2) Moir’s one-layer model, (3) state-and-transition theory, (4) equilibrium theory, (5) disequilibrium theory, and (6) non-equilibrium theory. Within those theories, the most frequently-indicated driving factors that explain bush encroachment include over-grazing, availability of soil nutrient and moisture, elevated CO2 levels, frequency and intensity of fire, spread of seeds of woody species by livestock and wild animals. It should be stressed that couplings and interactions among diverse driving factors are more often at work in determining the condition of bush encroachment. To summarize, the effort in managing semi-arid ecosystems needs critical knowledge to understand the cause-effect relationships of underlying factors through integrated approach. Therefore, future research on encroachment of woody plants should be multi-discipline oriented and multi-partnership involved.

Reference | Related Articles | Metrics
Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
SONG Xiaodong, ZHANG Ganlin, LIU Feng, LI Decheng, ZHAO Yuguo, YANG Jinling
Journal of Arid Land    2016, 8 (5): 734-748.   DOI: 10.1007/s40333-016-0049-0
Abstract1503)      PDF (524KB)(2647)      
Soil moisture content (SMC) is a key hydrological parameter in agriculture, meteorology and climate change, and understanding of spatio-temporal distributions of SMC in farmlands is important to address the precise irrigation scheduling. However, the hybrid interaction of static and dynamic environmental parameters makes it particularly difficult to accurately and reliably model the distribution of SMC. At present, deep learning wins numerous contests in machine learning and hence deep belief network (DBN), a breakthrough in deep learning is trained to extract the transition functions for the simulation of the cell state changes. In this study, we used a novel macroscopic cellular automata (MCA) model by combining DBN to predict the SMC over an irrigated corn field (an area of 22 km 2) in the Zhangye oasis, Northwest China. Static and dynamic environmental variables were prepared with regard to the complex hydrological processes. The widely used neural network, multi-layer perceptron (MLP), was utilized for comparison to DBN. The hybrid models (MLP-MCA and DBN-MCA) were calibrated and validated on SMC data within four months, i.e. June to September 2012, which were automatically observed by a wireless sensor network (WSN). Compared with MLP-MCA, the DBN-MCA model led to a decrease in root mean squared error (RMSE) by 18%. Thus, the differences of prediction errors increased due to the propagating errors of variables, difficulties of knowing soil properties and recording irrigation amount in practice. The sequential Gaussian simulation (sGs) was performed to assess the uncertainty of soil moisture estimations. Calculated with a threshold of SMC for each grid cell, the local uncertainty of simulated results in the post processing suggested that the probability of SMC less than 25% will be difference in different areas at different time periods. The current results showed that the DBN-MCA model performs better than the MLP-MCA model, and the DBN-MCA model provides a powerful tool for predicting SMC in highly non-linear forms. Moreover, because modeling soil moisture by using environmental variables is gaining increasing popularity, DBN techniques could contribute a lot to enhancing the calibration of MCA-based SMC estimations and hence provide an alternative approach for SMC monitoring in irrigation systems on the basis of canals.
Reference | Related Articles | Metrics
Effects of different loading rates and types of biochar on passivations of Cu and Zn via swine manure composting
CHEN Yan, XU Yongping, QU Fangjing, HOU Fuqin, CHEN Hongli, LI Xiaoyu
Journal of Arid Land    2020, 12 (6): 1056-1070.   DOI: 10.1007/s40333-020-0026-5
Abstract61)   HTML4)    PDF (694KB)(550)      

Pollution of arable land caused by heavy metals in livestock and poultry manure has become a potential threaten to human health in China. Safe disposal of the contained toxic pollution with animal manure by co-composting with biochar is one of the alternative methods. Biochars from different sources (wheat straw, peanut shells and rice husks) amended with different loading rates were investigated for passivations of copper and zinc (Cu and Zn) in swine manure composting. Results showed that the passivation effects of the three types of biochar on Cu and Zn were enhanced with increasing biochar dose. Contents of Cu and Zn measured by diethylenetriaminepentaacetic acid (DTPA) and Community Bureau of Reference (CBR) showed that wheat straw biochar with the loading rates of 10%-13% (w/w) was superior to the other two types of biochar in this study. Compared with the control, sample from wheat straw biochar was more favorable for the bacterial growth of Proteobacteria, Firmicutes and Actinobacteria. In addition, pot experiment showed that organic fertilizer amended with wheat straw biochar could significantly improve the growth of Chinese pakchoi and enzyme activities (superoxide dismutase, peroxidase, polyphenol oxidase and catalase) as compared with the control. Cu and Zn contents of Chinese pakchoi in the organic fertilizer group containing wheat straw biochar reduced by 73.2% and 45.2%, 65.8% and 33.6%, respectively, compared with the group without loading biochar. There was no significant difference in the contents of vitamin C and reducing sugar between the groups of organic fertilizer amended with/without wheat straw biochar, however, there was significant difference compared with the heavy metal addition group. The application of organic fertilizer formed by adding biochar can effectively reduce the adverse effects of heavy metals on crops.

Table and Figures | Reference | Related Articles | Metrics
Ice thickness distribution and volume estimation of Burqin Glacier No. 18 in the Chinese Altay Mountains
JIN Shuang, LI Zhongqin, WANG Zemin, WANG Feiteng, XU Chunhai, AI Songtao
Journal of Arid Land    2020, 12 (6): 905-916.   DOI: 10.1007/s40333-020-0083-9
Abstract117)   HTML17)    PDF (2563KB)(566)      

Information on the thickness distribution and volume of glacier ice is highly important for glaciological applications; however, detailed measurements of the ice thickness of many glaciers in the Chinese Altay Mountains remain lacking. Burqin Glacier No. 18 is a northeast-orientated cirque glacier located on the southern side of the Altay Mountains. This study used PulseEKKO® PRO 100A enhancement ground-penetrating radar (GPR) to survey the ice thickness and volume of Burqin Glacier No. 18 in summer 2018. Together with GPR surveying, spatial distributed profiles of the GPR measurements were concurrently surveyed using the real-time kinematic (RTK) global navigation satellite system (GNSS, Unistrong E650). Besides, we used QuickBird, WorldView-2, and Landsat TM to delineate accurate boundary of the glacier for undertaking estimation of glacier ice volume. GPR measurements revealed that the basal topography of profile B1-B2 was flat, the basal topography of profile C1-C2 presented a V-type form, and the basal topography of profile D1-D2 had a typical U-type topographic feature because the bedrock near the central elevation of the glacier was relatively flat. The longitudinal profile A1-A2 showed a ladder-like distribution. Glacier ice was thin at the terminus and its thickness increased gradually from the elevation of approximately 2620 m a.s.l. along the main axis of the glacier tongue with an average value of 80 (±1) m. The average ice thickness of the glacier was determined as 27 (±2) m and its total ice volume was estimated at 0.031 (±0.002) km3. Interpretation of remote sensing images indicated that during 1989-2016, the glacier area reduced from 1.30 to 1.17 km2 (reduction of 0.37%/a) and the glacier terminus retreated at the rate of 8.48 m/a. The mean ice thickness of Burqin Glacier No. 18 was less than that of the majority of other observed glaciers in China, especially those in the Qilian Mountains and Central Chinese Tianshan Mountains; this is probably attributable to differences in glacier type and climatic setting.

Table and Figures | Reference | Related Articles | Metrics
Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: a case study in Fars Province, Iran
Journal of Arid Land    2020, 12 (2): 318-330.   DOI: 10.1007/s40333-020-0095-5
Abstract712)   HTML17)    PDF (921KB)(843)      

Drought is one of the most significant environmental disasters, especially in arid and semi-arid regions. Drought indices as a tool for management practices seeking to deal with the drought phenomenon are widely used around the world. One of these indicators is the Palmer drought severity index (PDSI), which is used in many parts of the world to assess the drought situation and continuation. In this study, the drought state of Fars Province in Iran was evaluated by using the PDSI over 1995-2014 according to meteorological data from six weather stations in the province. A statistical downscaling model (SDSM) was used to apply the output results of the general circulation model in Fars Province. To implement data processing and prediction of climate data, a statistical period 1995-2014 was considered as the monitoring period, and a statistical period 2019-2048 was for the prediction period. The results revealed that there is a good agreement between the simulated precipitation (R2>0.63; R2, determination coefficient; MAE<0.52; MAE, mean absolute error; RMSE<0.56; RMSE, Root Mean Squared Error) and temperature (R2>0.95, MAE<1.74, and RMSE<1.78) with the observed data from the stations. The results of the drought monitoring model presented that dry periods would increase over the next three decades as compared to the historical data. The studies showed the highest drought in the meteorological stations Abadeh and Lar during the prediction period under two future scenarios representative concentration pathways (RCP4.5 and RCP8.5). According to the results of the validation periods and efficiency criteria, we suggest that the SDSM is a proper tool for predicting drought in arid and semi-arid regions.

Table and Figures | Reference | Related Articles | Metrics
Assessment of drought hazard, vulnerability and risk in Iran using GIS techniques
Journal of Arid Land    2020, 12 (6): 984-1000.   DOI: 10.1007/s40333-020-0096-4
Abstract176)   HTML12)    PDF (2750KB)(768)      

The drought has enormous adverse effects on agriculture, water resources and environment, and causes damages around the world. Drought risk assessment and prioritization of drought management can help decision makers and planners to manage the adverse effects of drought. This paper aims to determine the risk of drought in Iran. At the first stage, standardized precipitation index (SPI) was calculated for the period 1981-2016. Then the probability map of different drought classes or drought hazard probability map were prepared. After that the indicator-based vulnerability assessment method was used to determine the drought vulnerability index. Five indices including climate, topography, waterway density, land use and groundwater resources were chosen as the most critical factors of drought in Iran and followed by the analytical hierarchy process questionnaire, the weights of each index were obtained based on expert opinions. Fuzzy membership maps of each index and sub-index were prepared using ArcGIS software. The drought vulnerability map of Iran was plotted using these weights and maps of each indicator. Finally, the drought risk map of Iran was provided by multiplying drought hazard and vulnerability maps. According to the 43-completed questionnaires by experts, climate index has the highest vulnerability to drought. Climate does not have an important role in drought hazard index, but it is the most crucial factor to classified drought vulnerability index. The results showed that central, northeast, southeast and west parts of Iran are at high risks of drought. There are regions with different risks in Iran due to unusual weather and climatic conditions. We realized that the climate and the groundwater situation is almost the same in the central, east and south parts of Iran, because the land use plays a crucial role in the drought vulnerability and risk in these areas. The drought risk decreases from the center of Iran to the southwest and northwest.

Table and Figures | Reference | Related Articles | Metrics
Mass balance of saline lakes considering inflow loads of rivers and groundwater: the case of Lake Issyk- Kul, Central Asia
Journal of Arid Land    2021, 13 (12): 1260-1273.   DOI: 10.1007/s40333-021-0026-0
Abstract51)   HTML9)    PDF (1155KB)(352)      

This study aimed to elucidate the influence of inflow water on the salinity concentration process of a saline lake and the mass balance of Lake Issyk-Kul, a tectonic saltwater lake in Kyrgyzstan. Based on the survey results and meteorological data from 2012 to 2015, we analyzed the dissolved chemical composition loads due to water inflow. Then, we discussed the relationship between the increase in salinity and water inflow into the lake. Through the water quality analysis data, we used the tank model to estimate the river inflow and analyze the loads by the L-Q curve. The groundwater loads were then estimated from the average annual increase in salinity of the lake over a period of 30 a. The results suggest that Lake Issyk-Kul was temporarily freshened between about AD 1500 and 1800 when an outflowing river existed, and thereafter, it became a closed lake in AD 1800 and continued to remain a saline lake until present. The chemical components that cause salinization are supplied from the rivers and groundwater in the catchment area, and when they flow into the lake, Ca2+, HCO3- and Mg2+ precipitate as CaCO3 and MgCO3. These compounds were confirmed to have been left on the lakeshore as evaporite. The model analysis showed that 1.67 mg/L of Ca2+ and Mg2+ supplied from rivers and groundwater are precipitated as evaporite and in other forms per year. On the other hand, salinity continues to remain in the lake water at a rate of 27.5 mg/L per year. These are the main causes of increased salinity in Lake Issyk-Kul. Since Na+ and Cl- are considered to be derived from geothermal water, they will continue to flow in regardless of the effects of human activities. Therefore, as long as these components are accumulated in Lake Issyk-Kul as a closed lake, the salinity will continue to increase in the future.

Table and Figures | Reference | Related Articles | Metrics
Long-term variations in runoff of the Syr Darya River Basin under climate change and human activities
Journal of Arid Land    2021, 13 (1): 56-70.   DOI: 10.1007/s40333-021-0050-0
Abstract91)   HTML10)    PDF (1334KB)(523)      

In this study, we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930-2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff. The Syr Darya River, which is supplied by snow and glacier meltwater upstream, is an important freshwater source for Central Asia, as nearly half of the population is concentrated in this area. River runoff in this arid region is sensitive to climate change and human activities. Therefore, estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management. The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods, including the Pettitt change point test and Mann-Kendall trend tests. It was found that 8 out of 11 hydrological stations showed significant downward trends in river runoff. Change of river runoff variations occurred in the year around 1960. Moreover, during the study period (1930-2015), annual mean temperature, annual precipitation, and annual potential evapotranspiration in the river basin increased substantially. We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration. It was estimated that human activities accounted for over 82.6%-98.7% of the reduction in river runoff, mainly owing to water withdrawal for irrigation purpose. The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.

Table and Figures | Reference | Related Articles | Metrics
Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin
WANG Jie, LIU Dongwei, MA Jiali, CHENG Yingnan, WANG Lixin
Journal of Arid Land    2021, 13 (1): 40-55.   DOI: 10.1007/s40333-021-0052-y
Abstract137)   HTML16)    PDF (945KB)(838)      

The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia. It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin. In this study, the arid remote sensing ecological index (ARSEI) for large-scale arid areas was developed, which coupled the information of the greenness index, the salinity index, the humidity index, the heat index, and the land degradation index of arid areas. The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019. The results show that the greenness index, the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin, while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment. The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement, followed by deterioration, and finally further improvement. The spatial variation of these changes was significant. From 2000 to 2019, grassland and wasteland (saline alkali land and sandy land) in the central and western parts of the basin had the worst ecological environment quality. The areas with poor ecological environment quality are mainly distributed in rivers, wetlands, and cultivated land around lakes. During the period from 2000 to 2019, except for the surrounding areas of the Aral Sea, the ecological environment quality in other areas of the Aral Sea Basin has been improved in general. The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were -0.593 and 0.524, respectively. Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin. However, human activities had a greater impact. The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas; it is very suitable for the study of the eco-environmental quality in arid areas.

Table and Figures | Reference | Related Articles | Metrics
Ecosystem service values of gardens in the Yellow River Basin, China
GE Qianqian, XU Wenjie, FU Meichen, HAN Yingxin, AN Guoqiang, XU Yuetong
Journal of Arid Land    2022, 14 (3): 284-296.   DOI: 10.1007/s40333-022-0061-5
Abstract131)   HTML38)    PDF (802KB)(307)      

Studies on the ecosystem service value (ESV) of gardens are critical for informing evidence- based land management practices based on an understanding of the local ecosystem. By analyzing equivalent value factors (EVFs), this paper evaluated the values of 11 ecosystem services of gardens in the Yellow River Basin of China in 2019. High-precision land use survey data were used to improve the accuracy of the land use classification, garden areas, and spatial distribution of the ESVs of gardens. The results showed that garden ecosystem generally had high ESVs, especially in terms of the ESV of food production, which is worthy of further research and application to the practice of land use planning and management. Specifically, the value of one standard EVF of ecosystem services in 2019 was 3587.04 CNY/(hm2•a), and the ESV of food production of gardens was much higher than that of croplands. Garden ecosystem provided an ESV of 1348.66×108 CNY/a in the Yellow River Basin. The areas with the most concentrated ESVs of gardens were located in four regions: downstream in the Shandong-Henan zone along the Yellow River, mid-stream in the Shanxi-Shaanxi zone along the Yellow River, the Weihe River Basin, and upstream in the Qinghai-Gansu-Ningxia-Inner Mongolia zone along the Yellow River. The spatial correlation of the ESVs in the basin was significant (global spatial autocorrelation index Moran's I=0.464), which implied that the characteristics of high ESVs adjacent to high ESVs and low ESVs adjacent to low ESVs are prominent. In the Yellow River Basin, the contribution of the ESVs of gardens to the local environment and economy varied across regions. We also put forward some suggestions for promoting the construction of ecological civilization in the Yellow River Basin. The findings of this study provide important contributions to the research of ecosystem service evaluation in the Yellow River Basin.

Table and Figures | Reference | Related Articles | Metrics
Saline dust storms and their ecological impacts in arid regions
Jilili Abuduwaili, DongWei LIU, GuangYang WU
Journal of Arid Land    DOI: 10.3724/SP.J.1227.2010.00144
Abstract3339)      PDF (210KB)(3893)      
In many arid and semiarid regions, saline playas represent a significant source of unconsolidated sediments available for aeolian transport, and severe saline dust storms occur frequently due to human disturbance. In this study, saline dust storms are reviewed systematically from the aspects of concept, general characteristics, conditions of occurrence, distribution and ecological impact. Our researches showed that saline dust storms are a kind of chemical dust storm originating in dry lake beds in arid and semiarid regions; large areas of unconsolidated saline playa sediments and frequent strong winds are the basic factors to saline dust storm occurrence; there are differentiation characteristics in deposition flux and chemical composition with wind-blown distance during saline dust storm diffusion; and saline dust storm diffusion to some extent increases glacier melt and results in soil salinization in arid regions. An understanding of saline dust storms is important to guide disaster prevention and ecological rehabilitation.
Related Articles | Metrics
Spatial dynamics of aboveground carbon stock in urban green space: a case study of Xi’an, China
ZhengYang YAO, JianJun LIU, XiaoWen ZHAO, DongFeng LONG, Li WANG
Journal of Arid Land    2015, 7 (3): 350-360.   DOI: 10.1007/s40333-014-0082-9
Abstract1615)      PDF (1573KB)(2335)      
Greenhouse gas emission of carbon dioxide (CO2) is one of the major factors causing global climate change. Urban green space plays a key role in regulating the global carbon cycle and reducing atmospheric CO2. Quantifying the carbon stock, distribution and change of urban green space is vital to understanding the role of urban green space in the urban environment. Remote sensing is a valuable and effective tool for monitoring and estimating aboveground carbon (AGC) stock in large areas. In the present study, different remotely-sensed vegetation indices (VIs) were used to develop a regression equation between VI and AGC stock of urban green space, and the best fit model was then used to estimate the AGC stock of urban green space within the beltways of Xi’an city for the years 2004 and 2010. A map of changes in the spatial distribution patterns of AGC stock was plotted and the possible causes of these changes were analyzed. Results showed that Normalized Difference Vegetation Index (NDVI) correlated moderately well with AGC stock in urban green space. The Difference Vegetation Index (DVI), Ratio Vegetation Index (RVI), Soil Adjusted Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index (MSAVI) and Renormalized Difference Vegetative Index (RDVI) were lower correlation coefficients than NDVI. The AGC stock in the urban green space of Xi’an in 2004 and 2010 was 73,843 and 126,621 t, respectively, with an average annual growth of 8,796 t and an average annual growth rate of 11.9%. The carbon densities in 2004 and 2010 were 1.62 and 2.77 t/hm 2, respectively. Precipitation was not an important factor to influence the changes of AGC stock in the urban green space of Xi’an. Policy orientation, major ecological greening projects such as “transplanting big trees into the city” and the World Horticultural Exposition were found to have an important impact on changes in the spatiotemporal patterns of AGC stock.
Reference | Related Articles | Metrics
Biomass and carbon stocks in three types of Persian oak ( Quercus brantii var. persica) of Zagros forests in a semi-arid area, Iran
Journal of Arid Land    2020, 12 (5): 766-774.   DOI: 10.1007/s40333-020-0027-4
Abstract92)   HTML5)    PDF (252KB)(501)      

Persian oak (Quercus brantii var. persica) is a dominant tree species of Zagros forests in a semi-arid area, western Iran. However, the capacity of biomass and carbon stocks of these forests is not well studied. We selected three types of oak, i.e., seed-originated oak, coppice oak and mixed (seed-originated and coppice) oak of Zagros forests in Dalab valley, Ilam Province, Iran to survey the capacity of biomass and carbon stocks in 2018. Thirty plots with an area of 1000 m2 were systematically and randomly assigned to each type of oak. Quantitative characteristics of trees, such as diameter at breast height (DBH), height, crown diameter and the number of sprouts in each plot were measured. Then, aboveground biomass (AGB), belowground biomass (BGB), aboveground carbon stock (AGCS) and belowground carbon stock (BGCS) of each tree in plots were calculated using allometric equations. The litterfall biomass (LFB) and litterfall carbon stock (LFCS) were measured in a quadrat with 1 m×1 m in each plot. One-way analysis of variance and Duncan's test were performed to detect the differences in biomass and carbon stocks among three types of oak. Results showed that AGB, BGB and BGCS were significantly different among three types of oak. The highest values of AGB, AGCS, BGB and BGCS in seed-originated oak were 76,043.25, 14,725.55, 36,737.79 and 7362.77 kg/hm2, respectively. Also, the highest values of LFB and LFCS in seed-originated oak were 3298.33 and 1520.48 kg/hm2, respectively, which were significantly higher than those of the other two types of oak. The results imply the significant role of seed-originated oak for the regeneration of Zagros forests. Further conservation strategy of seed-originated oak is an important step in the sustainable management of Zagros forests in Iran.

Table and Figures | Reference | Related Articles | Metrics
Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from saline soil of Uzbekistan and their plant beneficial traits
Journal of Arid Land    2020, 12 (5): 730-740.   DOI: 10.1007/s40333-020-0019-4
Abstract171)   HTML8)    PDF (423KB)(658)      

Endophytic bacteria of halophytic plants play essential roles in salt stress tolerance. Therefore, an understanding of the true nature of plant-microbe interactions under extreme conditions is essential. The current study aimed to identify cultivable endophytic bacteria associated with the roots and shoots of Seidlitzia rosmarinus Ehrenb. ex Boiss. grown in the salt-affected soil in Uzbekistan and to evaluate their plant beneficial traits related to plant growth stimulation and stress tolerance. Bacteria were isolated from the roots and the shoots of S. rosmarinus using culture-dependent techniques and identified by the 16S rRNA gene. RFLP (Restriction Fragment Length Polymorphism) analysis was conducted to eliminate similar isolates. Results showed that the isolates from the roots of S. rosmarinus belonged to the genera Rothia, Kocuria, Pseudomonas, Staphylococcus, Paenibacillus and Brevibacterium. The bacterial isolates from the shoots of S. rosmarinus belonged to the genera Staphylococcus, Rothia, Stenotrophomonas, Brevibacterium, Halomonas, Planococcus, Planomicrobium and Pseudomonas, which differed from those of the roots. Notably, Staphylococcus, Rothia and Brevibacterium were detected in both roots and shoots, indicating possible migration of some species from roots to shoots. The root-associated bacteria showed higher levels of IAA (indole-3-acetic acid) synthesis compared with those isolated from the shoots, as well as the higher production of ACC (1-aminocyclopropane-1-carboxylate) deaminase. Our findings suggest that halophytic plants are valuable sources for the selection of microbes with a potential to improve plant fitness under saline soils.

Table and Figures | Reference | Related Articles | Metrics
Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China
HU Haiying, ZHU Lin, LI Huixia, XU Dongmei, XIE Yingzhong
Journal of Arid Land    2021, 13 (2): 109-122.   DOI: 10.1007/s40333-021-0051-z
Abstract146)   HTML25)    PDF (1483KB)(808)      

Frequent periods of drought conditions are known to limit plant performance, primary production, and ecosystem stability in arid and semi-arid desert steppe environments. Plants often avoid competition by shifting their water use seasonally, which affects the water-use patterns of dominant species as well as the composition and structure of plant communities. However, the water-use strategies of dominant herbaceous species, which grow under natural field conditions in the desert steppe region of Ningxia Hui Autonomous Region, China, are poorly known. Here, we explored the possible sources of water uptake and water-use efficiency (WUE) of three dominant herbaceous plant species (Stipa breviflora, Agropyron mongolicum, and Glycyrrhiza uralensis) in a native desert steppe in the semi-arid area of Ningxia through an analysis of multiple parameters, including (1) the stable isotopic oxygen and hydrogen (δ 18O and δ 2H) compositions of precipitation, soil water, and stem water, (2) the carbon isotope ( 13C) composition of leaves, and (3) the soil water contents, based on field sampling across varying water conditions from June to September, 2017. Frequent small precipitation events replenished shallow soil water, whereas large events only percolated down to the deep soil layers. Changes in soil water availability affected the water-use patterns of plants. Generally, during light precipitation periods, the deep root system of G. uralensis accessed deeper (>80 cm) soil water, whereas S. breviflora and A. mongolicum, which only have shallow roots, primarily absorbed water from the shallow and middle soil layers. As precipitation increased, all three plant species primarily obtained water from the shallow soil layers. Variation in soil water uptake between the dry and wet seasons enabled plants to make better use of existing satoil water. In addition, the δ 13C values of G. uralensis and S. breviflora were higher than those of A. mongolicum. The δ 13C values of the three plant species were significantly negatively correlated with soil water content. Therefore, G. uralensis and S. breviflora maintained a higher WUE through their conservative and water-saving strategies across the entire growing season. In contrast, A. mongolicum, with a relatively low WUE in the wet season but a high WUE in the dry season, exhibited a more flexible water-use strategy. The different water-use strategies of these dominant plant species demonstrated the mechanisms by which plant communities can respond to drought.

Table and Figures | Reference | Related Articles | Metrics
Distribution of soil aggregates and organic carbon in deep soil under long-term conservation tillage with residual retention in dryland
Bisheng WANG, Lili GAO, Weishui YU, Xueqin WEI, Jing LI, Shengping LI, Xiaojun SONG, Guopeng LIANG, Dianxiong CAI, Xueping WU
Journal of Arid Land    2019, 11 (2): 241-254.   DOI: 10.1007/s40333-019-0094-6
Abstract245)   HTML5)    PDF (389KB)(704)      

To ascertain the effects of long-term conservation tillage and residue retention on soil organic carbon (SOC) content and aggregate distribution in a deep soil (>20-cm depth) in a dryland environment, this paper analyzed the SOC and aggregate distribution in soil, and the aggregate-associated organic carbon (OC) and SOC physical fractions. Conservation tillage (reduced tillage with residue incorporated (RT) and no-tillage with residue mulch (NT)) significantly increased SOC sequestration and soil aggregation in deep soil compared with conventional tillage with residue removal (CT). Compared with CT, RT significantly increased the proportion of small macroaggregates by 23%-81% in the 10-80 cm layer, and the OC content in small macroaggregates by 1%-58% in the 0-80 cm layer. RT significantly increased (by 24%-90%) the OC content in mineral-SOC within small macroaggregates in the 0-60 cm layer, while there was a 23%-80% increase in the 0-40 cm layer with NT. These results indicated that: (1) conservation tillage treatments are beneficial for soil aggregation and SOC sequestration in a deep soil in a dryland environment; and (2) the SOC in mineral-associated OC plays important roles in soil aggregation and SOC sequestration. In conclusion, RT with NT is recommended as an agricultural management tool in dryland soils because of its role in improving soil aggregation and SOC sequestration.

Reference | Related Articles | Metrics
Grazing exclusion-induced shifts, the relative importance of environmental filtering, biotic interactions and dispersal limitation in shaping desert steppe communities, northern China
Xing WANG, Naiping SONG, Xinguo YANG, Lei WANG, Lin CHEN
Journal of Arid Land    2018, 10 (3): 402-415.   DOI: 10.1007/s40333-018-0411-5
Abstract368)   HTML9)    PDF (400KB)(1180)      

Grazing exclusion is one of the most efficient approaches to restore degraded grassland but may negatively affects the recovery of species diversity. Changes in plant species diversity should be a consequence of the ecological assembly process. Local community assembly is influenced by environmental filtering, biotic interactions, and dispersal. However, how these factors potentially contribute to changes to species diversity is poorly understood, especially in harsh environments. In this study, two management siteswithin a Stipabrevifloradesert steppe community (typical natural steppe)were selected in northern China. In one of the two management sites, grazing has been excluded since 2010 and in the other with open grazing by sheep. In August 2016, three plots were established and 100 sampling units were created within each plot in a 5 m×5 m area at the two management sites.To assess the effects of grazing exclusion on S. breviflorasteppe, we analyzed the vegetation biomass, species diversity, soil organic carbon, and soil particle size distribution using pairedT-tests. In addition, variation partitioning was applied to determine the relative importance of environmental filtering and dispersal limitation. Null mode analysis was used to quantify the influence of biotic interactions in conjunction with EcoSim niche overlap and co-occurrence values. Our results demonstrated that (1) species diversity significantly decreased and the main improvements in soil quality occurred in the topsoil 0-10 cm after the grazing exclusion; (2) environmental filtering was important for community assembly between grazed and fenced grassland and this appears particularly true for soil particle size distribution, which may be well correlated with soil hydrological processes; and (3) however, competitive exclusion may play a significant role within the exclusion. The multiple pathways of assembly may collectively determine negative effects on the restoration of species diversity. Therefore, designers should be aware of the risk of reducing grazing exclusion-induced species diversity and account for manipulating processes.This in turn will reduce dominant species and promote environmental heterogeneity to maximize species diversity in semi-arid regions.

Reference | Related Articles | Metrics
Evaluating agricultural water-use efficiency based on water footprint of crop values: a case study in Xinjiang of China
HAI Yang, LONG Aihua, ZHANG Pei, DENG Xiaoya, LI Junfeng, DENG Mingjiang
Journal of Arid Land    2020, 12 (4): 580-593.   DOI: 10.1007/s40333-020-0058-x
Abstract119)   HTML6)    PDF (665KB)(499)      

Efficient agricultural water use is crucial for food safety and water conservation on a global scale. To quantitatively investigate the agricultural water-use efficiency in regions exhibiting the complex agricultural structure, this study developed an indicator named water footprint of crop values (WFV) that is based on the water footprint of crop production. Defined as the water volume used to produce a unit price of crop (m3/CNY), the new indicator makes it feasible to directly compare the water footprint of different crops from an economic perspective, so as to comprehensively evaluate the water-use efficiency under the complex planting structure. On the basis of WFV, the study further proposed an indicator of structural water-use coefficient (SWUC), which is represented by the ratio of water-use efficiency for a given planting structure to the water efficiency for a reference crop and can quantitatively describe the impact of planting structure on agricultural water efficiency. Then, a case study was implemented in Xinjiang Uygur Autonomous Region of China. The temporal and spatial variations of WFV were assessed for the planting industries in 14 prefectures and cities of Xinjiang between 1991 and 2015. In addition, contribution rate analysis of WFV for different prefectures and cities was conducted to evaluate the variations of WFV caused by different influencing factors: agricultural input, climatic factors, and planting structure. Results from these analyses indicated first that the average WFV of planting industries in Xinjiang significantly decreased from 0.293 m3/CNY in 1991 to 0.153 m3/CNY in 2015, corresponding to an average annual change rate of -3.532%. WFV in 13 prefectures and cities (with the exception of Karamay) has declined significantly during the period of 1991-2015, indicating that agricultural water-use efficient has effectively improved. Second, the average SWUC in Xinjiang decreased from 1.17 to 1.08 m3/CNY in the 1990s, and then declined to 1.00 m3/CNY in 2011-2015. The value of SWUC was highly consistent with the relative value of WFV in most prefectures and cities, showing that planting structure is one of the primary factors affecting regional agricultural water-use efficiency. Third, the contribution rate of WFV variations from human factors including agricultural input and planting structure was much more significant than that from climatic factors. However, the distribution of agricultural input and the adjustment of planting structure significantly differed among prefectures and cities, suggesting regional imbalances of agricultural development. This study indicated the feasibility and effectiveness of controlling agricultural water use through increasing technical input and rational selection of crops in the face of impending climate change. Specifically, we concluded that, the rational application of chemical fertilizers, the development of the fruit industry, and the strict restriction of the cotton industry should be implemented to improve the agricultural water-use efficiency in Xinjiang.

Table and Figures | Reference | Related Articles | Metrics
Characteristics of daily extreme wind gusts on the Qinghai-Tibet Plateau, China
Zhengyi YAO, Xiaoying LI, Jianhua XIAO
Journal of Arid Land    2018, 10 (5): 673-685.   DOI: 10.1007/s40333-018-0094-y
Abstract458)   HTML15)    PDF (1303KB)(1139)      

Severe wind is a major natural hazard and a main driver of desertification on the Qinghai-Tibet Plateau. Generally, studies of Qinghai-Tibet Plateau's wind climatology focus on mean wind speeds and its gust speeds have been seldom investigated. Here, we used observed daily maximum gust speeds from a 95-station network over a 5-year period (2008-2012) to analyze the characteristics of extreme wind speeds and directions by fitting Weibull and Gumbel distributions. The results indicated the spatial distribution of extreme wind speeds and their direction on the Qinghai-Tibet Plateau is highly variable, with its western portion prone to greater mean speeds of extreme wind gusts than its eastern portion. Maximum extreme wind speeds of 30.9, 33.0, and 32.2 m/s were recorded at three stations along the Qinghai Tibet Railway. Severe winds occurred mostly from November to April, caused primarily by the westerly jet stream. Terrain greatly enhances the wind speeds. Our spatial analysis of wind speed data showed that the wind speeds increased exponentially with an increasing altitude. We also assessed the local wind hazard by calculating the return periods of maximum wind gusts from the observational data based on the statistical extreme value distributions of these wind speeds. Further attention should be given to those stations where the yearly maximum daily extreme wind speed increased at a rate greater than that of mean value of daily extreme wind speeds. Severe extreme wind events in these regions of the plateau are likely to become more frequent. Consequently, building structural designers working in these areas should use updated extreme wind data rather than relying on past data alone.

Reference | Related Articles | Metrics
Contribution of underlying terrain to sand dunes: evidence from the Qaidam Basin, Northwest China
LI Jiyan, QU Xin, DONG Zhibao, CAI Yingying, LIU Min, REN Xiaozong, CUI Xujia
Journal of Arid Land    2021, 13 (12): 1215-1229.   DOI: 10.1007/s40333-021-0028-y
Abstract80)   HTML17)    PDF (3434KB)(275)      

Underlying terrain strongly influences dune formation. However, the impacts of underlying terrain on the dune formation are poorly studied. In the present research, we focused on dunes that formed in the alluvial fans and dry salt flats in the Qaidam Basin, Northwest China. We quantified the dunes' sediment characteristics on different types of underlying terrain and the terrain's effects on the surface quartz grains by analyzing grain-size distribution, soluble salt contents and grain surface micro-textures. Results showed that barchan dunes were dominated by medium sands with a unimodal frequency distribution, whose peak corresponded to the saltation load. Linear dunes were mainly composed of fine sands with a bimodal frequency distribution, whose main peak represented the saltation load, and whose secondary peak represented the modified saltation or suspension load. Sand was transported from source area by running water (inland rivers) over short distances and by wind over relatively longer distances. Thus, quartz grains had poor roundness and were dominated by sub-angular and angular shapes. Surface micro-textures indicated that dune sands were successively transported by exogenic agents (glaciation, fluviation and wind). Soluble salt contents were low in dunes that developed in the alluvial fans, which represented a low-energy chemical environment, so the grain surface micro-textures mainly resulted from mechanical erosion, with weak micro-textures formed by SiO2 solution and precipitation. However, soluble salt contents were much higher in dunes that developed in the dry salt flats, which indicated a high-energy chemical environment. Therefore, in addition to micro-structures caused by mechanical erosion, micro-textures formed by SiO2 solution and precipitation also well developed. Our results improve understanding of the sediment characteristics of dune sands and the effects of underlying terrain on dune development in the Qaidam Basin, China.

Table and Figures | Reference | Related Articles | Metrics
Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual Lachnoloma lehmannii in China
MAMUT Jannathan, Dunyan TAN, C BASKIN Carol, M BASKIN Jerry
Journal of Arid Land    2019, 11 (5): 774-784.   DOI: 10.1007/s40333-019-0015-8
Abstract148)   HTML4)    PDF (358KB)(533)      

For a plant species to complete its life cycle in arid and saline environments, each stage of the life cycle must be tolerant to the harsh environmental conditions. The aim of the study was to determine the effects of water stress (water potentials of -0.05, -0.16, -0.33, -0.56, -0.85 and -1.21 MPa) and NaCl stress (50, 100, 200, 300, 400, 500 and 600 mmol/L NaCl) on seed germination percentage, seedling survival and growth, juvenile growth and plant reproduction of Lachnoloma lehmannii Bunge (Brassicaceae), an cold desert annual that grows in the Junggar Basin of Xinjiang, China in 2010. Results indicated that low water stress (-0.05 and -0.16 MPa) had no significant effect on seed germination percentage. With a decrease in water potential, germination percentage decreased, and no seeds germinated at -0.85 and -1.21 MPa water stresses. Germination percentage of seeds was significantly affected by NaCl stress, and higher germination percentages were observed under non-saline than saline conditions. An increase in NaCl concentrations progressively inhibited seed germination percentage, and no seeds germinated at ≥400 mmol/L NaCl concentration. Non-germinated seeds were transferred from both PEG (polyethylene glycol-6000) and NaCl solutions to distilled water for seed germination recovery. The number of surviving seedlings and their heights and root lengths significantly decreased as NaCl stress increased. About 30% of the plants survived and produced fruits/seeds at 200 mmol/L NaCl concentration. Thus, seed germination, seedling establishment and reproductive stage in the life cycle of L. lehmannii are water- and salt-tolerant, with seedlings being the least tolerant. These tolerances help explain why this species can survive and produce seeds in arid and saline habitats.

Reference | Related Articles | Metrics
Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang
YAO Kaixuan, Abudureheman HALIKE, CHEN Limei, WEI Qianqian
Journal of Arid Land    2022, 14 (3): 262-283.   DOI: 10.1007/s40333-022-0011-2
Abstract104)   HTML13)    PDF (4002KB)(262)      

The rapid economic development that the Hotan Oasis in Xinjiang Uygur Autonomous Region, China has undergone in recent years may face some challenges in its ecological environment. Therefore, an analysis of the spatiotemporal changes in ecological environment of the Hotan Oasis is important for its sustainable development. First, we constructed an improved remote sensing-based ecological index (RSEI) in 1990, 1995, 2000, 2005, 2010, 2015 and 2020 on the Google Earth Engine (GEE) platform and implemented change detection for their spatial distribution. Second, we performed a spatial autocorrelation analysis on RSEI distribution map and used land-use and land-cover change (LUCC) data to analyze the reasons of RSEI changes. Finally, we investigated the applicability of improved RSEI to arid area. The results showed that mean of RSEI rose from 0.41 to 0.50, showing a slight upward trend. During the 30-a period, 2.66% of the regions improved significantly, 10.74% improved moderately and 32.21% improved slightly, respectively. The global Moran's I were 0.891, 0.889, 0.847 and 0.777 for 1990, 2000, 2010 and 2020, respectively, and the local indicators of spatial autocorrelation (LISA) distribution map showed that the high-high cluster was mainly distributed in the central part of the Hotan Oasis, and the low-low cluster was mainly distributed in the outer edge of the oasis. RSEI at the periphery of the oasis changes from low to high with time, with the fragmentation of RSEI distribution within the oasis increasing. Its distribution and changes are predominantly driven by anthropologic factors, including the expansion of artificial oasis into the desert, the replacement of desert ecosystems by farmland ecosystems, and the increase in the distribution of impervious surfaces. The improved RSEI can reflect the eco-environmental quality effectively of the oasis in arid area with relatively high applicability. The high efficiency exhibited with this approach makes it convenient for rapid, high frequency and macroscopic monitoring of eco-environmental quality in study area.

Table and Figures | Reference | Related Articles | Metrics
Source identification of nitrate in the upper aquifer system of the Wadi Shueib catchment area in Jordan based on stable isotope composition
Journal of Arid Land    2021, 13 (4): 350-374.   DOI: 10.1007/s40333-021-0055-8
Abstract184)   HTML8)    PDF (1114KB)(463)      

Groundwater forms the main freshwater supply in arid and semi-arid areas, and contamination of this precious resource is complicated by the slow rate of recharge in these areas. Nitrate contamination of groundwater is a global water quality problem, as it entails threat to human health as well as aquatic ecosystems. Source identification of contamination is the cornerstone and a prerequisite for any effective management program of water quality. Stable isotope composition of the dissolved nitrate (δ15N-NO3- and δ 18O-NO3-) has been applied to identify NO3- sources and the main transformation processes in the upper aquifer system (A1/2, A4, and B2/A7 aquifers) in the Wadi Shueib catchment area, Jordan. Moreover, the stable isotope compositions of the groundwater (δ2H-H2O and δ18O-H2O) in conjunction with the groundwater hydrochemistry were integrated to investigate the origin and evolution of the groundwater. Results revealed that groundwater in the study area is fresh and hard-very hard water, and mainly a Ca-Mg-Cl type. NO3- concentration was in the range of 7.0-74.0 mg/L with an average of 37.0 mg/L. Most of the samples showed concentration higher than the natural background concentration of NO3- (5.0-10.0 mg/L). The δ 2H-H2O and δ18O-H2O values indicated that the groundwater is meteoric, and of Mediterranean origin, with a strong evaporation effect. The δ15N-NO3- values ranged between 6.0‰ and 11.3‰ with an average of 8.7‰, and the δ18O-NO3- values ranged between 1.6‰ and 5.9‰ with an average of 3.4‰. These values are in conformity with the stable isotope composition of nitrate derived the nitrification of wastewater/manure, and soil NH4. Nitrification and denitrification are the main transformation processes affecting nitrogen species. Statistical analysis revealed no significant differences in the δ2H-H2O and δ18O-H2O values, and δ15N-NO3- and δ 18O-NO3- values for the three aquifers (A1/2, A4, and B2/A7), indicating that the groundwater of these aquifers has the same origin, and a common source of pollution.

Table and Figures | Reference | Related Articles | Metrics
Germination strategies of annual and short-lived perennial species in the Arabian Desert
Journal of Arid Land    2020, 12 (6): 1071-1082.   DOI: 10.1007/s40333-020-0023-8
Abstract135)   HTML3)    PDF (329KB)(453)      

Germination timing is highly regulated in short-lived plant species since it strongly influences recruitment success of vegetation. In deserts, the spatiotemporal distribution of plant-available water is highly episodic and unpredictable, making winter months more favorable for seed germination when other abiotic conditions co-occur. We hypothesized that changes in photoperiod and thermoperiod would impact germination more in seeds that had undergone in situ storage. We assessed 21 annual and short-lived perennial species in the Arabian Desert to find (1) if seeds were dormant at maturity, (2) if in situ seed storage increased germination percentage compared with no storage, (3) if photoperiod and thermoperiod germination requirements were influenced by in situ storage, and (4) if a phylogenetic association in seed germination could be observed. Seeds of each species collected in early 2017 were divided into two batches. One was tested for germination within one week (fresh seeds). The other was stored in situ at the maternal location (stored seeds) until October 2017 and tested for seed germination in the first week of November. Seed germination was conducted in incubators at two thermoperiods (15°C/20°C and 20°C/30°C; 12 h/12 h), and two photoperiods (12 and 0 h light per day). Results indicated that seed germination percentages of 13 species were significantly enhanced by in situ storage. A thermoperiod response was exhibited by stored, but not fresh seeds. Light exposure increased germination of fresh seeds but had only a minimal effect on stored seeds. Germination traits exhibited no phylogenetic correlation. This result indicated that selection pressure for germination strategy was stronger than that for taxonomic traits of these desert species.

Table and Figures | Reference | Related Articles | Metrics
Near-surface wind environment in the Yarlung Zangbo River basin, southern Tibetan Plateau
YANG Junhuai, XIA Dunsheng, WANG Shuyuan, TIAN Weidong, MA Xingyue, CHEN Zixuan, GAO Fuyuan, LING Zhiyong, DONG Zhibao
Journal of Arid Land    2020, 12 (6): 917-936.   DOI: 10.1007/s40333-020-0104-8
Abstract125)   HTML11)    PDF (1774KB)(545)      

Aeolian processes have been studied extensively at low elevations, but have been relatively little studied at high elevations. Aeolian sediments are widely distributed in the Yarlung Zangbo River basin, southern Tibetan Plateau, which is characterized by low pressure and low temperature. Here, we comprehensively analyzed the wind regime using data since 1980 from 11 meteorological stations in the study area, and examined the interaction between the near-surface wind and aeolian environment. The wind environment exhibited significant spatial and temporal variation, and mean wind speed has generally decreased on both annual and seasonal bases since 1980, at an average of 0.181 m/(s·10a). This decrease resulted from the reduced contribution of maximum wind speed, and depended strongly on variations of the frequency of sand-driving winds. The drift potential and related parameters also showed obvious spatial and temporal variation, with similar driving forces for the wind environment. The strength of the wind regime affected the formation and development of the aeolian geomorphological pattern, but with variation caused by local topography and sediment sources. The drift potential and resultant drift direction were two key parameters, as they quantify the dynamic conditions and depositional orientation of the aeolian sediments. Wind affected the spatial variation in sediment grain size, but the source material and complex topographic effects on the near-surface wind were the underlying causes for the grain size distribution of aeolian sands. These results will support efforts to control aeolian desertification in the basin and improve our understanding of aeolian processes in high-elevation environments.

Table and Figures | Reference | Related Articles | Metrics
Maternal salinity improves yield, size and stress tolerance of Suaeda fruticosa seeds
Syed Z SHAH, Aysha RASHEED, Bilquees GUL, Muhammad A KHAN, Brent L NIELSEN, Abdul HAMEED
Journal of Arid Land    2020, 12 (2): 283-293.   DOI: 10.1007/s40333-020-0054-1
Abstract207)   HTML4)    PDF (1014KB)(453)      

Shrubby seablite or lani (Suaeda fruticosa Forssk) is a perennial euhalophyte with succulent leaves, which could be planted on arid-saline lands for restoration and cultivated as a non-conventional edible or cash crop. Knowledge about the impacts of maternal saline environment on seed attributes of this important euhalophyte is lacking. This study investigated the effects of maternal salinity on yield, size and stress tolerance of S. fruticosa seeds. Seedlings of S. fruticosa were grown in a green net house under increasing maternal salinity levels (0, 300, 600 and 900 mM NaCl) until seed production. Total yield, size, stress tolerance and germination of the descended seeds under different maternal saline conditions were examined. Plants grown under saline conditions (300, 600 and 900 mM NaCl) produce a substantially higher quantity of seeds than plants grown under non-saline condition (0 mM NaCl). Low maternal salinity (300 mM NaCl) improves seed size. Seeds produced under all maternal salinity levels display a higher tolerance to low temperature (night/day thermoperiod of 10°C/20°C), whereas seeds produced under 300 mM NaCl maternal saline condition show a better tolerance to high temperature (night/day thermoperiod of 25°C/35°C) during germination. Seeds from all maternal saline conditions germinate better in the 12 h photoperiod (12 h light/12 h dark) than in the dark (24 h dark); however, seeds produced from low and moderate maternal saline conditions (300 and 600 mM NaCl) show a higher germination in the dark than those from control and high maternal saline conditions (0 and 900 mM NaCl). In general, maternal salinity is found to improve yield, size and stress tolerance of S. fruticosa seeds.

Table and Figures | Reference | Related Articles | Metrics
Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957-2016 in Iran based on CRU TS gridded dataset
Journal of Arid Land    2021, 13 (8): 858-878.   DOI: 10.1007/s40333-021-0103-4
Abstract102)   HTML9)    PDF (6486KB)(366)      

Agriculture needs to produce more food to feed the growing population in the 21st century. It makes the reference crop water requirement (WREQ) a major challenge especially in regions with limited water and high water demand. Iran, with large climatic variability, is experiencing a serious water crisis due to limited water resources and inefficient agriculture. In order to overcome the issue of uneven distribution of weather stations, gridded Climatic Research Unit (CRU) data was applied to analyze the changes in potential evapotranspiration (PET), effective precipitation (EFFPRE) and WREQ. Validation of data using in situ observation showed an acceptable performance of CRU in Iran. Changes in PET, EFFPRE and WREQ were analyzed in two 30-a periods 1957-1986 and 1987-2016. Comparing two periods showed an increase in PET and WREQ in regions extended from the southwest to northeast and a decrease in the southeast, more significant in summer and spring. However, EFFPRE decreased in the southeast, northeast, and northwest, especially in winter and spring. Analysis of annual trends revealed an upward trend in PET (14.32 mm/decade) and WREQ (25.50 mm/decade), but a downward trend in EFFPRE (-11.8 mm/decade) over the second period. Changes in PET, EFFPRE and WREQ in winter have the impact on the annual trend. Among climate variables, WREQ showed a significant correlation (r=0.59) with minimum temperature. The increase in WREQ and decrease in EFFPRE would exacerbate the agricultural water crisis in Iran. With all changes in PET and WREQ, immediate actions are needed to address the challenges in agriculture and adapt to the changing climate.

Table and Figures | Reference | Related Articles | Metrics
Melting and shrinkage of cryosphere in Tibet and its impact on the ecological environment
JianGuo ZHANG, YingLi WANG, YunSong JI, DeZhi YAN
Journal of Arid Land    2011, 3 (4): 292-299.   DOI: 10.3724/SP.J.1227.2011.00292
Abstract2429)      PDF (423KB)(3431)      
Global warming is having a profound impact on global ecological systems, and has inevitably induced changes in the cryosphere, one of the five layers of the earth. Major changes include the shrinking and reduction in the area and volume of both the mountain glaciers and the ice caps covering the North and South poles, and the melting of permafrost and thickening of the active frost layer. Swift changes in the cryosphere have inevitably induced ecological and environmental changes in its zone. While some of these changes are beneficial to mankind, such as an increase in water circulation, short term increases in water volumes and the enlargement of the cultivatable area, others are extremely hazardous, like the flooding of lowlands caused by an increased sea level elevation, debris flow caused by glaciers, glacier lake bursts, undermined building safety caused by permafrost melting, the deterioration of alpine cold meadows, and the surface aridization and desertification of land. Tibet, having a major part of the cryosphere in China, is home to the most widely spread glaciers and permafrost, which play a vital role in regulating water resources, climate, environment and the ecological safety in China and Asia. However, due to global warming, the glaciers and permafrost in Tibet have recently changed dramatically, exhibiting shrinkage and melting, which threatens long-term water resources, and the ecological and environmental safety of China. Based on existing research, this paper discusses the relationship between global warming and the melting and shrinkage of the cryosphere. The results show that the cryosphere’s melting and shrinkage in Tibet are the direct result of global warming. The melting of glaciers has led to a series of disasters, such as changes in river runoff, the heightened frequency of debris flows induced by glaciers and the outbursts of glacier lakes. The melting of the permafrost also resulted in a series of ecological and environmental problems in Tibet, such as the degrada-tion and population succession of the alpine grassland and meadows, the aridization of the land surface, and the occurrence of freeze-thaw erosion.
Related Articles | Metrics
Estimation of spatial and temporal changes in net primary production based on Carnegie Ames Stanford Approach (CASA) model in semi-arid rangelands of SemiromCounty, Iran
HADIAN Fatemeh, JAFARI Reza, BASHARI Hossein, TARTESH Mostafa, D CLARKE Kenneth
Journal of Arid Land    2019, 11 (4): 477-494.   DOI: 10.1007/s40333-019-0060-3
Abstract311)   HTML39)    PDF (1966KB)(690)      

Net primary production (NPP) is an indicator of rangeland ecosystem function. This research assessed the potential of the Carnegie Ames Stanford Approach (CASA) model for estimating NPP and its spatial and temporal changes in semi-arid rangelands of Semirom County, Iran. Using CASA model, we estimated the NPP values based on monthly climate data and the normalized difference vegetation index (NDVI) obtained from the MODIS sensor. Regression analysis was then applied to compare the estimated production data with observed production data. The spatial and temporal changes in NPP and light utilization efficiency (LUE) were investigated in different rangeland vegetation types. The standardized precipitation index (SPI) was also calculated at different time scales and the correlation of SPI with NPP changes was determined. The results indicated that the estimated NPP values varied from 0.00 to 74.48 g C/(m2?a). The observed and estimated NPP values had different correlations, depending on rangeland conditions and vegetation types. The highest and lowest correlations were respectively observed in Astragalus spp.-Agropyronspp. rangeland (R2=0.75) with good condition and Gundeliaspp.-Cousiniaspp. rangeland (R2=0.36) with poor and very poor conditions. The maximum and minimum LUE values were found in Astragalus spp.-Agropyronspp. rangeland (0.117 g C/MJ) with good condition and annual grasses-annual forbs rangeland (0.010 g C/MJ), respectively. According to the correlations between SPI and NPP changes, the effects of drought periods on NPP depended on vegetation types and rangeland conditions. Annual plants had the highest drought sensitivity while shrubs exhibited the lowest drought sensitivity. The positive effects of wet periods on NPP were less evident in degraded areas where the destructive effects of drought were more prominent. Therefore, determining vegetation types and rangeland conditions is essential in NPP estimation. The findings of this study confirmed the potential of the CASA for estimating rangeland production. Therefore, the model output maps can be used to evaluate, monitor and optimize rangeland management in semi-arid rangelands of Iran where MODIS NPP products are not available.

Reference | Related Articles | Metrics