Most Downloaded

Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 2 years
Please wait a minute...
For Selected: Toggle Thumbnails
Check dam extraction from remote sensing images using deep learning and geospatial analysis: A case study in the Yanhe River Basin of the Loess Plateau, China
SUN Liquan, GUO Huili, CHEN Ziyu, YIN Ziming, FENG Hao, WU Shufang, Kadambot H M SIDDIQUE
Journal of Arid Land    2023, 15 (1): 34-51.   DOI: 10.1007/s40333-023-0091-7
Abstract388)   HTML4)    PDF(pc) (3272KB)(814)       Save

Check dams are widely used on the Loess Plateau in China to control soil and water losses, develop agricultural land, and improve watershed ecology. Detailed information on the number and spatial distribution of check dams is critical for quantitatively evaluating hydrological and ecological effects and planning the construction of new dams. Thus, this study developed a check dam detection framework for broad areas from high-resolution remote sensing images using an ensemble approach of deep learning and geospatial analysis. First, we made a sample dataset of check dams using GaoFen-2 (GF-2) and Google Earth images. Next, we evaluated five popular deep-learning-based object detectors, including Faster R-CNN, You Only Look Once (version 3) (YOLOv3), Cascade R-CNN, YOLOX, and VarifocalNet (VFNet), to identify the best one for check dam detection. Finally, we analyzed the location characteristics of the check dams and used geographical constraints to optimize the detection results. Precision, recall, average precision at intersection over union (IoU) threshold of 0.50 (AP50), IoU threshold of 0.75 (AP75), and average value for 10 IoU thresholds ranging from 0.50-0.95 with a 0.05 step (AP50-95), and inference time were used to evaluate model performance. All the five deep learning networks could identify check dams quickly and accurately, with AP50-95, AP50, and AP75 values higher than 60.0%, 90.0%, and 70.0%, respectively, except for YOLOv3. The VFNet had the best performance, followed by YOLOX. The proposed framework was tested in the Yanhe River Basin and yielded promising results, with a recall rate of 87.0% for 521 check dams. Furthermore, the geographic analysis deleted about 50% of the false detection boxes, increasing the identification accuracy of check dams from 78.6% to 87.6%. Simultaneously, this framework recognized 568 recently constructed check dams and small check dams not recorded in the known check dam survey datasets. The extraction results will support efficient watershed management and guide future studies on soil erosion in the Loess Plateau.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal characteristics and influencing factors of ecosystem services in Central Asia
YAN Xue, LI Lanhai
Journal of Arid Land    2023, 15 (1): 1-19.   DOI: 10.1007/s40333-022-0074-0
Abstract161)   HTML270)    PDF(pc) (2281KB)(744)       Save

Land use/land cover (LULC) change and climate change are two major factors affecting the provision of ecosystem services which are closely related to human well-being. However, a clear understanding of the relationships between these two factors and ecosystem services in Central Asia is still lacking. This study aimed to comprehensively assess ecosystem services in Central Asia and analyze how they are impacted by changes in LULC and climate. The spatiotemporal patterns of three ecosystem services during the period of 2000-2015, namely the net primary productivity (NPP), water yield, and soil retention, were quantified and mapped by the Carnegie-Ames-Stanford Approach (CASA) model, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and Revised Universal Soil Loss Equation (RUSLE). Scenarios were used to determine the relative importance and combined effect of LULC change and climate change on ecosystem services. Then, the relationships between climate factors (precipitation and temperature) and ecosystem services, as well as between LULC change and ecosystem services, were further discussed. The results showed that the high values of ecosystem services appeared in the southeast of Central Asia. Among the six biomes (alpine forest region (AFR), alpine meadow region (AMR), typical steppe region (TSR), desert steppe region (DSR), desert region (DR), and lake region (LR)), the values of ecosystem services followed the order of AFR>AMR>TSR>DSR> DR>LR. In addition, the values of ecosystem services fluctuated during the period of 2000-2015, with the most significant decreases observed in the southeast mountainous area and northwest of Central Asia. LULC change had a greater impact on the NPP, while climate change had a stronger influence on the water yield and soil retention. The combined LULC change and climate change exhibited a significant synergistic effect on ecosystem services in most of Central Asia. Moreover, ecosystem services were more strongly and positively correlated with precipitation than with temperature. The greening of desert areas and forest land expansion could improve ecosystem services, but unreasonable development of cropland and urbanization have had an adverse impact on ecosystem services. According to the results, ecological stability in Central Asia can be achieved through the natural vegetation protection, reasonable urbanization, and ecological agriculture development.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria
Fateme RIGI, Morteza SABERI, Mahdieh EBRAHIMI
Journal of Arid Land    2023, 15 (6): 740-755.   DOI: 10.1007/s40333-023-0015-6
Abstract375)   HTML9)    PDF(pc) (1088KB)(705)       Save

Numerous ecological factors influence a plant's ability to live and grow, in which dryness is a substantial constraint on plant growth in arid and semi-arid areas. In response to a specific environmental stress, plants can use the most effective bacteria to support and facilitate their growth and development. Today, plant growth promoting rhizobacteria (PGPR) is widely used to reduce drought stress on plant growth. In this study, the effects of drought on Festuca ovina L. germination, growth, and nutrient absorption were investigated using PGPR in a factorial test with a completely random design under four water regimes. Soil water content was kept at 100% FC (field capacity), 70% FC (FC), 50% FC, and 30% FC. The treatments were inoculated with Azotobacter vinelandii, Pantoea agglomerans+Pseudomonas putida, and a mixture of bio-fertilizers. Results showed that the effects of drought stress were significantly reduced (P<0.05) when A. vinelandii and P. agglomerans+P. putida were used separately, however, the combined treatment of bio-fertilizers had a greater influence on seed germination than the single application. P. agglomerans+P. putida under 30% FC condition resulted in higher increases in stem, root length, and plant dry biomass. The highest uptake of nutrients was observed for the combined treatment of bio-fertilizers under 30% FC condition. Therefore, the use of A. vinelandii and P. agglomerans+P. putida, applied separately or combined, increased tolerance to drought stress in F. ovina by increased germination indices, dry weight, stem length, and root length. Because of the beneficial effects of PGPR on the growth characteristics of plants under drought conditions and the reduction of negative effects of drought stress, inoculating F. ovina seeds with Azotobacter and Pseudomonas is recommended to improve their growth and development characteristics under drought conditions. PGPR, as an affordable and environmentally friendly method, can improve the production of forage in water-stress rangelands.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Runoff characteristics and its sensitivity to climate factors in the Weihe River Basin from 2006 to 2018
WU Changxue, Xu Ruirui, QIU Dexun, DING Yingying, GAO Peng, MU Xingmin, ZHAO Guangju
Journal of Arid Land    2022, 14 (12): 1344-1360.   DOI: 10.1007/s40333-022-0109-6
Abstract390)   HTML139)    PDF(pc) (2438KB)(686)       Save

Exploring the current runoff characteristics after the large-scale implementation of the Grain for Green (GFG) project and investigating its sensitivities to potential drivers are crucial for water resource prediction and management. Based on the measured runoff data of 62 hydrological stations in the Weihe River Basin (WRB) from 2006 to 2018, we analyzed the temporal and spatial runoff characteristics in this study. Correlation analysis was used to investigate the relationships between different runoff indicators and climate-related factors. Additionally, an improved Budyko framework was applied to assess the sensitivities of annual runoff to precipitation, potential evaporation, and other factors. The results showed that the daily runoff flow duration curves (FDCs) of all selected hydrological stations fall in three narrow ranges, with the corresponding mean annual runoff spanning approximately 1.50 orders of magnitude, indicating that the runoff of different hydrological stations in the WRB varied greatly. The trend analysis of runoff under different exceedance frequencies showed that the runoff from the south bank of the Weihe River was more affluent and stable than that from the north bank. The runoff was unevenly distributed throughout the year, mainly in the flood season, accounting for more than 50.00% of the annual runoff. However, the trend of annual runoff change was not obvious in most areas. Correlation analysis showed that rare-frequency runoff events were more susceptible to climate factors. In this study, daily runoff under 10%-20% exceeding frequencies, consecutive maximum daily runoff, and low-runoff variability rate had strong correlations with precipitation, aridity index, and average runoff depth on rainy days. In comparison, daily runoff under 50%-99% exceeding frequencies, consecutive minimum daily runoff, and high-runoff variability rate had weak correlations with all selected impact factors. The sensitivity analysis results suggested that the sensitivity of annual runoff to precipitation was always higher than that to potential evaporation. The runoff about 87.10% of the selected hydrological stations were most sensitive to precipitation changes, and 12.90% were most sensitive to other factors. The spatial pattern of the sensitivity analysis indicated that in relatively humid southern areas, runoff was more sensitive to potential evaporation and other factors, and less sensitive to precipitation.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels
Teame G KEBEDE, Emiru BIRHANE, Kiros-Meles AYIMUT, Yemane G EGZIABHER
Journal of Arid Land    2023, 15 (8): 975-988.   DOI: 10.1007/s40333-023-0022-7
Abstract90)   HTML8)    PDF(pc) (901KB)(679)       Save

Opuntia ficus-indica (L.) Miller is a CAM (crassulacean acid metabolism) plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO2 at nighttime, store a significant amount of water in cladodes, and reduce root growth. Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi (AMF) to adapt to drought stress. Water stress can limit plant growth and biomass production, which can be rehabilitated by AMF association through improved physiological performance. The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass, photosynthesis, and water use efficiency of the spiny and spineless O. ficus-indica. The experiment was conducted in a greenhouse with a full factorial experiment using O. ficus-indica type (spiny or spineless), AMF (presence or absence), and four soil water available (SWA) treatments through seven replications. Water treatments applied were 0%-25% SWA (T1), 25%-50% SWA (T2), 50%-75% SWA (T3), and 75%-100% SWA (T4). Drought stress reduced biomass and cladode growth, while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O. ficus-indica. AMF presence significantly increased biomass of both O. ficus-indica plant types through improved growth, photosynthetic water use efficiency, and photosynthesis. The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency. Net photosynthesis, photosynthetic water use efficiency, transpiration, and stomatal conductance rate significantly decreased with increased drought stress. Under drought stress, some planted mother cladodes with the absence of AMF have not established daughter cladodes, whereas AMF-inoculated mother cladodes fully established daughter cladodes. AMF root colonization significantly increased with the decrease of SWA. AMF caused an increase in biomass production, increased tolerance to drought stress, and improved photosynthesis and water use efficiency performance of O. ficus-indica. The potential of O. ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Responses of vegetation yield to precipitation and reference evapotranspiration in a desert steppe in Inner Mongolia, China
LI Hongfang, WANG Jian, LIU Hu, MIAO Henglu, LIU Jianfeng
Journal of Arid Land    2023, 15 (4): 477-490.   DOI: 10.1007/s40333-023-0051-2
Abstract86)   HTML12)    PDF(pc) (1405KB)(671)       Save

Drought, which restricts the sustainable development of agriculture, ecological health, and social economy, is affected by a variety of factors. It is widely accepted that a single variable cannot fully reflect the characteristics of drought events. Studying precipitation, reference evapotranspiration (ET0), and vegetation yield can derive information to help conserve water resources in grassland ecosystems in arid and semi-arid regions. In this study, the interactions of precipitation, ET0, and vegetation yield in Darhan Muminggan Joint Banner (DMJB), a desert steppe in Inner Mongolia Autonomous Region, China were explored using two-dimensional (2D) and three-dimensional (3D) joint distribution models. Three types of Copula functions were applied to quantitatively analyze the joint distribution probability of different combinations of precipitation, ET0, and vegetation yield. For the precipitation-ET0 dry-wet type, the 2D joint distribution probability with precipitation≤245.69 mm/a or ET0≥959.20 mm/a in DMJB was approximately 0.60, while the joint distribution probability with precipitation≤245.69 mm/a and ET0≥959.20 mm/a was approximately 0.20. Correspondingly, the joint return period that at least one of the two events (precipitation was dry or ET0 was wet) occurred was 2 a, and the co-occurrence return period that both events (precipitation was dry and ET0 was wet) occurred was 5 a. Under this condition, the interval between dry and wet events would be short, the water supply and demand were unbalanced, and the water demand of vegetation would not be met. In addition, when precipitation remained stable and ET0 increased, the 3D joint distribution probability that vegetation yield would decrease due to water shortage in the precipitation-ET0 dry-wet years could reach up to 0.60-0.70. In future work, irrigation activities and water allocation criteria need to be implemented to increase vegetation yield and the safety of water resources in the desert steppe of Inner Mongolia.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Environmental significance and hydrochemical characteristics of rivers in the western region of the Altay Mountains, China
LIU Shuangshuang, WANG Feiteng, XU Chunhai, WANG Lin, LI Huilin
Journal of Arid Land    2023, 15 (9): 1052-1066.   DOI: 10.1007/s40333-023-0106-4
Abstract73)   HTML17)    PDF(pc) (2120KB)(634)       Save

Analysis of environmental significance and hydrochemical characteristics of river water in mountainous regions is vital for ensuring water security. In this study, we collected a total of 164 water samples in the western region of the Altay Mountains, China, in 2021. We used principal component analysis and enrichment factor analysis to examine the chemical properties and spatiotemporal variations of major ions (including F-, Cl-, NO3-, SO42-, Li+, Na+, NH4+, K+, Mg2+, and Ca2+) present in river water, as well as to identify the factors influencing these variations. Additionally, we assessed the suitability of river water for drinking and irrigation purposes based on the total dissolved solids, soluble sodium percentage, sodium adsorption ratio, and total hardness. Results revealed that river water had an alkaline aquatic environment with a mean pH value of 8.00. The mean ion concentration was ranked as follows: Ca2+>SO42->Na+>NO3->Mg2+>K+>Cl->F->NH4+>Li+. Ca2+, SO42-, Na+, and NO3- occupied 83% of the total ion concentration. In addition, compared with other seasons, the spatial variation of the ion concentration in spring was obvious. An analysis of the sources of major ions revealed that these ions originated mainly from carbonate dissolution and silicate weathering. The recharge impact of precipitation and snowmelt merely influenced the concentration of Cl-, NO3-, SO42-, Ca2+, and Na+. Overall, river water was in pristine condition in terms of quality and was suitable for both irrigation and drinking. This study provides a scientific basis for sustainable management of water quality in rivers of the Altay Mountains.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Combination of artificial zeolite and microbial fertilizer to improve mining soils in an arid area of Inner Mongolia, China
LI Wenye, ZHANG Jianfeng, SONG Shuangshuang, LIANG Yao, SUN Baoping, WU Yi, MAO Xiao, LIN Yachao
Journal of Arid Land    2023, 15 (9): 1067-1083.   DOI: 10.1007/s40333-023-0028-1
Abstract352)   HTML8)    PDF(pc) (4252KB)(615)       Save

Restoration of mining soils is important to the vegetation and environment. This study aimed to explore the variations in soil nutrient contents, microbial abundance, and biomass under different gradients of substrate amendments in mining soils to select effective measures. Soil samples were collected from the Bayan Obo mining region in Inner Mongolia Autonomous Region, China. Contents of soil organic matter (SOM), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon/microbial biomass nitrogen (MBC/MBN) ratio, biomass, and bacteria, fungi, and actinomycetes abundance were assessed in Agropyron cristatum L. Gaertn., Elymus dahuricus Turcz., and Medicago sativa L. soils with artificial zeolite (AZ) and microbial fertilizer (MF) applied at T0 (0 g/kg), T1 (5 g/kg), T2 (10 g/kg), and T3 (20 g/kg). Redundancy analysis (RDA) and technique for order preference by similarity to ideal solution (TOPSIS) were used to identify the main factors controlling the variation of biomass. Results showed that chemical indices and microbial content of restored soils were far greater than those of control. The application of AZ significantly increases SOM, AN, and AP by 20.27%, 23.61%, and 40.43%, respectively. AZ significantly increased bacteria, fungi, and actinomycetes abundance by 0.63, 3.12, and 1.93 times of control, respectively. RDA indicated that AN, MBC/MBN ratio, and SOM were dominant predictors for biomass across samples with AZ application, explaining 87.6% of the biomass variance. SOM, MBC/MBN ratio, and AK were dominant predictors with MF application, explaining 82.9% of the biomass variance. TOPSIS indicated that T2 was the best dosage and the three plant species could all be used to repair mining soils. AZ and MF application at T2 concentration in the mining soils with M. sativa was found to be the most appropriate measure.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Correlation analysis between the Aral Sea shrinkage and the Amu Darya River
WANG Min, CHEN Xi, CAO Liangzhong, KURBAN Alishir, SHI Haiyang, WU Nannan, EZIZ Anwar, YUAN Xiuliang, Philippe DE MAEYER
Journal of Arid Land    2023, 15 (7): 757-778.   DOI: 10.1007/s40333-023-0062-z
Abstract81)   HTML405)    PDF(pc) (1917KB)(608)       Save

The shrinkage of the Aral Sea, which is closely related to the Amu Darya River, strongly affects the sustainability of the local natural ecosystem, agricultural production, and human well-being. In this study, we used the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) model to detect the historical change points in the variation of the Aral Sea and the Amu Darya River and analyse the causes of the Aral Sea shrinkage during the 1950-2016 period. Further, we applied multifractal detrend cross-correlation analysis (MF-DCCA) and quantitative analysis to investigate the responses of the Aral Sea to the runoff in the Amu Darya River, which is the main source of recharge to the Aral Sea. Our results showed that two significant trend change points in the water volume change of the Aral Sea occurred, in 1961 and 1974. Before 1961, the water volume in the Aral Sea was stable, after which it began to shrink, with a shrinkage rate fluctuating around 15.21 km3/a. After 1974, the water volume of the Aral Sea decreased substantially at a rate of up to 48.97 km3/a, which was the highest value recorded in this study. In addition, although the response of the Aral Sea's water volume to its recharge runoff demonstrated a complex non-linear relationship, the replenishment of the Aral Sea by the runoff in the lower reaches of the Amu Darya River was identified as the dominant factor affecting the Aral Sea shrinkage. Based on the scenario analyses, we concluded that it is possible to slow down the retreat of the Aral Sea and restore its ecosystem by increasing the efficiency of agricultural water use, decreasing agricultural water use in the middle and lower reaches, reducing ineffective evaporation from reservoirs and wetlands, and increasing the water coming from the lower reaches of the Amu Darya River to the 1961-1973 level. These measures would maintain and stabilise the water area and water volume of the Aral Sea in a state of ecological restoration. Therefore, this study focuses on how human consumption of recharge runoff affects the Aral Sea and provides scientific perspective on its ecological conservation and sustainable development.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of water stress on growth phenology photosynthesis and leaf water potential in Stipagrostis ciliata (Desf.) De Winter in North Africa
Lobna MNIF FAKHFAKH, Mohamed CHAIEB
Journal of Arid Land    2023, 15 (1): 77-90.   DOI: 10.1007/s40333-022-0082-0
Abstract356)   HTML2)    PDF(pc) (887KB)(602)       Save

Stipagrostis ciliata (Desf.) De Winter is a pastoral C4 grass grown in arid regions. This research work focused on assessing the growth of S. ciliata accessions derived from two different climate regions (a wet arid region in the Bou Hedma National Park in the central and southern part of Tunisia (coded as WA), and a dry arid region from the Matmata Mountain in the south of Tunisia (coded as DA)) under water stress conditions. Specifically, the study aimed to investigate the phenological and physiological responses of potted S. ciliata seedlings under different water treatments: T1 (200 mm/a), T2 (150 mm/a), T3 (100 mm/a) and T4 (50 mm/a). Growth phenology, net photosynthesis (Pn), stomatal conductance (gs), midday leaf water potential (Ψmd), predawn leaf water potential (Ψpd), soil water content (SWC) and soil water potential (Ψs) were observed during the water stress cycle (from December 2016 to November 2017). The obtained results showed that the highest growth potential of the two accessions (WA and DA) was recorded under treatment T1. The two accessions responded differently and significantly to water stress. Photosynthetic parameters, such as Pn and gs, decreased sharply under treatments T2, T3 and T4 compared to treatment T1. The higher water stress increased the R/S ratio (the ratio of root dry biomass to shoot dry biomass), with values of 1.29 and 2.74 under treatment T4 for accessions WA and DA, respectively. Principal component analysis (PCA) was applied, and the separation of S. ciliata accessions on the first two axes of PCA (PC1 and PC2) suggested that accession DA was detected in the negative extremity of PC1 and PC2 under treatments T1 and T2. This accession was characterized by a high number of spikes. For treatments T3 and T4, both accessions were detected in the negative extremity of PC1 and PC2. They were characterized by a high root dry biomass. Therefore, S. ciliata accessions responded to water stress by displaying significant changes in their behaviours. Accession WA from the Bou Hedma National Park (wet arid region) showed higher drought tolerance than accession DA from the Matmata Mountain (dry arid region). S. ciliata exhibits a significant adaptation capacity for water limitation and may be an important species for ecosystem restoration.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau
KOU Zhaoyang, LI Chunyue, CHANG Shun, MIAO Yu, ZHANG Wenting, LI Qianxue, DANG Tinghui, WANG Yi
Journal of Arid Land    2023, 15 (8): 960-974.   DOI: 10.1007/s40333-023-0023-6
Abstract82)   HTML6)    PDF(pc) (756KB)(601)       Save

Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs. The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements, namely nitrogen (N) and phosphorus (P). Nevertheless, the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood. Therefore, we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment. Nine fertilization treatments with complete interactions of high, medium, and low N and P gradients were set up. Soil physical and chemical properties, along with the microbial community structure were measured in this study. Additionally, relevant ecological processes such as microbial biomass, respiration, N mineralization, and enzyme activity were quantified. To elucidate the relationships between these variables, we examined correlation-mediated processes using statistical techniques, including redundancy analysis (RDA) and structural equation modeling (SEM). The results showed that the addition of N alone had a detrimental effect on soil microbial biomass, mineralized N accumulation, and β-1,4-glucosidase activity. Conversely, the addition of P exhibited an opposing effect, leading to positive influences on these soil parameters. The interactive addition of N and P significantly changed the microbial community structure, increasing microbial activity (microbial biomass and soil respiration), but decreasing the accumulation of mineralized N. Among them, N24P12 treatment showed the greatest increase in the soil nutrient content and respiration. N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid (PLFA) content by 70.93%. N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes. Soil microbial biomass, respiration, and overall enzyme activity are driven by mineralized N. Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Aeolian activity in the southern Gurbantunggut Desert of China during the last 900 years
LI Wen, MU Guijin, YE Changsheng, XU Lishuai, LI Gen
Journal of Arid Land    2023, 15 (6): 649-666.   DOI: 10.1007/s40333-023-0057-9
Abstract117)   HTML278)    PDF(pc) (2633KB)(564)       Save

The mineral dust emitted from Central Asia has a significant influence on the global climate system. However, the history and mechanisms of aeolian activity in Central Asia remain unclear, due to the lack of well-dated records of aeolian activity and the intense wind erosion in some of the dust source areas (e.g., deserts). Here, we present the records of aeolian activity from a sedimentary sequence in the southern Gurbantunggut Desert of China using grain size analysis and optically stimulated luminescence (OSL) dating, based on field sampling in 2019. Specifically, we used eight OSL dates to construct chronological frameworks and applied the end-member (EM) analysis for the grain size data to extract the information of aeolian activity in the southern Gurbantunggut Desert during the last 900 a. The results show that the grain size dataset can be subdivided into three EMs (EM1, EM2, and EM3). The primary modal sizes of these EMs (EM1, EM2, and EM3) are 126.00, 178.00, and 283.00 μm, respectively. EM1 represents a mixture of the suspension components and saltation dust, while EM2 and EM3 show saltation dust transported over a shorter distance via strengthened near-surface winds, which can be used to trace aeolian activity. Combined with the OSL chronology, our results demonstrate that during the last 900 a, more intensive and frequent aeolian activity occurred during 450-100 a BP (Before Present) (i.e., the Little Ice Age (LIA)), which was reflected by a higher proportion of the coarse-grained components (EM2+EM3). Aeolian activity decreased during 900-450 a BP (i.e., the Medieval Warm Period (MWP)) and 100 a BP-present (i.e., the Current Warm Period (CWP)). Intensified aeolian activity was associated with the strengthening of the Siberian High and cooling events at high northern latitudes. We propose that the Siberian High, under the influence of temperature changes at high northern latitudes, controlled the frequency and intensity of aeolian activity in Central Asia. Cooling at high northern latitudes would have significantly enhanced the Siberian High, causing its position to shift southward. Subsequently, the incursion of cold air masses from high northern latitudes resulted in stronger wind regimes and increased dust emissions from the southern Gurbantunggut Desert. It is possible that aeolian activity may be weakened in Central Asia under future global warming scenarios, but the impact of human activities on this region must also be considered.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Estimation and inter-comparison of infiltration models in the agricultural area of the Mitidja Plain, Algeria
Amina MAZIGHI, Hind MEDDI, Mohamed MEDDI, Ishak ABDI, Giovanni RAVAZZANI, Mouna FEKI
Journal of Arid Land    2023, 15 (12): 1474-1489.   DOI: 10.1007/s40333-023-0037-0
Abstract82)   HTML9)    PDF(pc) (2527KB)(549)       Save

Infiltration is an important part of the hydrological cycle, and it is one of the main abstractions accounted for in the rainfall-runoff modeling. The main purpose of this study is to compare the infiltration models that were used to assess the infiltration rate of the Mitidja Plain in Algeria. Field infiltration tests were conducted at 40 different sites using a double ring infiltrometer. Five statistical comparison criteria including root mean squared error (RMSE), normalized root mean squared error (NRMSE), coefficient of correlation (CC), Nash-Sutcliffe efficiency (NSE), and Kling-Gupta efficiency (KGE) were used to determine the best performing infiltration model and to confirm anomalies between predicted and observed values. Then we evaluated performance of five models (i.e., the Philip model, Kostiakov model, Modified Kostiakov model, Novel model, and Horton model) in simulating the infiltration process based on the adjusted performance parameters cited above. Results indicated that the Novel model had the best simulated water infiltration process in the Mitidja Plain in Algeria. However, the Philip model was the weakest to simulate the infiltration process. The conclusion of this study can be useful for estimating infiltration rate at various sites using a Novel model when measured infiltration data are not available and are useful for planning and managing water resources in the study area.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Diversity of soil bacteria and fungi communities in artificial forests of the sandy-hilly region of Northwest China
GOU Qianqian, MA Gailing, QU Jianjun, WANG Guohua
Journal of Arid Land    2023, 15 (1): 109-126.   DOI: 10.1007/s40333-023-0003-x
Abstract114)   HTML1)    PDF(pc) (1535KB)(545)       Save

Soil erosion is a serious issue in the sandy-hilly region of Shanxi Province, Northwest China. There has been gradual improvement due to vegetation restoration, but soil microbial community characteristics in different vegetation plantation types have not been widely investigated. To address this, we analyzed soil bacterial and fungal community structures, diversity, and microbial and soil environmental factors in Caragana korshinskii Kom., Populus tomentosa Carr., Populus simonii Carr., Salix matsudana Koidz, and Pinus tabulaeformis Carr. forests. There were no significant differences in the dominant bacterial community compositions among the five forest types. The alpha diversity of the bacteria and fungi communities showed that ACE (abundance-based coverage estimator), Chao1, and Shannon indices in C. korshinskii forest were significantly higher than those in the other four forest types (P<0.05). Soil organic matter, total nitrogen, and urease had a greater impact on bacterial community composition, while total nitrogen, β-glucosidase, and urease had a greater impact on fungal community composition. The relative abundance of beneficial and pathogenic microorganisms was similar across all forest types. Based on microbial community composition, diversity, and soil fertility, we ranked the plantations from most to least suitable as follows: C. korshinskii, S. matsudana, P. tabulaeformis, P. tomentosa, and P. simonii.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatial changes and driving factors of lake water quality in Inner Mongolia, China
REN Xiaohui, YU Ruihong, LIU Xinyu, SUN Heyang, GENG Yue, QI Zhen, ZHANG Zhuangzhuang, LI Xiangwei, WANG Jun, ZHU Penghang, GUO Zhiwei, WANG Lixin, XU Jifei
Journal of Arid Land    2023, 15 (2): 164-179.   DOI: 10.1007/s40333-022-0080-2
Abstract165)   HTML13)    PDF(pc) (1258KB)(544)       Save

Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China, but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear. This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes (Juyanhai Lake, Ulansuhai Lake, Hongjiannao Lake, Daihai Lake, Chagannaoer Lake, Hulun Lake, and Wulannuoer Lake) across the longitudinal axis (from the west to the east) of Inner Mongolia. Large-scale research was conducted using the comprehensive trophic level index (TLI (Σ)), multivariate statistics, and spatial analysis methods. The results showed that most lakes in Inner Mongolia were weakly alkaline. Total dissolved solids and salinity of lake water showed obvious zonation characteristics. Nitrogen and phosphorus were identified as the main pollutants in lakes, with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L, respectively. The values of TLI (Σ) ranged from 49.14 to 71.77, indicating varying degrees of lake eutrophication, and phosphorus was the main driver of lake eutrophication. The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI (Σ). The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake, whereas the opposite trend was observed for lake trophic level. The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality. It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment. These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia, which can be used to develop strategies for lake ecosystem protection and water resources management in this region.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Integrating stable isotopes and factor analysis to delineate the groundwater provenance and pollution sources in the northwestern part of the Amman-Al Zarqa Basin, Jordan
Mutawakil OBEIDAT, Ahmad AL-AJLOUNI, Eman BANI-KHALED, Muheeb AWAWDEH, Muna ABU-DALO
Journal of Arid Land    2023, 15 (12): 1490-1509.   DOI: 10.1007/s40333-023-0112-6
Abstract73)   HTML8)    PDF(pc) (1347KB)(543)       Save

Globally, groundwater contamination by nitrate is one of the most widespread environmental problems, particularly in arid and semiarid areas, which are characterized by low amounts of rainfall and groundwater recharge. The stable isotope composition of groundwater (δ2H-H2O and δ18O-H2O) and dissolved nitrate (δ15N-NO3- and δ18O-NO3-) and factor analysis (FA) were applied to explore groundwater provenance, pollution, and chemistry evolution in the northwestern part of the Amman-Al Zarqa Basin, Jordan. In this study, we collected 23 samples from the Lower Ajloun aquifer in 2021, including 1 sample from a groundwater well and 22 samples from springs. These samples were tested for electrical conductivity, total dissolved solids, pH, temperature, dissolved oxygen, the concentration of major ions (Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO42-, and NO3-), and the stable isotope composition of groundwater and dissolved nitrate. The results revealed that groundwater in the study area is mainly Ca-Mg-HCO3 type and can be classified as fresh water, hard water, and very hard water. The range and average concentration of NO3- were 3.5-230.8 and 50.9 mg/L, respectively. Approximately 33% of the sampling points showed NO3- levels above the maximum allowable concentration of 50.0 mg/L set by the World Health Organization (WHO) guidelines for drinking water quality. The values of δ18O-H2O and δ2H-H2O showed that groundwater in the study area is part of the current water cycle, originating in the Mediterranean Sea, with significant evaporation, orographic, and amount effects. The values of the stable isotope composition of NO3- corresponded to δ15N-NO3- and δ18O-NO3- values produced by the nitrification process of manure or septic waste and soil NH4+. The FA performed on the hydrochemical parameters and isotope data resulted in three main factors, with Factor 1, Factor 2, and Factor 3, accounting for 50%, 21%, and 11% of the total variance, respectively. Factor 1 was considered human-induced factor, named "pollution factor", whereas Factor 2, named "conservative fingerprint factor", and Factor 3, named "hardness factor", were considered natural factors. This study will help local researchers manage groundwater sustainably in the study area and other similar arid and semiarid areas in the world.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Morphological and physiological responses to drought stress of carob trees in Mediterranean ecosystems
Khouloud ZAGOUB, Khouloud KRICHEN, Mohamed CHAIEB, Lobna F MNIF
Journal of Arid Land    2023, 15 (5): 562-577.   DOI: 10.1007/s40333-023-0011-x
Abstract365)   HTML4)    PDF(pc) (901KB)(542)       Save

The greatest failure rate of reforestation programs is basically related to water deficit, especially at the seedling stage. Therefore, the main objective of this work is to investigate the responses of three accessions of carob trees (Ceratonia siliqua L.) with 2-year-old from different climate regions to drought generated by four water treatments: Tc (250 mm), T1 (180 mm), T2 (100 mm), and T3 (50 mm). The first accession (A1) comes from the protected national park of Ichkeul in northern Tunisia. This zone belongs to the bioclimatic sub-humid stage. The second accession (A2) comes from Melloulech, located in the center-east of Tunisia, belonging to the bioclimatic semi-arid stage. The third accession (A3) comes from the mountain of Matmata, located in the south of Tunisia, belonging to the bioclimatic hyper-arid stage. The experiment was undertaken in a greenhouse. Gaz exchange indices (net photosynthesis (A), stomatal conductance (gs), transpiration rate (E), and internal CO2 concentration (Ci)) were determined. Predawn (Ψpd) and midday (Ψmd) leaf water potentials, relative soil water content (SWC), and morphological parameters (plant height (H), number of leaves (NL), number of leaflets (Nl), and number of branches (NB)) were estimated. The results showed that significant differences (P<0.001) were found between physiological and morphological parameters of each accession. The highest growth potential was recorded for Tc treatment in both accessions A1 and A2. Significant decreases in gs, E, Ci, and SWC were recorded with the increases in water stress applied from treatment T1 to T3. Positive and significant correlations were found between SWC and Ψpd for all studied accessions. Ψpd and Ψmd decreased as water stress increased, ranging from -0.96 to -1.50 MPa at sunrise and from -1.94 to -2.83 MPa at midday, respectively, under control and T3 treatments. C. siliqua accessions responded to drought through exhibiting significant changes in their physiological and morphological behavior. Both accessions A1 and A2 showed greater drought tolerance than accession A3. These seedlings exhibit different adaptive mechanisms such as stress avoidance, which are aimed at reducing transpiration, limiting leaf growth, and increasing root growth to exploit more soil water. Therefore, C. siliqua can be recommended for the ecological restoration in Mediterranean ecosystems.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss
Mohammad Hossein TAGHIZADEH, Mohammad FARZAM, Jafar NABATI
Journal of Arid Land    2023, 15 (2): 205-217.   DOI: 10.1007/s40333-023-0092-6
Abstract71)   HTML4)    PDF(pc) (441KB)(534)       Save

Growth-promoting bacteria (GPB) have shown promising effects on serving plants against environmental constraints such as drought. Nevertheless, simultaneous effects of different GPB have less been considered for arid land plants and under field conditions. We investigated the effects of single and combined application of GPB, including free-living nitrogen-fixing bacteria (NFB), phosphate solubilizing bacteria (PSB), potassium solubilizing bacteria (KSB), a combination of NFB, PSB, and KSB (NPK), and control, at three drought stress treatments. In order to better understand the interactions between drought and GPB, we measured the morphological, biochemical, and physiological plant traits. The target plant was salt tree (Halimodendron Halodendron (Pall.) Voss), a legume shrub native to arid lands of Central and West Asia. All biofertilizer treatments enhanced the growth, physiology, and biochemistry of salt tree seedlings, and there were significant differences among the treatments. KSB and PSB treatments increased photosynthetic pigments, but KSB treatment was more efficient in transpiration rate and stomatal regulation and increased the soluble carbohydrates. PSB treatment had the highest effect on root traits, such as taproot length, root volume, cumulative root length, and the ratio of root to shoot. NFB treatment enhanced root diameter and induced biomass translocation between root systems. However, only the application of mixed biofertilizer (i.e., NPK treatment) was the most significant treatment to improve all plant morphological and physiological characteristics of salt tree under drought stress. Therefore, our results provided improvement of some specific plant traits simultaneous with application of three biofertilizers to increase growth and establishment of salt tree seedlings in the degraded arid lands.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal evolution and prediction of habitat quality in Hohhot City of China based on the InVEST and CA-Markov models
LUAN Yongfei, HUANG Guohe, ZHENG Guanghui
Journal of Arid Land    2023, 15 (1): 20-33.   DOI: 10.1007/s40333-023-0090-8
Abstract130)   HTML136)    PDF(pc) (1651KB)(530)       Save

With the acceleration of urbanization, changes in the urban ecological environment and landscape pattern have led to a series of prominent ecological environmental problems. In order to better coordinate the balanced relationship between city and ecological environment, we selected land use change data to evaluate the habitat quality in Hohhot City of China, which is of great practical significance for regional urban and economic development. Thus, the integrated valuation of ecosystem services and tradeoffs (InVEST) and Cellular Automata-Markov (CA-Markov) models were used to analyze, predict, and explore the Spatiotemporal evolution path and characteristics of urban land use, and forecast the typical evolution pattern of land use in 2030. The results showed that the land use types in Hohhot City changed significantly from 2000 to 2020, and the biggest change took place in cultivated land, grassland, shrub, and artificial surface. The decrease of cultivated land area and the increase of artificial surface area were the main impact trend of land use change. The average value of habitat quality had been decreasing continuously from 2000 to 2020, and the values of habitat degradation were 0.2605, 0.2494, and 0.2934 in 2000, 2010, and 2020, respectively, showing a decreasing trend. The decrease of habitat quality was caused by the needs of economic development and urban construction, as well as the impact of land occupation. During this evolution, many cultivated land and urban grassland had been converted into construction land. The simulated land use changes in 2030 are basically the same as those during 2000-2020, and the habitat quality will still be declining. The regional changes are influenced by the urban rapid development and industrial layout. These results can provide decision-making reference for regional urban planning and management as well as habitat quality evaluation.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Responses of runoff to changes in climate and human activities in the Liuhe River Basin, China
LI Mingqian, WANG He, DU Wei, GU Hongbiao, ZHOU Fanchao, CHI Baoming
Journal of Arid Land    2024, 16 (8): 1023-1043.   DOI: 10.1007/s40333-024-0023-1
Abstract94)   HTML12)    PDF(pc) (2577KB)(520)       Save

Since the 1950s, numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin (LRB), China. While these measures have protected the upstream soil and water ecological environment, they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment. Therefore, it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes. Using the Soil and Water Assessment Tool (SWAT) models and sensitivity analyses based on the Budyko hypothesis, this study quantitatively evaluated the effects of climate change, direct water withdrawal, and soil and water conservation measures on runoff in the LRB during different periods, including different responses to runoff discharge, hydrological regime, and flood processes. The runoff series were divided into a baseline period (1956-1969) and two altered periods, i.e., period 1 (1970-1999) and period 2 (2000-2020). Human activities were the main cause of the decrease in runoff during the altered periods, contributing 86.03% (-29.61 mm), while the contribution of climate change was only 13.70% (-4.70 mm). The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season. Analysis of two flood cases indicated a 66.00%-84.00% reduction in basin runoff capacity due to soil and water conservation measures in the upstream area. Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98% and 55.16%, respectively, even with nearly double the precipitation. The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area. These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Dividing the transit wind speeds into intervals as a favorable methodology for analyzing the relationship between wind speed and the aerodynamic impedance of vegetation in semiarid grasslands
LI Ruishen, PEI Haifeng, ZHANG Shengwei, LI Fengming, LIN Xi, WANG Shuai, YANG Lin
Journal of Arid Land    2023, 15 (8): 887-900.   DOI: 10.1007/s40333-023-0102-8
Abstract68)   HTML589)    PDF(pc) (2378KB)(511)       Save

In grassland ecosystems, the aerodynamic roughness (Z0) and frictional wind speed (u*) contribute to the aerodynamic impedance of the grassland canopy. Thus, they are often used in the studies of wind erosion and evapotranspiration. However, the effect of wind speed and grazing measures on the aerodynamic impedance of the grassland canopy has received less analysis. In this study, we monitored wind speeds at multiple heights in grazed and grazing-prohibited grasslands for 1 month in 2021, determined the transit wind speed at 2.0 m height by comparing wind speed differences at the same height in both grasslands, and divided these transit wind speeds at intervals of 2.0 m/s to analyze the effect of the transit wind speed on the relationship among Z0, u*, and wind speed within the grassland canopy. The results showed that dividing the transit wind speeds into intervals has a positive effect on the logarithmic fit of the wind speed profile. After dividing the transit wind speeds into intervals, the wind speed at 0.1 m height (V0.1) gradually decreased with the increase of Z0, exhibiting three distinct stages: a sharp change zone, a steady change zone, and a flat zone; while the overall trend of u* increased first and then decreased with the increase of V0.1. Dividing the transit wind speeds into intervals improved the fitting relationship between Z0 and V0.1 and changed their fitting functions in grazed and grazing-prohibited grasslands. According to the computational fluid dynamic results, we found that the number of tall-stature plants has a more significant effect on windproof capacity than their height. The results of this study contribute to a better understanding of the relationship between wind speed and the aerodynamic impedance of vegetation in grassland environments.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of degradation and species composition on soil seed density in the alpine grasslands, China
LI Chunming, MA Jiahui, LI Liangyu, HUANG Junlin, LU Jinhua, HUANG Mei, Allan DEGEN, SHANG Zhanhuan
Journal of Arid Land    2023, 15 (12): 1510-1528.   DOI: 10.1007/s40333-023-0036-1
Abstract80)   HTML11)    PDF(pc) (2096KB)(493)       Save

Grassland degradation can alter the structure and function of ecosystem and soil seed bank. Therefore, estimating the role of soil seed bank in vegetation regeneration of degraded grasslands is crucial. We selected grasslands with three levels of degradation, namely non-degraded (ND), mildly degraded (MD), and heavily degraded (HD) to analyze the effect of grassland degradation on soil seed bank, as well as the role of soil seed bank on vegetation regeneration of the alpine grasslands, China. Soil samples from each level were collected in May, before seedling emergence, in August, after completion of transient seed bank germination, and in December, after seed dispersal, to determine the seed density and species composition through germination experiment. Result showed that a total of 35 plant species was identified, including 15 species observed in both soil seed bank and above-ground vegetation. A total of 19, 15, and 14 species of soil seed bank were identified in December, May, and August, respectively. The most abundant species in soil seed bank were Compositae (5 species), followed by Poaceae (4 species), and Cyperaceae (3 species). Degradation level has no significant impact on species richness and Shannon- Wiener index of soil seed bank. In addition, sampling month and grassland degradation affected soil seed bank density, in which December>May>August, and ND>MD>HD, indicating that density of transient seed bank was greater than persistent seed bank. Soil seed bank density of surface layer (0-5 cm) accounting for 42%-72% of the total density, which was significantly higher than that of deep layer (5-10 cm). Similarity of species composition between vegetation and soil seed bank was low, and it increased with degradation level (ranged from 0.14 to 0.69). We concluded that grassland degradation affects soil seed bank density more than species diversity, and soil seed bank contributed slightly to vegetation regeneration of degraded alpine grassland. Therefore, it is unlikely that degraded alpine meadow can be restored solely through soil seed bank.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of loading rate on root pullout performance of two plants in the eastern Loess Plateau, China
ZHANG Chaobo, LI Rong, JIANG Jing, YANG Qihong
Journal of Arid Land    2023, 15 (9): 1129-1142.   DOI: 10.1007/s40333-023-0026-3
Abstract64)   HTML4)    PDF(pc) (1363KB)(485)       Save

Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas. Studies have shown that it is affected by plant factors (species, ages, root geometry, etc.) and soil factors (soil types, soil moisture, soil bulk densities, etc.). However, the effects of loading rates on root pullout performance are not well studied. To explore the mechanical interactions under different loading rates, we conducted pullout tests on Medicago sativa L. and Hippophae rhamnoides L. roots under five loading rates, i.e., 5, 50, 100, 150, and 200 mm/min. In addition, tensile tests were conducted on the roots in diameters of 0.5-2.0 mm to compare the relationship between root tensile properties and root pullout properties. Results showed that two root failure modes, slippage and breakage, were observed during root pullout tests. All M. sativa roots were pulled out, while 72.2% of H. rhamnoides roots were broken. The maximum fracture diameter and fracture root length of H. rhamnoides were 1.22 mm and 7.44 cm under 100 mm/min loading rate, respectively. Root displacement values were 4.63% (±0.43%) and 8.91% (±0.52%) of the total root length for M. sativa and H. rhamnoides, respectively. The values of maximum pullout force were 14.6 (±0.7) and 17.7 (±1.8) N under 100 mm/min for M. sativa and H. rhamnoides, respectively. Values of the maximum pullout strength for M. sativa and H. rhamnoides were 38.38 (±5.48) MPa under 150 mm/min and 12.47 (±1.43) MPa under 100 mm/min, respectively. Root-soil friction coefficient under 100 mm/min was significantly larger than those under other loading rates for both the two species. Values of the maximum root pullout energy for M. sativa and H. rhamnoides were 87.83 (±21.55) mm·N under 100 mm/min and 173.53 (±38.53) mm·N under 200 mm/min, respectively. Root pullout force was significantly related to root diameter (P<0.01). Peak root pullout force was significantly affected by loading rates when the effect of root diameter was included (P<0.01), and vice versa. Except for the failure mode and peak pullout force, other pullout parameters, including root pullout strength, root displacement, root-soil friction coefficient, and root pullout energy were not significantly affected by loading rates (P>0.05). Root pullout strength was greater than root tensile strength for the two species. The results suggested that there was no need to deliberately control loading rate in root pullout tests in the semi-arid soil, and root pullout force and pullout strength could be better parameters for root reinforcement model compared with root tensile strength as root pullout force and pullout strength could more realistically reflect the working state of roots in the semi-arid soil.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Nutrient resorption and its influencing factors of typical desert plants in different habitats on the northern margin of the Tarim Basin, China
ZHOU Chongpeng, GONG Lu, WU Xue, LUO Yan
Journal of Arid Land    2023, 15 (7): 858-870.   DOI: 10.1007/s40333-023-0104-6
Abstract70)   HTML7)    PDF(pc) (1318KB)(478)       Save

The resorption of nutrients from senescent leaves allows plants to conserve and recycle nutrients. To explore the adaptation strategies of desert plants to nutrient-limited environments, we selected four typical desert plants (Populus euphratica Oliv., Tamarix ramosissima Ledeb., Glycyrrhiza inflata Batal., and Alhagi camelorum Fisch.) growing in the desert area of the northern margin of the Tarim Basin, China. The contents of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and Ferrum (Fe) in the leaves of these four typical desert plants and their resorption characteristics were analyzed. The relationship of nutrient resorption efficiency with leaf functional traits and soil physical-chemical properties in two different habitats (saline-alkali land and sandy land) was discussed. The results showed that the four plants resorbed most of the elements. Ca was enriched in the leaves of P. euphratica, G. inflate, and A. camelorum; Mg was enriched in the leaves of G. inflata; and Fe was enriched in the leaves of the four plants. The results of the redundancy analysis showed that leaf thickness, soil electrical conductivity, and soil P content were the major factors affecting the nutrient resorption efficiency of the four plants. Leaf thickness was negatively correlated with N resorption efficiency (NRE), P resorption efficiency, and Fe resorption efficiency; soil electrical conductivity was positively correlated with the resorption efficiency of most elements; and soil P content was negatively correlated with the resorption efficiency of most elements in the plant leaves. The results showed that soil physical-chemical properties and soil nutrient contents had an important impact on the nutrient resorption of plant leaves. The same species growing in different habitats also differed in their resorption of different elements. The soil environment of plants and the biological characteristics of plant leaves affected the resorption of nutrient elements in different plants. The purpose of this study is to provide small-scale data support for the protection of ecosystems in nutrient-deficient areas by studying leaf functional strategies and nutrient conservation mechanisms of several typical desert plants.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Biocrust-induced partitioning of soil water between grass and shrub in a desert steppe of Northwest China
YANG Xinguo, WANG Entian, QU Wenjie, WANG Lei
Journal of Arid Land    2023, 15 (1): 63-76.   DOI: 10.1007/s40333-023-0001-z
Abstract96)   HTML1)    PDF(pc) (2261KB)(463)       Save

Maintaining the stability of exotic sand-binding shrub has become a large challenge in arid and semi-arid grassland ecosystems in northern China. We investigated two kinds of shrublands with different BSCs (biological soil crusts) cover in desert steppe in Northwest China to characterize the water sources of shrub (Caragana intermedia Kuang et H. C. Fu) and grass (Artemisia scoparia Waldst. et Kit.) by stable 18O isotopic. Our results showed that both shrublands were subject to persistent soil water deficiency from 2012 to 2017, the minimum soil depth with CV (coefficient of variation) <15% and SWC (soil water content) <6% was 1.4 m in shrubland with open areas lacking obvious BSC cover, and 0.8 m in shrubland covered by mature BSCs. For C. intermedia, a considerable proportion of water sources pointed to the surface soil. Water from BSCs contributed to averages 22.9% and 17.6% of the total for C. intermedia and A. scoparia, respectively. C. intermedia might use more water from BSCs in rainy season than dry season, in contrast to A. scoparia. The relationship between shrub (or grass) and soil water by δ18O shown significant differences in months, which partly verified the potential trends and relations covered by the high variability of the water source at seasonal scale. More fine roots at 0-5 cm soil layer could be found in the surface soil layer covered by BSCs (8000 cm/m3) than without BSCs (3200 cm/m3), which ensured the possibility of using the surface soil water by C. intermedia. The result implies that even under serious soil water deficiency, C. intermedia can use the surface soil water, leading to the coexistence between C. intermedia and A. scoparia. Different with the result from BSCs in desert areas, the natural withdrawal of artificial C. intermedia from desert steppe will be a long-term process, and the highly competitive relationship between shrubs and grasses also determines that its habitat will be maintained in serious drought state for a long time.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Distribution patterns of fire regime in the Pendjari Biosphere Reserve, West Africa
Omobayo G ZOFFOUN, Chabi A M S DJAGOUN, Etotépé A SOGBOHOSSOU
Journal of Arid Land    2023, 15 (10): 1160-1173.   DOI: 10.1007/s40333-023-0027-2
Abstract355)   HTML573)    PDF(pc) (3201KB)(459)       Save

Pendjari Biosphere Reserve (PBR), a primary component of the W-Arly-Pendjari transboundary biosphere reserve, represents the largest intact wild ecosystem and pristine biodiversity spot in West Africa. This savannah ecosystem has long been affected by fire, which is the main ecological driver for the annual rhythm of life in the reserve. Understanding the fire distribution patterns will help to improve its management plan in the region. This study explores the fire regime in the PRB during 2001-2021 in terms of burned area, seasonality, fire frequency, and mean fire return interval (MFRI) by analysing moderate resolution imaging spectroradiometer (MODIS) burned area product. Results indicated that the fire season in the PBR extends from October to May with a peak in early dry season (November-December). The last two fire seasons (2019-2020 and 2020-2021) recorded the highest areas burned in the PBR out of the twenty fire seasons studied. During the twenty years period, 8.2% of the reserve burned every 10-11 months and 11.5% burned annually. The largest part of the reserve burned every one to two years (63.1%), while 8.3% burned every two to four years, 5.8% burned every four to ten years, and 1.9% burned every ten to twenty years. Only 1.3% of the entire area did not fire during the whole study period. Fire returned to a particular site every 1.39 a and the annual percentage of area burned in the PBR was 71.9%. The MFRI (MFRI<2.00 a) was low in grasslands, shrub savannah, tree savannah, woodland savannah, and rock vegetation. Fire regime must be maintained to preserve the integrity of the PBR. In this context, we suggest applying early fire in tree and woodland savannahs to lower grass height, and late dry season fires every two to three years in shrub savannah to limit the expansion of shrubs and bushes. We propose a laissez-faire system in areas in woodland savannah where the fire frequency is sufficient to allow tree growth. Our findings highlight the utility of remote sensing in defining the geographical and temporal patterns of fire in the PBR and could help to manage this important fire prone area.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Soil seed bank is affected by transferred soil thickness and properties in the reclaimed coal mine in the Qilian Mountains, China
YANG Jingyi, LUO Weicheng, ZHAO Wenzhi, LIU Jiliang, WANG Dejin, LI Guang
Journal of Arid Land    2023, 15 (12): 1529-1543.   DOI: 10.1007/s40333-023-0113-5
Abstract90)   HTML5)    PDF(pc) (2560KB)(459)       Save

Reclamation of lands abandoned after mining in mountain areas is critical to erosion control, safety from landslides, and ecological protection of mountain ecosystems. However, little is known about alpine coal mine reclamation using the soil seed bank as a potential source for revegetation. We collected samples of persistent soil seed bank for germination experiments from nine reclaimed sites with different soil cover thicknesses and from six control sites in the Qilian Mountains of China. Soil properties of each site were determined (including soil water content, soil available potassium, soil available phosphorus, soil total nitrogen, pH, soil organic matter, soil total phosphorus, and soil total potassium, and soil alkali-hydrolyzable nitrogen), and the relationships of the characteristics of the soil seed bank with soil cover thickness and soil properties were examined. The results showed that the density, number of species, and diversity of the topsoil seed bank were significantly correlated with soil cover thickness, and all increased with the increment of soil cover thickness. Soil cover thickness controlled the soil seed bank by influencing soil properties. With the increase in soil cover thickness, soil properties (e.g., soil organic matter, soil total nitrogen, etc.) content increased while soil pH decreased. The soil seed bank had the potential to restored the pre-mining habitat at reclaimed sites with approximately 20-cm soil cover thickness. Soil properties of reclaimed sites were lower than that of natural sites. The relationship between the soil seed bank and soil cover thickness determined in this study provides a foundation for improving reclamation measures used in coal mines, as well as for the management and monitoring of reclaimed areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Long-term light grazing does not change soil organic carbon stability and stock in biocrust layer in the hilly regions of drylands
MA Xinxin, ZHAO Yunge, YANG Kai, MING Jiao, QIAO Yu, XU Mingxiang, PAN Xinghui
Journal of Arid Land    2023, 15 (8): 940-959.   DOI: 10.1007/s40333-023-0064-x
Abstract79)   HTML4)    PDF(pc) (2465KB)(452)       Save

Livestock grazing is the most extensive land use in global drylands and one of the most extensive stressors of biological soil crusts (biocrusts). Despite widespread concern about the importance of biocrusts for global carbon (C) cycling, little is known about whether and how long-term grazing alters soil organic carbon (SOC) stability and stock in the biocrust layer. To assess the responses of SOC stability and stock in the biocrust layer to grazing, from June to September 2020, we carried out a large scale field survey in the restored grasslands under long-term grazing with different grazing intensities (represented by the number of goat dung per square meter) and in the grasslands strictly excluded from grazing in four regions (Dingbian County, Shenmu City, Guyuan City and Ansai District) along precipitation gradient in the hilly Loess Plateau, China. In total, 51 representative grassland sites were identified as the study sampling sites in this study, including 11 sites in Guyuan City, 16 sites in Dingbian County, 15 sites in Shenmu City and 9 sites in Ansai District. Combined with extensive laboratory analysis and statistical analysis, at each sampling site, we obtained data on biocrust attributes (cover, community structure, biomass and thickness), soil physical-chemical properties (soil porosity and soil carbon-to-nitrogen ratio (C/N ratio)), and environmental factors (mean annual precipitation, mean annual temperature, altitude, plant cover, litter cover, soil particle-size distribution (the ratio of soil clay and silt content to sand content)), SOC stability index (SI) and SOC stock (SOCS) in the biocrust layer, to conduct this study. Our results revealed that grazing did not change total biocrust cover but markedly altered biocrust community structure by reducing plant cover, with a considerable increase in the relative cover of cyanobacteria (23.1%) while a decrease in the relative cover of mosses (42.2%). Soil porosity and soil C/N ratio in the biocrust layer under grazing decreased significantly by 4.1%-7.2% and 7.2%-13.3%, respectively, compared with those under grazing exclusion. The shifted biocrust community structure ultimately resulted in an average reduction of 15.5% in SOCS in the biocrust layer under grazing. However, compared with higher grazing (intensity of more than 10.00 goat dung/m2), light grazing (intensity of 0.00-10.00 goat dung/m2 or approximately 1.20-2.60 goat/(hm2·a)) had no adverse effect on SOCS. SOC stability in the biocrust layer remained unchanged under long-term grazing due to the offset between the positive effect of the decreased soil porosity and the negative effect of the decreased soil C/N ratio on the SOC resistance to decomposition. Mean annual precipitation and soil particle-size distribution also regulated SOC stability indirectly by influencing soil porosity through plant cover and biocrust community structure. These findings suggest that proper grazing might not increase the CO2 release potential or adversely affect SOCS in the biocrust layer. This research provides some guidance for proper grazing management in the sustainable utilization of grassland resources and C sequestration in biocrusts in the hilly regions of drylands.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia
Olfa TERWAYET BAYOULI, ZHANG Wanchang, Houssem TERWAYET BAYOULI
Journal of Arid Land    2023, 15 (11): 1269-1289.   DOI: 10.1007/s40333-023-0110-8
Abstract83)   HTML229)    PDF(pc) (2075KB)(443)       Save

Droughts and soil erosion are among the most prominent climatic driven hazards in drylands, leading to detrimental environmental impacts, such as degraded lands, deteriorated ecosystem services and biodiversity, and increased greenhouse gas emissions. In response to the current lack of studies combining drought conditions and soil erosion processes, in this study, we developed a comprehensive Geographic Information System (GIS)-based approach to assess soil erosion and droughts, thereby revealing the relationship between soil erosion and droughts under an arid climate. The vegetation condition index (VCI) and temperature condition index (TCI) derived respectively from the enhanced vegetation index (EVI) MOD13A2 and land surface temperature (LST) MOD11A2 products were combined to generate the vegetation health index (VHI). The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed, southeastern Tunisia. The revised universal soil loss equation (RUSLE) model was applied to quantitatively estimate soil erosion. The relationship between soil erosion and droughts was investigated through Pearson correlation. Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000-2016. The average soil erosion rate was determined to be 1.8 t/(hm2·a). The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts. The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion. The relationship between droughts and soil erosion had a positive correlation (r=0.3); however, the correlation was highly varied spatially across the watershed. Drought was linked to soil erosion in the Negueb watershed. The current study provides insight for natural disaster risk assessment, land managers, and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Nitrogen application levels based on critical nitrogen absorption regulate processing tomatoes productivity, nitrogen uptake, nitrate distributions, and root growth in Xinjiang, China
JING Bo, SHI Wenjuan, DIAO Ming
Journal of Arid Land    2023, 15 (10): 1231-1244.   DOI: 10.1007/s40333-023-0108-2
Abstract40)   HTML4)    PDF(pc) (1004KB)(439)       Save

The unreasonable nitrogen (N) supply and low productivity are the main factors restricting the sustainable development of processing tomatoes. In addition, the mechanism by which the N application strategy affects root growth and nitrate distributions in processing tomatoes remains unclear. In this study, we applied four N application levels to a field (including 0 (N0), 200 (N200), 300 (N300), and 400 (N400) kg/hm2) based on the critical N absorption ratio at each growth stage (planting stage to flowering stage: 22%; fruit setting stage: 24%; red ripening stage: 45%; and maturity stage: 9%). The results indicated that N300 treatment significantly improved the aboveground dry matter (DM), yield, N uptake, and nitrogen use efficiency (NUE), while N400 treatment increased nitrate nitrogen (NO3--N) residue in the 20-60 cm soil layer. Temporal variations of total root dry weight (TRDW) and total root length (TRL) showed a single-peak curve. Overall, N300 treatment improved the secondary root parameter of TRDW, while N400 treatment improved the secondary root parameter of TRL. The grey correlation coefficients indicated that root dry weight density (RDWD) in the surface soil (0-20 cm) had the strongest relationship with yield, whereas root length density (RLD) in the middle soil (20-40 cm) had a strong relationship with yield. The path model indicated that N uptake is a crucial factor affecting aboveground DM, TRDW, and yield. The above results indicate that N application levels based on critical N absorption improve the production of processing tomatoes by regulating N uptake and root distribution. Furthermore, the results of this study provide a theoretical basis for precise N management.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023
YAN Yujie, CHENG Yiben, XIN Zhiming, ZHOU Junyu, ZHOU Mengyao, WANG Xiaoyu
Journal of Arid Land    2024, 16 (8): 1062-1079.   DOI: 10.1007/s40333-024-0082-3
Abstract270)   HTML11)    PDF(pc) (2052KB)(438)       Save

The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world. Under the impacts of climate change and human activities, desertification is becoming increasingly severe on the Mongolian Plateau. Understanding the vegetation dynamics in this region can better characterize its ecological changes. In this study, based on Moderate Resolution Imaging Spectroradiometer (MODIS) images, we calculated the kernel normalized difference vegetation index (kNDVI) on the Mongolian Plateau from 2000 to 2023, and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test. We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis, and quantified the effects of climate change and human activities on kNDVI change by residual analysis. The results showed that kNDVI on the Mongolian Plateau was increasing overall, and the vegetation recovery area in the southern region was significantly larger than that in the northern region. About 50.99% of the plateau showed dominant climate-driven effects of temperature, precipitation, and wind speed on kNDVI change. Residual analysis showed that climate change and human activities together contributed to 94.79% of the areas with vegetation improvement. Appropriate human activities promoted the recovery of local vegetation, and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau. This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Contribution of groundwater to the formation of sand dunes in the Badain Jaran Desert, China
WANG Wang, CHEN Jiaqi, CHEN Jiansheng, WANG Tao, ZHAN Lucheng, ZHANG Yitong, MA Xiaohui
Journal of Arid Land    2023, 15 (11): 1340-1354.   DOI: 10.1007/s40333-023-0032-5
Abstract66)   HTML214)    PDF(pc) (2119KB)(425)       Save

The tallest sand dune worldwide is located in the Badain Jaran Desert (BJD), China, and has been standing for thousands of years. Previous studies have conducted limited physical exploration and excavation on the formation of sand dunes and have proposed three viewpoints, that is, bedrock control, wind dominance, and groundwater maintenance with no unified conclusion. Therefore, this study analyzed the underlying bedding structure of sand dunes in the BJD. Although the bedrock of sand dunes is uplifted and wind controls the shape of dunes, the main cause of dune formation is groundwater that maintains the deposition of calcareous sandstone and accumulation of aeolian sand. According to water transport model and vapor transports in the unsaturated zone of sand dunes, capillary water transport height is limited with film water constituting the main form of water in dunes. Chemical properties and temperature of groundwater showed that aquifers in different basins receive relatively independent recharge from deep sources in the crater. Result of dune formation mechanism is of considerable importance in understanding groundwater circulation and provides a new perspective on water management in arid desert areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Plant growth-promoting properties and anti-fungal activity of endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta in arid lands
ZHAO Mengqi, SU Huan, HUANG Yin, Rashidin ABDUGHENI, MA Jinbiao, GAO Jiangtao, GUO Fei, LI Li
Journal of Arid Land    2023, 15 (11): 1405-1420.   DOI: 10.1007/s40333-023-0071-y
Abstract48)   HTML5)    PDF(pc) (578KB)(422)       Save

Endophytes, as crucial components of plant microbial communities, significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts, promote plant growth, and degrade pathogenic fungal mycelia. In this study, an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species, Thymus altaicus and Salvia deserta, using a series of screening media. Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region, China, in July 2021. Additionally, the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi (Fusarium oxysporum, Fulvia fulva, Alternaria solani, and Valsa mali) were determined through the plate confrontation method. A total of 80 endophytic bacterial strains were isolated from Thymus altaicus, while a total of 60 endophytic bacterial strains were isolated from Salvia deserta. The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties. Specifically, the strains of Bacillus sp. TR002, Bacillus sp. TR005, Microbacterium sp. TSB5, and Rhodococcus sp. TR013 demonstrated strong cellulase-producing activity, siderophore-producing activity, phosphate solubilization activity, and nitrogen-fixing activity, respectively. Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta, 104 strains displayed anti-fungal activity against Fulvia fulva, Alternaria solani, Fusarium oxysporum, and Valsa mali. Furthermore, the strains of Bacillus sp. TR005, Bacillus sp. TS003, and Bacillus sp. TSB7 exhibited robust inhibition rates against all the four pathogenic fungi. In conclusion, the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties, making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Parkland trees on smallholder farms ameliorate soil physical-chemical properties in the semi-arid area of Tigray, Ethiopia
Selam LJALEM, Emiru BIRHANE, Kassa TEKA, Daniel H BERHE
Journal of Arid Land    2024, 16 (1): 1-13.   DOI: 10.1007/s40333-024-0002-6
Abstract96)   HTML8)    PDF(pc) (583KB)(416)       Save

Proposed agroforestry options should begin with the species that farmers are most familiar with, which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions. The African birch (Anogeissus leiocarpa (DC.) Guill. & Perr.) and pink jacaranda (Stereospermum kunthianum Cham.) trees are the dominant species in the agroforestry parkland system in the drylands of Tigray, Ethiopia. Smallholder farmers highly value these trees for their multifunctional uses including timber, firewood, charcoal, medicine, etc. These trees also could improve soil fertility. However, the amount of soil physical and chemical properties enhanced by the two species must be determined to maintain the sustainable conservation of the species in the parklands and to scale up to similar agro- ecological systems. Hence, we selected twelve isolated trees, six from each species that had similar dendrometric characteristics and were growing in similar environmental conditions. We divided the canopy cover of each tree into three radial distances: mid-canopy, canopy edge, and canopy gap (control). At each distance, we took soil samples from three different depths. We collected 216 soil samples (half disturbed and the other half undisturbed) from each canopy position and soil depth. Bulk density (BD), soil moisture content (SMC), soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP), available potassium (AK), pH, electrical conductivity (EC), and cation exchange capacity (CEC) were analysed. Results revealed that soil physical and chemical properties significantly improved except for soil texture and EC under both species, CEC under A. leiocarpus, and soil pH under S. kunthianum, all the studied soils were improved under both species canopy as compared with canopy gap. SMC, TN, AP, and AK under canopy of these trees were respectively 24.1%, 11.1%, 55.0%, and 9.3% higher than those soils under control. The two parkland agroforestry species significantly enhanced soil fertility near the canopy of topsoil through improving soil physical and chemical properties. These two species were recommended in the drylands with similar agro-ecological systems.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Ecological problems and ecological restoration zoning of the Aral Sea
BAO Anming, YU Tao, XU Wenqiang, LEI Jiaqiang, JIAPAER Guli, CHEN Xi, Tojibaev KOMILJON, Shomurodov KHABIBULLO, Xabibullaev B SAGIDULLAEVICH, Idirisov KAMALATDIN
Journal of Arid Land    2024, 16 (3): 315-330.   DOI: 10.1007/s40333-024-0055-6
Abstract81)   HTML4)    PDF(pc) (1853KB)(408)       Save

The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Aral Sea have attracted widespread attention, and the alleviation of the Aral Sea ecological crisis has reached a consensus among the five Central Asian countries (Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan, and Turkmenistan). In the past decades, many ecological management measures have been implemented for the ecological restoration of the Aral Sea. However, due to the lack of regional planning and zoning, the results are not ideal. In this study, we mapped the ecological zoning of the Aral Sea from the perspective of ecological restoration based on soil type, soil salinity, surface water, groundwater table, Normalized Difference Vegetation Index (NDVI), land cover, and aerosol optical depth (AOD) data. Soil salinization and salt dust are the most prominent ecological problems in the Aral Sea. We divided the Aral Sea into 7 first-level ecological restoration subregions (North Aral Sea catchment area in the downstream of the Syr Darya River (Subregion I); artificial flood overflow area in the downstream of the Aral Sea (Subregion II); physical/chemical remediation area of the salt dust source area in the eastern part of the South Aral Sea (Subregion III); physical/chemical remediation area of severe salinization in the central part of the South Aral Sea (Subregion IV); existing water surface and potential restoration area of the South Aral Sea (Subregion V); Aral Sea vegetation natural recovery area (Subregion VI); and vegetation planting area with slight salinization in the South Aral Sea (Subregion VII)) and 14 second-level ecological restoration subregions according to the ecological zoning principles. Implementable measures are proposed for each ecological restoration subregion. For Subregion I and Subregion II with lower elevations, artificial flooding should be carried out to restore the surface of the Aral Sea. Subregion III and Subregion IV have severe salinization, making it difficult for vegetation to grow. In these subregions, it is recommended to cover and pave the areas with green biomatrix coverings and environmentally sustainable bonding materials. In Subregion V located in the central and western parts of the South Aral Sea, surface water recharge should be increased to ensure that this subregion can maintain normal water levels. In Subregion VI and Subregion VII where natural conditions are suitable for vegetation growth, measures such as afforestation and buffer zones should be implemented to protect vegetation. This study could provide a reference basis for future comprehensive ecological management and restoration of the Aral Sea.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatial-temporal changes and driving factors of eco- environmental quality in the Three-North region of China
LONG Yi, JIANG Fugen, DENG Muli, WANG Tianhong, SUN Hua
Journal of Arid Land    2023, 15 (3): 231-252.   DOI: 10.1007/s40333-023-0053-0
Abstract174)   HTML255)    PDF(pc) (5474KB)(404)       Save

Eco-environmental quality is a measure of the suitability of the ecological environment for human survival and socioeconomic development. Understanding the spatial-temporal distribution and variation trend of eco-environmental quality is essential for environmental protection and ecological balance. The remote sensing ecological index (RSEI) can quickly and objectively quantify eco-environmental quality and has been extensively utilized in regional ecological environment assessment. In this paper, Moderate Resolution Imaging Spectroradiometer (MODIS) images during the growing period (July-September) from 2000 to 2020 were obtained from the Google Earth Engine (GEE) platform to calculate the RSEI in the three northern regions of China (the Three-North region). The Theil-Sen median trend method combined with the Mann-Kendall test was used to analyze the spatial-temporal variation trend of eco-environmental quality, and the Hurst exponent and the Theil-Sen median trend were superimposed to predict the future evolution trend of eco-environmental quality. In addition, ten variables from two categories of natural and anthropogenic factors were analyzed to determine the drivers of the spatial differentiation of eco-environmental quality by the geographical detector. The results showed that from 2000 to 2020, the RSEI in the Three-North region exhibited obvious regional characteristics: the RSEI values in Northwest China were generally between 0.2 and 0.4; the RSEI values in North China gradually increased from north to south, ranging from 0.2 to 0.8; and the RSEI values in Northeast China were mostly above 0.6. The average RSEI value in the Three-North region increased at an average growth rate of 0.0016/a, showing the spatial distribution characteristics of overall improvement and local degradation in eco-environmental quality, of which the areas with improved, basically stable and degraded eco-environmental quality accounted for 65.39%, 26.82% and 7.79% of the total study area, respectively. The Hurst exponent of the RSEI ranged from 0.20 to 0.76 and the future trend of eco-environmental quality was generally consistent with the trend over the past 21 years. However, the areas exhibiting an improvement trend in eco-environmental quality mainly had weak persistence, and there was a possibility of degradation in eco-environmental quality without strengthening ecological protection. Average relative humidity, accumulated precipitation and land use type were the dominant factors driving the spatial distribution of eco-environmental quality in the Three-North region, and two-factor interaction also had a greater influence on eco-environmental quality than single factors. The explanatory power of meteorological factors on the spatial distribution of eco-environmental quality was stronger than that of topographic factors. The effect of anthropogenic factors (such as population density and land use type) on eco-environmental quality gradually increased over time. This study can serve as a reference to protect the ecological environment in arid and semi-arid regions.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022
SUN Chao, BAI Xuelian, WANG Xinping, ZHAO Wenzhi, WEI Lemin
Journal of Arid Land    2024, 16 (8): 1044-1061.   DOI: 10.1007/s40333-024-0059-2
Abstract56)   HTML15)    PDF(pc) (3006KB)(396)       Save

Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment, and maintaining ecosystem stability. Here, we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature (SVT) and the sensitivity of vegetation to precipitation (SVP) in the Shiyang River Basin (SYRB) of China during 2001-2022. The climate data from climatic research unit (CRU), vegetation index data from Moderate Resolution Imaging Spectroradiometer (MODIS), and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices, climate, and land use in the SYRB and its sub-basins (i.e., upstream, midstream, and downstream basins) during 2001-2022. Linear regression analysis and correlation analysis were used to explore the SVT and SVP, revealing the driving factors of vegetation variation. Significant increasing trends (P<0.05) were detected for the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) in the SYRB during 2001-2022, with most regions (84%) experiencing significant variation in vegetation, and land use change was determined as the dominant factor of vegetation variation. Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022. There were spatial differences in vegetation variation, SVT, and SVP. Although NDVI and EVI exhibited increasing trends in the upstream, midstream, and downstream basins, the change slope in the downstream basin was lower than those in the upstream and midstream basins, the SVT in the upstream basin was higher than those in the midstream and downstream basins, and the SVP in the downstream basin was lower than those in the upstream and midstream basins. Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities (land use change) dominated vegetation variation in the downstream basin. We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB. These findings can enhance our understanding of the relationship among vegetation variation, climate change, and human activities, and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Exploring groundwater quality in semi-arid areas of Algeria: Impacts on potable water supply and agricultural sustainability
Noua ALLAOUA, Hinda HAFID, Haroun CHENCHOUNI
Journal of Arid Land    2024, 16 (2): 147-167.   DOI: 10.1007/s40333-024-0004-4
Abstract77)   HTML6)    PDF(pc) (1827KB)(395)       Save

Groundwater quality assessment is important to assure safe and durable water use. In semi-arid areas of Algeria, groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands. Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi, Algeria, and were analyzed and compared with the World Health Organization (WHO) standards. Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards. Groundwater had a slightly alkaline water pH (7.00-7.79), electrical conductivity>1500 µS/cm, chloride>500 mg/L, calcium>250 mg/L, and magnesium>155 mg/L. Water quality index (WQI) results showed that 68% of the area had excellent water quality, 24% of the samples fell into good category, and only 8% were of poor quality and unsuitable for human consumption. Six wells in the area showed bacterial contamination. Total coliforms (453.9 (±180.3) CFU (colony-forming units)/100 mL), fecal coliforms (243.2 (±99.2) CFU/100 mL), and fecal streptococci (77.9 (±32.0) CFU/100 mL) loads were above the standard limits set by the WHO. These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Regulation effects of water and nitrogen on yield, water, and nitrogen use efficiency of wolfberry
GAO Yalin, QI Guangping, MA Yanlin, YIN Minhua, WANG Jinghai, WANG Chen, TIAN Rongrong, XIAO Feng, LU Qiang, WANG Jianjun
Journal of Arid Land    2024, 16 (1): 29-45.   DOI: 10.1007/s40333-024-0003-5
Abstract74)   HTML6)    PDF(pc) (1369KB)(395)       Save

Wolfberry (Lycium barbarum L.) is important for health care and ecological protection. However, it faces problems of low productivity and resource utilization during planting. Exploring reasonable models for water and nitrogen management is important for solving these problems. Based on field trials in 2021 and 2022, this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height, stem diameter, crown width, yield, and water (WUE) and nitrogen use efficiency (NUE). The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity (θf), and four water levels, i.e., adequate irrigation (W0, 75%-85% θf), mild water deficit (W1, 65%-75% θf), moderate water deficit (W2, 55%-65% θf), and severe water deficit (W3, 45%-55% θf) were used, and three nitrogen application levels, i.e., no nitrogen (N0, 0 kg/hm2), low nitrogen (N1, 150 kg/hm2), medium nitrogen (N2, 300 kg/hm2), and high nitrogen (N3, 450 kg/hm2) were implied. The results showed that irrigation and nitrogen application significantly affected plant height, stem diameter, and crown width of wolfberry at different growth stages (P<0.01), and their maximum values were observed in W1N2, W0N2, and W1N3 treatments. Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment. Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment. However, under other water treatments, the values first increased and then decreased with increasing nitrogen application. Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment. Irrigation water use efficiency (IWUE, 8.46 kg/(hm2·mm)), WUE (6.83 kg/(hm2·mm)), partial factor productivity of nitrogen (PFPN, 2.56 kg/kg), and NUE (14.29 kg/kg) reached their highest values in W2N2, W1N2, W1N2, and W1N1 treatments. Results of principal component analysis (PCA) showed that yield, WUE, and NUE were better in W1N2 treatment, making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province, China and similar planting areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Estimation of aboveground biomass of arboreal species in the semi-arid region of Brazil using SAR (synthetic aperture radar) images
Janisson B de JESUS, Tatiana M KUPLICH, Íkaro D de C BARRETO, Fernando L HILLEBRAND, Cristiano N da ROSA
Journal of Arid Land    2023, 15 (6): 695-709.   DOI: 10.1007/s40333-023-0017-4
Abstract62)   HTML8)    PDF(pc) (2327KB)(393)       Save

The Caatinga biome is an important ecosystem in the semi-arid region of Brazil. It has significantly degraded due to human activities and is currently a region undergoing desertification. Thus, monitoring the variation in the Caatinga biome has become essential for its sustainable development. However, traditional methods for estimating aboveground biomass (AGB) are time-consuming and destructive. Remote sensing, such as optical and radar imaging, can estimate and correlate with vegetation. Nevertheless, radar imaging is still a novelty to be applied in estimating the AGB of this biome, which is an area with little research. Therefore, this study aimed to use Sentinel-1 images to estimate the AGB of the Caatinga biome in Sergipe State (northeastern Brazil) and to verify its influencing factors. Nineteen sample plots (30 m×30 m) were selected, and the stems of individuals with a circumference at breast height (1.3 m above the ground) equal to or greater than 6.0 cm were measured, and the AGB through an allometric equation was estimated. The Sentinel-1 images from 3 different periods (green, intermediate, and dry periods) were used to consider the phenological conditions of the Caatinga biome. All the pre-processing and extraction of attributes (co-polarized VV (vertical transmit and vertical receive), cross-polarized VH (vertical transmit and horizontal receive), and band ratio VH/VV backscatter, radar vegetation index, dual polarization synthetic aperture radar (SAR) vegetation index (DPSVI), entropy (H), and alpha angle (α)) were performed with Sentinel's Application Platform. These attributes were used to estimate the AGB through simple and multiple linear regressions and evaluated by the coefficients of determination (R2), correlation (r), and root mean squared error (RMSE). The results showed that the attributes individually had little ability to estimate the AGB of the Caatinga biome in the three periods. Combined with multiple regression, we found that the intermediate period presented the equation with the best results among the observed and estimated variables (R2=0.73; r=0.85; RMSE=8.33 Mg/hm2), followed by the greenness period (R2=0.72; r=0.85; RMSE=8.40 Mg/hm2). The attributes contributing to these equations were VH/VV, DPSVI, H, α, and co-polarized VV for the green period and cross-polarized VH for the intermediate period. The study showed that the Sentinel-1 images could be used to estimate the AGB of the Caatinga biome in the green and intermediate phenological periods since the SAR attributes highly correlated with the estimated variable (i.e., AGB) through multiple linear equations.

Table and Figures | Reference | Related Articles | Metrics | Comments0