Most Downloaded

Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 2 years
Please wait a minute...
For Selected: Toggle Thumbnails
Check dam extraction from remote sensing images using deep learning and geospatial analysis: A case study in the Yanhe River Basin of the Loess Plateau, China
SUN Liquan, GUO Huili, CHEN Ziyu, YIN Ziming, FENG Hao, WU Shufang, Kadambot H M SIDDIQUE
Journal of Arid Land    2023, 15 (1): 34-51.   DOI: 10.1007/s40333-023-0091-7
Abstract163)   HTML2)    PDF(pc) (3272KB)(559)       Save

Check dams are widely used on the Loess Plateau in China to control soil and water losses, develop agricultural land, and improve watershed ecology. Detailed information on the number and spatial distribution of check dams is critical for quantitatively evaluating hydrological and ecological effects and planning the construction of new dams. Thus, this study developed a check dam detection framework for broad areas from high-resolution remote sensing images using an ensemble approach of deep learning and geospatial analysis. First, we made a sample dataset of check dams using GaoFen-2 (GF-2) and Google Earth images. Next, we evaluated five popular deep-learning-based object detectors, including Faster R-CNN, You Only Look Once (version 3) (YOLOv3), Cascade R-CNN, YOLOX, and VarifocalNet (VFNet), to identify the best one for check dam detection. Finally, we analyzed the location characteristics of the check dams and used geographical constraints to optimize the detection results. Precision, recall, average precision at intersection over union (IoU) threshold of 0.50 (AP50), IoU threshold of 0.75 (AP75), and average value for 10 IoU thresholds ranging from 0.50-0.95 with a 0.05 step (AP50-95), and inference time were used to evaluate model performance. All the five deep learning networks could identify check dams quickly and accurately, with AP50-95, AP50, and AP75 values higher than 60.0%, 90.0%, and 70.0%, respectively, except for YOLOv3. The VFNet had the best performance, followed by YOLOX. The proposed framework was tested in the Yanhe River Basin and yielded promising results, with a recall rate of 87.0% for 521 check dams. Furthermore, the geographic analysis deleted about 50% of the false detection boxes, increasing the identification accuracy of check dams from 78.6% to 87.6%. Simultaneously, this framework recognized 568 recently constructed check dams and small check dams not recorded in the known check dam survey datasets. The extraction results will support efficient watershed management and guide future studies on soil erosion in the Loess Plateau.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal variations and driving factors of habitat quality in the loess hilly area of the Yellow River Basin: A case study of Lanzhou City, China
DONG Jianhong, ZHANG Zhibin, LIU Benteng, ZHANG Xinhong, ZHANG Wenbin, CHEN Long
Journal of Arid Land    2022, 14 (6): 637-652.   DOI: 10.1007/s40333-022-0097-6
Abstract120)   HTML9)    PDF(pc) (3229KB)(541)       Save

Rapid industrialization and urbanization have led to the most serious habitat degradation in China, especially in the loess hilly area of the Yellow River Basin, where the ecological environment is relatively fragile. The contradiction between economic development and ecological environment protection has aroused widespread concern. In this study, we used the habitat quality of Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST-HQ) model at different scales to evaluate the dynamic evolution characteristics of habitat quality in Lanzhou City, Gansu Province of China. The spatiotemporal variations of habitat quality were analyzed by spatial autocorrelation. A Geographical Detector (Geodetector) model was used to explore the driving factors that influencing the spatial differentiation of habitat quality, including natural factors, socio-economic factors, and ecological protection factors. The results showed that the habitat quality index of Lanzhou City decreased from 0.4638 to 0.4548 during 2000-2018. The areas with reduced the habitat quality index were mainly located in the Yellow River Basin and Qinwangchuan Basin, where are the main urban areas and the new economic development areas, respectively. The spatial distribution of habitat quality presented a trend of high in the surrounding areas and low in the middle, and showed a significant positive spatial autocorrelation. With the increase of study scale, the spatial distribution of habitat quality changed from concentrated to dispersed. The spatial differentiation of habitat quality in the study area was the result of multiple factors. Among them, topographic relief and slope were the key factors. The synergistic enhancement among these driving factors intensified the spatial differentiation of habitat quality. The findings of this study can provide a scientific basis for land resources utilization and ecosystem restoration in the arid and semi-arid land.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Occurrence, sources, and relationships of soil microplastics with adsorbed heavy metals in the Ebinur Lake Basin, Northwest China
ZHANG Zhaoyong, GUO Jieyi, WANG Pengwei
Journal of Arid Land    2022, 14 (8): 910-924.   DOI: 10.1007/s40333-022-0025-9
Abstract108)   HTML8)    PDF(pc) (768KB)(530)       Save

There is a lack of research on soil microplastics in arid oases considering the rapid economic development of northwestern China. Here, we studied the occurrence and sources of microplastics in soil, as well as the relationships between microplastics and adsorbed heavy metals in the Ebinur Lake Basin, a typical arid oasis in China. Results showed that (1) the average microplastic content in all soil samples was 36.15 (±3.27) mg/kg. The contents of microplastics at different sampling sites ranged from 3.89 (±1.64) to 89.25 (±2.98) mg/kg. Overall, the proportions of various microplastic shapes decreased in the following order: film (54.25%)>fiber (18.56%)>particle (15.07%)>fragment (8.66%)>foam (3.46%); (2) among all microplastic particles, white particles accounted for the largest proportion (52.93%), followed by green (24.15%), black (12.17%), transparent (7.16%), and yellow particles (3.59%). The proportions of microplastic particle size ranges across all soil samples decreased in the following order: 1000-2000 µm (40.88%)>500-1000 µm (26.75%)>2000-5000 µm (12.30%)>100-500 µm (12.92%)>0-100 µm (7.15%). FTIR (Fourier transform infrared) analyses showed that polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC), polyethylene (PE), and polystyrene (PS) occurred in the studied soil; (3) random forest predictions showed that industrial and agricultural production activities and the discharge of domestic plastic waste were related to soil microplastic pollution, in which agricultural plastic film was the most important factor in soil pollution in the study area; and (4) seven heavy metals extracted from microplastics in the soil samples showed significant positive correlations with soil pH, EC, total salt, N, P, and K contents (P<0.01), indicating that these soil factors could significantly affect the contents of heavy metals carried by soil microplastics. This research demonstrated that the contents of soil microplastics are lower than other areas of the world, and they mainly come from industrial and agricultural activities of the Ebinur Lake Basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Water utilization of typical plant communities in desert steppe, China
CHEN Juan, WANG Xing, SONG Naiping, WANG Qixue, WU Xudong
Journal of Arid Land    2022, 14 (9): 1038-1054.   DOI: 10.1007/s40333-022-0031-y
Abstract98)   HTML8)    PDF(pc) (2791KB)(485)       Save

Water is a limiting factor in the restoration and construction of desert steppe. Exploring plant water sources is necessary to understand soil-plant interactions and species coexistence; however, water sources of major plant communities within the desert steppe of Ningxia Hui Autonomous Region, China remain poorly understood. In this study, we analyzed the water uptake of plants in four typical communities: Agropyron mongolicum Keng.; Sophora alopecuroids Linn.; Stipa breviflora Griseb., and Achnatherum splendens (Trin.) Nevski communities. Stable isotopes δD and δ18O in the xylem of plant and soil water at different soil depths were analyzed. An IsoSource model was used to determine the soil depths from which plants obtained water. Results showed that A. mongolicum community obtained water predominantly from 0-20 and 40-80 cm depth, S. alopecuroids community from 0-20 cm depth, S. breviflora community from 0-40 cm depth, and A. splendens community from 0-20 and 80-140 cm depths. S. alopecuroides had a wider range of soil depths for water extraction, i.e., utilizing different water sources depending on habitat, and the plasticity of its water uptake pattern determined its role in different communities. Water source of plants relayed heavily on the distribution of their roots. Competition for soil water exists between different plant life forms in the sierozem habitat (A. mongolicum, S. alopecuroids, and S. breviflora communities), and in the sandy soil habitat (A. splendens community). The use of soil water by A. splendens community is more spatially differentiated, and shrubs and herbs can coexist stably. Under the pattern of extended drought period in the future, sierozem habitat may be more favorable for the formation of a dominant monoculture community type of perennial fibrous plants. In aeolian sandy soil habitat, A. splendens had a strong competitive advantage, and the growth of shallow-rooted plants was easily suppressed.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effect of topography on the changes of Urumqi Glacier No. 1 in the Chinese Tianshan Mountains
LI Hongliang, WANG Puyu, LI Zhongqin, JIN Shuang, XU Chunhai, MU Jianxin, HE Jie, YU Fengchen
Journal of Arid Land    2022, 14 (7): 719-738.   DOI: 10.1007/s40333-022-0068-y
Abstract85)   HTML114)    PDF(pc) (1881KB)(468)       Save

Topography plays an important role in determining the glacier changes. However, topography has often been oversimplified in the studies of the glacier changes. No systematic studies have been conducted to evaluate the relationship between the glacier changes and topographic features. The present study provided a detailed insight into the changes in the two branches (east branch and west branch) of Urumqi Glacier No. 1 in the Chinese Tianshan Mountains since 1993 and systematically discussed the effect of topography on the glacier parameters. This study analyzed comprehensive recently observed data (from 1992/1993 to 2018/2019), including mass balance, ice thickness, surface elevation, ice velocity, terminus, and area, and then determined the differences in the changes of the two branches and explored the effect of topography on the glacier changes. We also applied a topographic solar radiation model to analyze the influence of topography on the incoming shortwave radiation (SWin) across the entire glacier, focusing on the difference in the SWin between the two branches. The glacier mass balance of the east branch was more negative than that of the west branch from 1992/1993 to 2018/2019, and this was mainly attributed to the lower average altitude of the east branch. Compared with the west branch, the decrease rate of the ice velocity was lower in the east branch owing to its relatively increased slope. The narrow shape of the west branch and its southeast aspect in the earlier period resulted in a larger glacier terminus retreat of the west branch. The spatial variability of the SWin across the glacier surface became much larger as altitude increased. The SWin received by the east branch was slightly larger than that received by the west branch, and the northern aspect could receive more SWin, leading to glacier melting. In the future, the difference of the glacier changes between the two branches will continue to exist due to their topographic differences. This work is fundamental to understanding how topographic features affect the glacier changes, and provides information for building different types of relationship between the glacier area and ice volume to promote further studies on the basin-scale glacier classification.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal characteristics and influencing factors of ecosystem services in Central Asia
YAN Xue, LI Lanhai
Journal of Arid Land    2023, 15 (1): 1-19.   DOI: 10.1007/s40333-022-0074-0
Abstract105)   HTML268)    PDF(pc) (2281KB)(468)       Save

Land use/land cover (LULC) change and climate change are two major factors affecting the provision of ecosystem services which are closely related to human well-being. However, a clear understanding of the relationships between these two factors and ecosystem services in Central Asia is still lacking. This study aimed to comprehensively assess ecosystem services in Central Asia and analyze how they are impacted by changes in LULC and climate. The spatiotemporal patterns of three ecosystem services during the period of 2000-2015, namely the net primary productivity (NPP), water yield, and soil retention, were quantified and mapped by the Carnegie-Ames-Stanford Approach (CASA) model, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and Revised Universal Soil Loss Equation (RUSLE). Scenarios were used to determine the relative importance and combined effect of LULC change and climate change on ecosystem services. Then, the relationships between climate factors (precipitation and temperature) and ecosystem services, as well as between LULC change and ecosystem services, were further discussed. The results showed that the high values of ecosystem services appeared in the southeast of Central Asia. Among the six biomes (alpine forest region (AFR), alpine meadow region (AMR), typical steppe region (TSR), desert steppe region (DSR), desert region (DR), and lake region (LR)), the values of ecosystem services followed the order of AFR>AMR>TSR>DSR> DR>LR. In addition, the values of ecosystem services fluctuated during the period of 2000-2015, with the most significant decreases observed in the southeast mountainous area and northwest of Central Asia. LULC change had a greater impact on the NPP, while climate change had a stronger influence on the water yield and soil retention. The combined LULC change and climate change exhibited a significant synergistic effect on ecosystem services in most of Central Asia. Moreover, ecosystem services were more strongly and positively correlated with precipitation than with temperature. The greening of desert areas and forest land expansion could improve ecosystem services, but unreasonable development of cropland and urbanization have had an adverse impact on ecosystem services. According to the results, ecological stability in Central Asia can be achieved through the natural vegetation protection, reasonable urbanization, and ecological agriculture development.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal evolution and prediction of habitat quality in Hohhot City of China based on the InVEST and CA-Markov models
LUAN Yongfei, HUANG Guohe, ZHENG Guanghui
Journal of Arid Land    2023, 15 (1): 20-33.   DOI: 10.1007/s40333-023-0090-8
Abstract97)   HTML136)    PDF(pc) (1651KB)(462)       Save

With the acceleration of urbanization, changes in the urban ecological environment and landscape pattern have led to a series of prominent ecological environmental problems. In order to better coordinate the balanced relationship between city and ecological environment, we selected land use change data to evaluate the habitat quality in Hohhot City of China, which is of great practical significance for regional urban and economic development. Thus, the integrated valuation of ecosystem services and tradeoffs (InVEST) and Cellular Automata-Markov (CA-Markov) models were used to analyze, predict, and explore the Spatiotemporal evolution path and characteristics of urban land use, and forecast the typical evolution pattern of land use in 2030. The results showed that the land use types in Hohhot City changed significantly from 2000 to 2020, and the biggest change took place in cultivated land, grassland, shrub, and artificial surface. The decrease of cultivated land area and the increase of artificial surface area were the main impact trend of land use change. The average value of habitat quality had been decreasing continuously from 2000 to 2020, and the values of habitat degradation were 0.2605, 0.2494, and 0.2934 in 2000, 2010, and 2020, respectively, showing a decreasing trend. The decrease of habitat quality was caused by the needs of economic development and urban construction, as well as the impact of land occupation. During this evolution, many cultivated land and urban grassland had been converted into construction land. The simulated land use changes in 2030 are basically the same as those during 2000-2020, and the habitat quality will still be declining. The regional changes are influenced by the urban rapid development and industrial layout. These results can provide decision-making reference for regional urban planning and management as well as habitat quality evaluation.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Sheltering effect of punched steel plate sand fences for controlling blown sand hazards along the Golmud-Korla Railway: Field observation and numerical simulation studies
ZHANG Kai, TIAN Jianjin, QU Jianjun, ZHAO Liming, LI Sheng
Journal of Arid Land    2022, 14 (6): 604-619.   DOI: 10.1007/s40333-022-0019-7
Abstract109)   HTML121)    PDF(pc) (3217KB)(438)       Save

Sand fences made of punched steel plate (PSP) have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction. However, few studies have assessed the protective effect of PSP sand fences, especially through field observations. This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics (CFD) numerical simulation. The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8% and 70.8%, respectively. Moreover, the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8% and 81.1%, respectively. The sand-resistance efficiency of the double-row PSP sand fences was 65.4%. Sand deposition occurred close to the first-row sand fence; however, there was relatively little sand on the leeward side of the second-row sand fence. The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations, indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences. This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas. The output of this work is expected to improve the future application of PSP sand fences.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Runoff characteristics and its sensitivity to climate factors in the Weihe River Basin from 2006 to 2018
WU Changxue, Xu Ruirui, QIU Dexun, DING Yingying, GAO Peng, MU Xingmin, ZHAO Guangju
Journal of Arid Land    2022, 14 (12): 1344-1360.   DOI: 10.1007/s40333-022-0109-6
Abstract176)   HTML137)    PDF(pc) (2438KB)(434)       Save

Exploring the current runoff characteristics after the large-scale implementation of the Grain for Green (GFG) project and investigating its sensitivities to potential drivers are crucial for water resource prediction and management. Based on the measured runoff data of 62 hydrological stations in the Weihe River Basin (WRB) from 2006 to 2018, we analyzed the temporal and spatial runoff characteristics in this study. Correlation analysis was used to investigate the relationships between different runoff indicators and climate-related factors. Additionally, an improved Budyko framework was applied to assess the sensitivities of annual runoff to precipitation, potential evaporation, and other factors. The results showed that the daily runoff flow duration curves (FDCs) of all selected hydrological stations fall in three narrow ranges, with the corresponding mean annual runoff spanning approximately 1.50 orders of magnitude, indicating that the runoff of different hydrological stations in the WRB varied greatly. The trend analysis of runoff under different exceedance frequencies showed that the runoff from the south bank of the Weihe River was more affluent and stable than that from the north bank. The runoff was unevenly distributed throughout the year, mainly in the flood season, accounting for more than 50.00% of the annual runoff. However, the trend of annual runoff change was not obvious in most areas. Correlation analysis showed that rare-frequency runoff events were more susceptible to climate factors. In this study, daily runoff under 10%-20% exceeding frequencies, consecutive maximum daily runoff, and low-runoff variability rate had strong correlations with precipitation, aridity index, and average runoff depth on rainy days. In comparison, daily runoff under 50%-99% exceeding frequencies, consecutive minimum daily runoff, and high-runoff variability rate had weak correlations with all selected impact factors. The sensitivity analysis results suggested that the sensitivity of annual runoff to precipitation was always higher than that to potential evaporation. The runoff about 87.10% of the selected hydrological stations were most sensitive to precipitation changes, and 12.90% were most sensitive to other factors. The spatial pattern of the sensitivity analysis indicated that in relatively humid southern areas, runoff was more sensitive to potential evaporation and other factors, and less sensitive to precipitation.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria
Fateme RIGI, Morteza SABERI, Mahdieh EBRAHIMI
Journal of Arid Land    2023, 15 (6): 740-755.   DOI: 10.1007/s40333-023-0015-6
Abstract147)   HTML7)    PDF(pc) (1088KB)(419)       Save

Numerous ecological factors influence a plant's ability to live and grow, in which dryness is a substantial constraint on plant growth in arid and semi-arid areas. In response to a specific environmental stress, plants can use the most effective bacteria to support and facilitate their growth and development. Today, plant growth promoting rhizobacteria (PGPR) is widely used to reduce drought stress on plant growth. In this study, the effects of drought on Festuca ovina L. germination, growth, and nutrient absorption were investigated using PGPR in a factorial test with a completely random design under four water regimes. Soil water content was kept at 100% FC (field capacity), 70% FC (FC), 50% FC, and 30% FC. The treatments were inoculated with Azotobacter vinelandii, Pantoea agglomerans+Pseudomonas putida, and a mixture of bio-fertilizers. Results showed that the effects of drought stress were significantly reduced (P<0.05) when A. vinelandii and P. agglomerans+P. putida were used separately, however, the combined treatment of bio-fertilizers had a greater influence on seed germination than the single application. P. agglomerans+P. putida under 30% FC condition resulted in higher increases in stem, root length, and plant dry biomass. The highest uptake of nutrients was observed for the combined treatment of bio-fertilizers under 30% FC condition. Therefore, the use of A. vinelandii and P. agglomerans+P. putida, applied separately or combined, increased tolerance to drought stress in F. ovina by increased germination indices, dry weight, stem length, and root length. Because of the beneficial effects of PGPR on the growth characteristics of plants under drought conditions and the reduction of negative effects of drought stress, inoculating F. ovina seeds with Azotobacter and Pseudomonas is recommended to improve their growth and development characteristics under drought conditions. PGPR, as an affordable and environmentally friendly method, can improve the production of forage in water-stress rangelands.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Carbon inputs regulate the temperature sensitivity of soil respiration in temperate forests
LIU Yulin, LI Jiwei, HAI Xuying, WU Jianzhao, DONG Lingbo, PAN Yingjie, SHANGGUAN Zhouping, WANG Kaibo, DENG Lei
Journal of Arid Land    2022, 14 (9): 1055-1068.   DOI: 10.1007/s40333-022-0102-0
Abstract167)   HTML6)    PDF(pc) (2858KB)(415)       Save

Litter and root activities may alter the temperature sensitivity (Q10) of soil respiration. However, existing studies have not provided a comprehensive understanding of the effects of litter and root carbon inputs on the Q10 of soil respiration in different seasons. In this study, we used the trench method under in situ conditions to measure the total soil respiration (Rtotal), litter-removed soil respiration (Rno-litter), root-removed soil respiration (Rno-root), and the decomposition of soil organic matter (i.e., both litter and root removal; RSOM) in different seasons of pioneer (Populus davidiana Dode) and climax (Quercus liaotungensis Mary) forests on the Loess Plateau, China. Soil temperature, soil moisture, litter biomass, fine root biomass, litter carbon, and root carbon were analyzed to obtain the drive mechanism of the Q10 of soil respiration in the two forests. The results showed that the Q10 of soil respiration exhibited seasonality, and the Q10 of soil respiration was higher in summer. The litter enhanced the Q10 of soil respiration considerably more than the root did. Soil temperature, soil moisture, fine root biomass, and litter carbon were the main factors used to predict the Q10 of different soil respiration components. These findings indicated that factors affecting the Q10 of soil respiration highly depended on soil temperature and soil moisture as well as related litter and root traits in the two forests, which can improve our understanding of soil carbon-climate feedback in global warming. The results of this study can provide reference for exploring soil respiration under temperate forest restoration.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Responses of vegetation yield to precipitation and reference evapotranspiration in a desert steppe in Inner Mongolia, China
LI Hongfang, WANG Jian, LIU Hu, MIAO Henglu, LIU Jianfeng
Journal of Arid Land    2023, 15 (4): 477-490.   DOI: 10.1007/s40333-023-0051-2
Abstract47)   HTML11)    PDF(pc) (1405KB)(387)       Save

Drought, which restricts the sustainable development of agriculture, ecological health, and social economy, is affected by a variety of factors. It is widely accepted that a single variable cannot fully reflect the characteristics of drought events. Studying precipitation, reference evapotranspiration (ET0), and vegetation yield can derive information to help conserve water resources in grassland ecosystems in arid and semi-arid regions. In this study, the interactions of precipitation, ET0, and vegetation yield in Darhan Muminggan Joint Banner (DMJB), a desert steppe in Inner Mongolia Autonomous Region, China were explored using two-dimensional (2D) and three-dimensional (3D) joint distribution models. Three types of Copula functions were applied to quantitatively analyze the joint distribution probability of different combinations of precipitation, ET0, and vegetation yield. For the precipitation-ET0 dry-wet type, the 2D joint distribution probability with precipitation≤245.69 mm/a or ET0≥959.20 mm/a in DMJB was approximately 0.60, while the joint distribution probability with precipitation≤245.69 mm/a and ET0≥959.20 mm/a was approximately 0.20. Correspondingly, the joint return period that at least one of the two events (precipitation was dry or ET0 was wet) occurred was 2 a, and the co-occurrence return period that both events (precipitation was dry and ET0 was wet) occurred was 5 a. Under this condition, the interval between dry and wet events would be short, the water supply and demand were unbalanced, and the water demand of vegetation would not be met. In addition, when precipitation remained stable and ET0 increased, the 3D joint distribution probability that vegetation yield would decrease due to water shortage in the precipitation-ET0 dry-wet years could reach up to 0.60-0.70. In future work, irrigation activities and water allocation criteria need to be implemented to increase vegetation yield and the safety of water resources in the desert steppe of Inner Mongolia.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Grazing and heat stress protection of native grass by a sand-fixing shrub in the arid lands of northern China
Keiichi KIMURA, Akito KONO, Susumu YAMADA, Tomoyo F KOYANAGI, Toshiya OKURO
Journal of Arid Land    2022, 14 (8): 867-876.   DOI: 10.1007/s40333-022-0024-x
Abstract202)   HTML5)    PDF(pc) (689KB)(383)       Save

Shrub species are used in restoration projects on dryland for their facilitation effects, which include environmental improvements and protection from herbivore feeding. Facilitation effects on forage grasses are potentially important in improving grazing capacity on rangelands. However, the morphology-dependent performance of benefactor plants in facilitating forage species growth and supplementation under moderate grazing intensity remains unclear. Here, our main purpose was to measure facilitation performance in terms of the survival of a native forage grass, Agropyron cristatum (L.) Gaertn. (Gramineae)., in accordance with the growth conditions of a sand-fixing benefactor shrub, Caragana microphylla Lam., in the Hulun Buir Grassland, northern China. Six study sites with patches of A. cristatum and C. microphylla were established at the foot of fixed sand dunes. At each site, five quadrats were set in places where C. microphylla coverage was 100% and A. cristatum grew among the shrubs (shrub quadrats), and another five were set where A. cristatum grew alone without C. microphylla (grass quadrats). We measured the morphological traits of C. microphylla and A. cristatum in all 60 quadrats, along with the soil water content and soil temperature. The data were compared between the shrub and grass quadrats by generalized linear mixed-effect models to assess the shrub's facilitation effects. We also used such models to elucidate the relationship between the average height of C. microphylla and the morphological traits of A. cristatum in the shrub quadrats. The maximum height, average grazed height, and the number of seed heads of A. cristatum were greater in the shrub quadrats than in the grass quadrats. The soil surface temperature was lower in the shrub quadrats. The maximum height and seed head number of A. cristatum were positively associated with the average height of C. microphylla. These results suggest that the grazing impact and heat stress were smaller in shrub quadrats than in grass quadrats, and that the degree of this protective effect depended on the shrub height. The shrub canopy seemed to reduce the increase in soil temperature and keep the grass vigorous. Livestock likely avoided grazing grasses in the C. microphylla patches because of the shrub's spiny leaves; only the upper parts of the grass stems (including the seed heads) protruding from the shrub canopy were grazed. The sand-fixing shrub thus moderates the grazing impact and soil temperature, and contributes to vegetation restoration and grazing system sustainability.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Diversity of soil bacteria and fungi communities in artificial forests of the sandy-hilly region of Northwest China
GOU Qianqian, MA Gailing, QU Jianjun, WANG Guohua
Journal of Arid Land    2023, 15 (1): 109-126.   DOI: 10.1007/s40333-023-0003-x
Abstract73)   HTML1)    PDF(pc) (1535KB)(383)       Save

Soil erosion is a serious issue in the sandy-hilly region of Shanxi Province, Northwest China. There has been gradual improvement due to vegetation restoration, but soil microbial community characteristics in different vegetation plantation types have not been widely investigated. To address this, we analyzed soil bacterial and fungal community structures, diversity, and microbial and soil environmental factors in Caragana korshinskii Kom., Populus tomentosa Carr., Populus simonii Carr., Salix matsudana Koidz, and Pinus tabulaeformis Carr. forests. There were no significant differences in the dominant bacterial community compositions among the five forest types. The alpha diversity of the bacteria and fungi communities showed that ACE (abundance-based coverage estimator), Chao1, and Shannon indices in C. korshinskii forest were significantly higher than those in the other four forest types (P<0.05). Soil organic matter, total nitrogen, and urease had a greater impact on bacterial community composition, while total nitrogen, β-glucosidase, and urease had a greater impact on fungal community composition. The relative abundance of beneficial and pathogenic microorganisms was similar across all forest types. Based on microbial community composition, diversity, and soil fertility, we ranked the plantations from most to least suitable as follows: C. korshinskii, S. matsudana, P. tabulaeformis, P. tomentosa, and P. simonii.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Research on wind erosion processes and controlling factors based on wind tunnel test and 3D laser scanning technology
YAN Ping, WANG Xiaoxu, ZHENG Shucheng, WANG Yong, LI Xiaomei
Journal of Arid Land    2022, 14 (9): 1009-1021.   DOI: 10.1007/s40333-022-0103-z
Abstract74)   HTML4)    PDF(pc) (2081KB)(380)       Save

The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion. In this study, three structurally intact soil samples were collected from the steppe of Inner Mongolia Autonomous Region, China and placed in a wind tunnel where they were subjected to six different wind speeds (10, 15, 17, 20, 25, and 30 m/s) to simulate wind erosion in the wind tunnel. After each test, the soil surfaces were scanned by a 3D laser scanner to create a high-resolution Digital Elevation Model (DEM), and the changes in wind erosion mass and microtopography were quantified. Based on this, we performed further analysis of wind erosion-controlling factors. The study results showed that the average measurement error between the 3D laser scanning method and weighing method was 6.23% for the three undisturbed soil samples. With increasing wind speed, the microtopography on the undisturbed soil surface first became smooth, and then fine stripes and pits gradually developed. In the initial stage of wind erosion processes, the ability of the soil to resist wind erosion was mainly affected by the soil hardness. In the late stage of wind erosion processes, the degree of soil erosion was mainly affected by soil organic matter and CaCO3 content. The results of this study are expected to provide a theoretical basis for soil wind erosion control and promote the application of 3D laser scanners in wind erosion monitoring.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels
Journal of Arid Land    2023, 15 (8): 975-988.   DOI: 10.1007/s40333-023-0022-7
Abstract61)   HTML7)    PDF(pc) (901KB)(378)       Save

Opuntia ficus-indica (L.) Miller is a CAM (crassulacean acid metabolism) plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO2 at nighttime, store a significant amount of water in cladodes, and reduce root growth. Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi (AMF) to adapt to drought stress. Water stress can limit plant growth and biomass production, which can be rehabilitated by AMF association through improved physiological performance. The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass, photosynthesis, and water use efficiency of the spiny and spineless O. ficus-indica. The experiment was conducted in a greenhouse with a full factorial experiment using O. ficus-indica type (spiny or spineless), AMF (presence or absence), and four soil water available (SWA) treatments through seven replications. Water treatments applied were 0%-25% SWA (T1), 25%-50% SWA (T2), 50%-75% SWA (T3), and 75%-100% SWA (T4). Drought stress reduced biomass and cladode growth, while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O. ficus-indica. AMF presence significantly increased biomass of both O. ficus-indica plant types through improved growth, photosynthetic water use efficiency, and photosynthesis. The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency. Net photosynthesis, photosynthetic water use efficiency, transpiration, and stomatal conductance rate significantly decreased with increased drought stress. Under drought stress, some planted mother cladodes with the absence of AMF have not established daughter cladodes, whereas AMF-inoculated mother cladodes fully established daughter cladodes. AMF root colonization significantly increased with the decrease of SWA. AMF caused an increase in biomass production, increased tolerance to drought stress, and improved photosynthesis and water use efficiency performance of O. ficus-indica. The potential of O. ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Aeolian activity in the southern Gurbantunggut Desert of China during the last 900 years
LI Wen, MU Guijin, YE Changsheng, XU Lishuai, LI Gen
Journal of Arid Land    2023, 15 (6): 649-666.   DOI: 10.1007/s40333-023-0057-9
Abstract68)   HTML278)    PDF(pc) (2633KB)(377)       Save

The mineral dust emitted from Central Asia has a significant influence on the global climate system. However, the history and mechanisms of aeolian activity in Central Asia remain unclear, due to the lack of well-dated records of aeolian activity and the intense wind erosion in some of the dust source areas (e.g., deserts). Here, we present the records of aeolian activity from a sedimentary sequence in the southern Gurbantunggut Desert of China using grain size analysis and optically stimulated luminescence (OSL) dating, based on field sampling in 2019. Specifically, we used eight OSL dates to construct chronological frameworks and applied the end-member (EM) analysis for the grain size data to extract the information of aeolian activity in the southern Gurbantunggut Desert during the last 900 a. The results show that the grain size dataset can be subdivided into three EMs (EM1, EM2, and EM3). The primary modal sizes of these EMs (EM1, EM2, and EM3) are 126.00, 178.00, and 283.00 μm, respectively. EM1 represents a mixture of the suspension components and saltation dust, while EM2 and EM3 show saltation dust transported over a shorter distance via strengthened near-surface winds, which can be used to trace aeolian activity. Combined with the OSL chronology, our results demonstrate that during the last 900 a, more intensive and frequent aeolian activity occurred during 450-100 a BP (Before Present) (i.e., the Little Ice Age (LIA)), which was reflected by a higher proportion of the coarse-grained components (EM2+EM3). Aeolian activity decreased during 900-450 a BP (i.e., the Medieval Warm Period (MWP)) and 100 a BP-present (i.e., the Current Warm Period (CWP)). Intensified aeolian activity was associated with the strengthening of the Siberian High and cooling events at high northern latitudes. We propose that the Siberian High, under the influence of temperature changes at high northern latitudes, controlled the frequency and intensity of aeolian activity in Central Asia. Cooling at high northern latitudes would have significantly enhanced the Siberian High, causing its position to shift southward. Subsequently, the incursion of cold air masses from high northern latitudes resulted in stronger wind regimes and increased dust emissions from the southern Gurbantunggut Desert. It is possible that aeolian activity may be weakened in Central Asia under future global warming scenarios, but the impact of human activities on this region must also be considered.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Implications of future climate change on crop and irrigation water requirements in a semi-arid river basin using CMIP6 GCMs
Kunal KARAN, Dharmaveer SINGH, Pushpendra K SINGH, Birendra BHARATI, Tarun P SINGH, Ronny BERNDTSSON
Journal of Arid Land    2022, 14 (11): 1234-1257.   DOI: 10.1007/s40333-022-0081-1
Abstract124)   HTML7)    PDF(pc) (1744KB)(375)       Save

Agriculture faces risks due to increasing stress from climate change, particularly in semi-arid regions. Lack of understanding of crop water requirement (CWR) and irrigation water requirement (IWR) in a changing climate may result in crop failure and socioeconomic problems that can become detrimental to agriculture-based economies in emerging nations worldwide. Previous research in CWR and IWR has largely focused on large river basins and scenarios from the Coupled Model Intercomparison Project Phase 3 (CMIP3) and Coupled Model Intercomparison Project Phase 5 (CMIP5) to account for the impacts of climate change on crops. Smaller basins, however, are more susceptible to regional climate change, with more significant impacts on crops. This study estimates CWRs and IWRs for five crops (sugarcane, wheat, cotton, sorghum, and soybean) in the Pravara River Basin (area of 6537 km2) of India using outputs from the most recent Coupled Model Intercomparison Project Phase 6 (CMIP6) General Circulation Models (GCMs) under Shared Socio-economic Pathway (SSP)245 and SSP585 scenarios. An increase in mean annual rainfall is projected under both scenarios in the 2050s and 2080s using ten selected CMIP6 GCMs. CWRs for all crops may decline in almost all of the CMIP6 GCMs in the 2050s and 2080s (with the exceptions of ACCESS-CM-2 and ACCESS-ESM-1.5) under SSP245 and SSP585 scenarios. The availability of increasing soil moisture in the root zone due to increasing rainfall and a decrease in the projected maximum temperature may be responsible for this decline in CWR. Similarly, except for soybean and cotton, the projected IWRs for all other three crops under SSP245 and SSP585 scenarios show a decrease or a small increase in the 2050s and 2080s in most CMIP6 GCMs. These findings are important for agricultural researchers and water resource managers to implement long-term crop planning techniques and to reduce the negative impacts of climate change and associated rainfall variability to avert crop failure and agricultural losses.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of water stress on growth phenology photosynthesis and leaf water potential in Stipagrostis ciliata (Desf.) De Winter in North Africa
Journal of Arid Land    2023, 15 (1): 77-90.   DOI: 10.1007/s40333-022-0082-0
Abstract138)   HTML2)    PDF(pc) (887KB)(364)       Save

Stipagrostis ciliata (Desf.) De Winter is a pastoral C4 grass grown in arid regions. This research work focused on assessing the growth of S. ciliata accessions derived from two different climate regions (a wet arid region in the Bou Hedma National Park in the central and southern part of Tunisia (coded as WA), and a dry arid region from the Matmata Mountain in the south of Tunisia (coded as DA)) under water stress conditions. Specifically, the study aimed to investigate the phenological and physiological responses of potted S. ciliata seedlings under different water treatments: T1 (200 mm/a), T2 (150 mm/a), T3 (100 mm/a) and T4 (50 mm/a). Growth phenology, net photosynthesis (Pn), stomatal conductance (gs), midday leaf water potential (Ψmd), predawn leaf water potential (Ψpd), soil water content (SWC) and soil water potential (Ψs) were observed during the water stress cycle (from December 2016 to November 2017). The obtained results showed that the highest growth potential of the two accessions (WA and DA) was recorded under treatment T1. The two accessions responded differently and significantly to water stress. Photosynthetic parameters, such as Pn and gs, decreased sharply under treatments T2, T3 and T4 compared to treatment T1. The higher water stress increased the R/S ratio (the ratio of root dry biomass to shoot dry biomass), with values of 1.29 and 2.74 under treatment T4 for accessions WA and DA, respectively. Principal component analysis (PCA) was applied, and the separation of S. ciliata accessions on the first two axes of PCA (PC1 and PC2) suggested that accession DA was detected in the negative extremity of PC1 and PC2 under treatments T1 and T2. This accession was characterized by a high number of spikes. For treatments T3 and T4, both accessions were detected in the negative extremity of PC1 and PC2. They were characterized by a high root dry biomass. Therefore, S. ciliata accessions responded to water stress by displaying significant changes in their behaviours. Accession WA from the Bou Hedma National Park (wet arid region) showed higher drought tolerance than accession DA from the Matmata Mountain (dry arid region). S. ciliata exhibits a significant adaptation capacity for water limitation and may be an important species for ecosystem restoration.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of native and invasive Prosopis species on topsoil physiochemical properties in an arid riparian forest of Hormozgan Province, Iran
Journal of Arid Land    2022, 14 (10): 1099-1108.   DOI: 10.1007/s40333-022-0104-y
Abstract68)   HTML4)    PDF(pc) (1453KB)(361)       Save

Biological invasions can alter soil properties within the range of their introduced, leading to impacts on ecosystem services, ecosystem functions, and biodiversity. To better understand the impacts of biological invasions on soil, we compared topsoil physiochemical properties at sites with invasive alien tree species (Prosopis juliflora), native tree species (Prosopis cineraria, Acacia tortilis, and Acacia ehrenbergiana), and mixed tree species in Hormozgan Province of Iran in May 2018. In this study, we collected 40 soil samples at a depth of 10 cm under single tree species, including P. juliflora, P. cineraria, A. tortilis, and A. ehrenbergiana, as well as under mixed tree species. The results showed that organic matter, moisture, potassium, calcium, nitrogen, and magnesium in topsoil at sites with A. tortilis and A. ehrenbergiana growing in combination with P. cineraria were higher than that at sites where P. juliflora was present (P<0.05). Sodium at sites with A. tortilis and A. ehrenbergiana growing in combination with P. cineraria and P. juliflora was lower as compared to that at sites with just A. tortilis and A. ehrenbergiana. Electrical conductivity was lower at sites with A. tortilis and A. ehrenbergiana growing in combination with P. cineraria, and it was higher at sites with mixed Acacia and P. juliflora trees. Based on the generally more positive effect of native Acacia and P. cineraria on topsoil physiochemical properties as compared to the P. julifora, afforestation with native tree species is preferable for soil restoration. In addition, due to the negative effects of P. julifora on soil properties, P. julifora spread should be better managed.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Evaluating the soil evaporation loss rate in a gravel-sand mulching environment based on stable isotopes data
YANG Ye, ZHANG Mingjun, ZHANG Yu, WANG Shengjie, WANG Jiaxin
Journal of Arid Land    2022, 14 (8): 925-939.   DOI: 10.1007/s40333-022-0101-1
Abstract89)   HTML11)    PDF(pc) (1464KB)(346)       Save

In order to cope with drought and water shortages, the working people in the arid areas of Northwest China have developed a drought-resistant planting method, namely, gravel-sand mulching, after long-term agricultural practices. To understand the effects of gravel-sand mulching on soil water evaporation, we selected Baifeng peach (Amygdalus persica L.) orchards in Northwest China as the experimental field in 2021. Based on continuously collected soil water stable isotopes data, we evaluated the soil evaporation loss rate in a gravel-sand mulching environment using the line-conditioned excess (lc-excess) coupled Rayleigh fractionation model and Craig-Gordon model. The results show that the average soil water content in the plots with gravel-sand mulching is 1.86% higher than that without gravel-sand mulching. The monthly variation of the soil water content is smaller in the plots with gravel-sand mulching than that without gravel-sand mulching. Moreover, the average lc-excess value in the plots without gravel-sand mulching is smaller. In addition, the soil evaporation loss rate in the plots with gravel-sand mulching is lower than that in the plots without gravel-sand mulching. The lc-excess value was negative for both the plots with and without gravel-sand mulching, and it has good correlation with relative humidity, average temperature, input water content, and soil water content. The effect of gravel-sand mulching on soil evaporation is most prominent in August. Compared with the evaporation data of similar environments in the literature, the lc-excess coupled Rayleigh fractionation model is better. Stable isotopes evidence shows that gravel-sand mulching can effectively reduce soil water evaporation, which provides a theoretical basis for agricultural water management and optimization of water-saving methods in arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Correlation analysis between the Aral Sea shrinkage and the Amu Darya River
WANG Min, CHEN Xi, CAO Liangzhong, KURBAN Alishir, SHI Haiyang, WU Nannan, EZIZ Anwar, YUAN Xiuliang, Philippe DE MAEYER
Journal of Arid Land    2023, 15 (7): 757-778.   DOI: 10.1007/s40333-023-0062-z
Abstract53)   HTML404)    PDF(pc) (1917KB)(342)       Save

The shrinkage of the Aral Sea, which is closely related to the Amu Darya River, strongly affects the sustainability of the local natural ecosystem, agricultural production, and human well-being. In this study, we used the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) model to detect the historical change points in the variation of the Aral Sea and the Amu Darya River and analyse the causes of the Aral Sea shrinkage during the 1950-2016 period. Further, we applied multifractal detrend cross-correlation analysis (MF-DCCA) and quantitative analysis to investigate the responses of the Aral Sea to the runoff in the Amu Darya River, which is the main source of recharge to the Aral Sea. Our results showed that two significant trend change points in the water volume change of the Aral Sea occurred, in 1961 and 1974. Before 1961, the water volume in the Aral Sea was stable, after which it began to shrink, with a shrinkage rate fluctuating around 15.21 km3/a. After 1974, the water volume of the Aral Sea decreased substantially at a rate of up to 48.97 km3/a, which was the highest value recorded in this study. In addition, although the response of the Aral Sea's water volume to its recharge runoff demonstrated a complex non-linear relationship, the replenishment of the Aral Sea by the runoff in the lower reaches of the Amu Darya River was identified as the dominant factor affecting the Aral Sea shrinkage. Based on the scenario analyses, we concluded that it is possible to slow down the retreat of the Aral Sea and restore its ecosystem by increasing the efficiency of agricultural water use, decreasing agricultural water use in the middle and lower reaches, reducing ineffective evaporation from reservoirs and wetlands, and increasing the water coming from the lower reaches of the Amu Darya River to the 1961-1973 level. These measures would maintain and stabilise the water area and water volume of the Aral Sea in a state of ecological restoration. Therefore, this study focuses on how human consumption of recharge runoff affects the Aral Sea and provides scientific perspective on its ecological conservation and sustainable development.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Environmental significance and hydrochemical characteristics of rivers in the western region of the Altay Mountains, China
LIU Shuangshuang, WANG Feiteng, XU Chunhai, WANG Lin, LI Huilin
Journal of Arid Land    2023, 15 (9): 1052-1066.   DOI: 10.1007/s40333-023-0106-4
Abstract47)   HTML13)    PDF(pc) (2120KB)(333)       Save

Analysis of environmental significance and hydrochemical characteristics of river water in mountainous regions is vital for ensuring water security. In this study, we collected a total of 164 water samples in the western region of the Altay Mountains, China, in 2021. We used principal component analysis and enrichment factor analysis to examine the chemical properties and spatiotemporal variations of major ions (including F-, Cl-, NO3-, SO42-, Li+, Na+, NH4+, K+, Mg2+, and Ca2+) present in river water, as well as to identify the factors influencing these variations. Additionally, we assessed the suitability of river water for drinking and irrigation purposes based on the total dissolved solids, soluble sodium percentage, sodium adsorption ratio, and total hardness. Results revealed that river water had an alkaline aquatic environment with a mean pH value of 8.00. The mean ion concentration was ranked as follows: Ca2+>SO42->Na+>NO3->Mg2+>K+>Cl->F->NH4+>Li+. Ca2+, SO42-, Na+, and NO3- occupied 83% of the total ion concentration. In addition, compared with other seasons, the spatial variation of the ion concentration in spring was obvious. An analysis of the sources of major ions revealed that these ions originated mainly from carbonate dissolution and silicate weathering. The recharge impact of precipitation and snowmelt merely influenced the concentration of Cl-, NO3-, SO42-, Ca2+, and Na+. Overall, river water was in pristine condition in terms of quality and was suitable for both irrigation and drinking. This study provides a scientific basis for sustainable management of water quality in rivers of the Altay Mountains.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Dividing the transit wind speeds into intervals as a favorable methodology for analyzing the relationship between wind speed and the aerodynamic impedance of vegetation in semiarid grasslands
LI Ruishen, PEI Haifeng, ZHANG Shengwei, LI Fengming, LIN Xi, WANG Shuai, YANG Lin
Journal of Arid Land    2023, 15 (8): 887-900.   DOI: 10.1007/s40333-023-0102-8
Abstract45)   HTML589)    PDF(pc) (2378KB)(317)       Save

In grassland ecosystems, the aerodynamic roughness (Z0) and frictional wind speed (u*) contribute to the aerodynamic impedance of the grassland canopy. Thus, they are often used in the studies of wind erosion and evapotranspiration. However, the effect of wind speed and grazing measures on the aerodynamic impedance of the grassland canopy has received less analysis. In this study, we monitored wind speeds at multiple heights in grazed and grazing-prohibited grasslands for 1 month in 2021, determined the transit wind speed at 2.0 m height by comparing wind speed differences at the same height in both grasslands, and divided these transit wind speeds at intervals of 2.0 m/s to analyze the effect of the transit wind speed on the relationship among Z0, u*, and wind speed within the grassland canopy. The results showed that dividing the transit wind speeds into intervals has a positive effect on the logarithmic fit of the wind speed profile. After dividing the transit wind speeds into intervals, the wind speed at 0.1 m height (V0.1) gradually decreased with the increase of Z0, exhibiting three distinct stages: a sharp change zone, a steady change zone, and a flat zone; while the overall trend of u* increased first and then decreased with the increase of V0.1. Dividing the transit wind speeds into intervals improved the fitting relationship between Z0 and V0.1 and changed their fitting functions in grazed and grazing-prohibited grasslands. According to the computational fluid dynamic results, we found that the number of tall-stature plants has a more significant effect on windproof capacity than their height. The results of this study contribute to a better understanding of the relationship between wind speed and the aerodynamic impedance of vegetation in grassland environments.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Dew amount and its long-term variation in the Kunes River Valley, Northwest China
FENG Ting, HUANG Farong, ZHU Shuzhen, BU Lingjie, QI Zhiming, LI Lanhai
Journal of Arid Land    2022, 14 (7): 753-770.   DOI: 10.1007/s40333-022-0099-4
Abstract160)   HTML7)    PDF(pc) (1687KB)(317)       Save

Dew is an essential water resource for the survival and reproduction of organisms in arid and semi-arid regions. Yet estimating the dew amount and quantifying its long-term variation are challenging. In this study, we elucidate the dew amount and its long-term variation in the Kunes River Valley, Northwest China, based on the measured daily dew amount and reconstructed values (using meteorological data from 1980 to 2021), respectively. Four key results were found: (1) the daily mean dew amount was 0.05 mm during the observation period (4 July-12 August and 13 September-7 October of 2021). In 35 d of the observation period (i.e., 73% of the observation period), the daily dew amount exceeded the threshold (>0.03 mm/d) for microorganisms; (2) air temperature, relative humidity, and wind speed had significant impacts on the daily dew amount based on the relationships between the measured dew amount and meteorological variables; (3) for estimating the daily dew amount, random forest (RF) model outperformed multiple linear regression (MLR) model given its larger R2 and lower MAE and RMSE; and (4) the dew amount during June-October and in each month did not vary significantly from 1980 to the beginning of the 21st century. It then significantly decreased for about a decade, after it increased slightly from 2013 to 2021. For the whole meteorological period of 1980-2021, the dew amount decreased significantly during June-October and in July and September, and there was no significant variation in June, August, and October. Variation in the dew amount in the Kunes River Valley was mainly driven by relative humidity. This study illustrates that RF model can be used to reconstruct long-term variation in the dew amount, which provides valuable information for us to better understand the dew amount and its relationship with climate change.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau
KOU Zhaoyang, LI Chunyue, CHANG Shun, MIAO Yu, ZHANG Wenting, LI Qianxue, DANG Tinghui, WANG Yi
Journal of Arid Land    2023, 15 (8): 960-974.   DOI: 10.1007/s40333-023-0023-6
Abstract43)   HTML6)    PDF(pc) (756KB)(312)       Save

Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs. The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements, namely nitrogen (N) and phosphorus (P). Nevertheless, the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood. Therefore, we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment. Nine fertilization treatments with complete interactions of high, medium, and low N and P gradients were set up. Soil physical and chemical properties, along with the microbial community structure were measured in this study. Additionally, relevant ecological processes such as microbial biomass, respiration, N mineralization, and enzyme activity were quantified. To elucidate the relationships between these variables, we examined correlation-mediated processes using statistical techniques, including redundancy analysis (RDA) and structural equation modeling (SEM). The results showed that the addition of N alone had a detrimental effect on soil microbial biomass, mineralized N accumulation, and β-1,4-glucosidase activity. Conversely, the addition of P exhibited an opposing effect, leading to positive influences on these soil parameters. The interactive addition of N and P significantly changed the microbial community structure, increasing microbial activity (microbial biomass and soil respiration), but decreasing the accumulation of mineralized N. Among them, N24P12 treatment showed the greatest increase in the soil nutrient content and respiration. N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid (PLFA) content by 70.93%. N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes. Soil microbial biomass, respiration, and overall enzyme activity are driven by mineralized N. Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Nutrient resorption and its influencing factors of typical desert plants in different habitats on the northern margin of the Tarim Basin, China
ZHOU Chongpeng, GONG Lu, WU Xue, LUO Yan
Journal of Arid Land    2023, 15 (7): 858-870.   DOI: 10.1007/s40333-023-0104-6
Abstract38)   HTML7)    PDF(pc) (1318KB)(307)       Save

The resorption of nutrients from senescent leaves allows plants to conserve and recycle nutrients. To explore the adaptation strategies of desert plants to nutrient-limited environments, we selected four typical desert plants (Populus euphratica Oliv., Tamarix ramosissima Ledeb., Glycyrrhiza inflata Batal., and Alhagi camelorum Fisch.) growing in the desert area of the northern margin of the Tarim Basin, China. The contents of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and Ferrum (Fe) in the leaves of these four typical desert plants and their resorption characteristics were analyzed. The relationship of nutrient resorption efficiency with leaf functional traits and soil physical-chemical properties in two different habitats (saline-alkali land and sandy land) was discussed. The results showed that the four plants resorbed most of the elements. Ca was enriched in the leaves of P. euphratica, G. inflate, and A. camelorum; Mg was enriched in the leaves of G. inflata; and Fe was enriched in the leaves of the four plants. The results of the redundancy analysis showed that leaf thickness, soil electrical conductivity, and soil P content were the major factors affecting the nutrient resorption efficiency of the four plants. Leaf thickness was negatively correlated with N resorption efficiency (NRE), P resorption efficiency, and Fe resorption efficiency; soil electrical conductivity was positively correlated with the resorption efficiency of most elements; and soil P content was negatively correlated with the resorption efficiency of most elements in the plant leaves. The results showed that soil physical-chemical properties and soil nutrient contents had an important impact on the nutrient resorption of plant leaves. The same species growing in different habitats also differed in their resorption of different elements. The soil environment of plants and the biological characteristics of plant leaves affected the resorption of nutrient elements in different plants. The purpose of this study is to provide small-scale data support for the protection of ecosystems in nutrient-deficient areas by studying leaf functional strategies and nutrient conservation mechanisms of several typical desert plants.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Exogenous addition of nitrate nitrogen regulates the uptake and translocation of lead (Pb) by Iris lacteal Pall. var. chinensis (Fisch.) Koidz.
SUN Mengjie, GUO Shiwen, XIONG Chunlian, LI Pinfang
Journal of Arid Land    2023, 15 (2): 218-230.   DOI: 10.1007/s40333-023-0004-9
Abstract55)   HTML5)    PDF(pc) (1179KB)(304)       Save

Since Pb is a non-biodegradable inorganic pollutant and a non-essential metal, its long-term presence in soil poses a great threat to the environment. Iris lactea Pall. var. chinensis (Fisch.) Koidz., a perennial dense bush herb with high resistance of Pb and wide adaptability, was used in pot experiments to study the effects of exogenous nitrate N ($\text{NO}_{3}^{-}-\text{N}$) on the absorption and transportation of Pb and plant growth under different Pb concentrations. Then, the mechanism of $\text{NO}_{3}^{-}-\text{N}$ affecting Pb and nutrient uptake and transport was explored. The concentration of Pb in the experiment ranged from 0 to 1600 mg/kg, and the added concentration of $\text{NO}_{3}^{-}-\text{N}$ was 0.0-0.3 g/kg. The results showed that I. lactea was highly tolerant to Pb, and the shoot fraction was more sensitive to varied Pb concentrations in the soil than the root fraction. This protective function became more pronounced under the condition of raised Pb concentration in the soil. When the concentration of Pb in the soil reached 800 mg/kg, the highest Pb content of I. lactea was found under the condition of 0.1 g/kg of $\text{NO}_{3}^{-}-\text{N}$ addition. When Pb concentration in the soil increased to 1600 mg/kg, the increase in $\text{NO}_{3}^{-}-\text{N}$ addition promoted Pb uptake by the root. To ensure the well growth of I. lactea and the effect of remediation of Pb-contaminated soil, the recommended concentration of $\text{NO}_{3}^{-}-\text{N}$ in the soil is 0.1 g/kg. This result provides a theoretical basis for exogenous N regulation of phytoremediation of Pb-contaminated soil.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Review and prospect of soil compound erosion
YANG Wenqian, ZHANG Gangfeng, YANG Huimin, LIN Degen, SHI Peijun
Journal of Arid Land    2023, 15 (9): 1007-1022.   DOI: 10.1007/s40333-023-0107-3
Abstract79)   HTML609)    PDF(pc) (1035KB)(302)       Save

Soil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies. Soil compound erosion is the result of the alternation or interaction between two or more erosion forces. In recent years, fluctuations and extreme changes in climatic factors (air temperature, precipitation, wind speed, etc.) have led to an increase in the intensity and extent of compound erosion, which is increasingly considered in soil erosion research. First, depending on the involvement of gravity, compound erosion process can be divided into compound erosion with and without gravity. We systematically summarized the research on the mechanisms and processes of alternating or interacting soil erosion forces (wind, water, and freeze-thaw) considering different combinations, combed the characteristics of compound erosion in three typical regions, namely, high-elevation areas, high-latitude areas, and dry and wet transition regions, and reviewed soil compound erosion research methods, such as station observations, simulation experiments, prediction models, and artificial neural networks. The soil erosion model of wind, water, and freeze-thaw interaction is the most significant method for quantifying and predicting compound erosion. Furthermore, it is proposed that there are several issues such as unclear internal mechanisms, lack of comprehensive prediction models, and insufficient scale conversion methods in soil compound erosion research. It is also suggested that future soil compound erosion mechanism research should prioritize the coupling of compound erosion forces and climate change.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Leaf morpho-physiology and phytochemistry of olive trees as affected by cultivar type and increasing aridity
Said TOUATI, Jawaher AYADI, Abdelhakim BOUAJILA, Smail ACILA, Rami RAHMANI, Jalloul BOUAJILA, Mohamed DEBOUBA
Journal of Arid Land    2022, 14 (10): 1159-1179.   DOI: 10.1007/s40333-022-0078-9
Abstract64)   HTML9)    PDF(pc) (3485KB)(288)       Save

The olive species (Olea europaea L.) is an ancient traditional crop grown under rainfed conditions in the Mediterranean Basin. In response to the growing national and international demand for olive oil, the olive cultivars are introduced into highly arid new bioclimatic areas. Subsequently, the morpho-physiology and phytochemistry of olive trees are potentially changing among cultivar types and geographical conditions. In the present work, we have undertaken an assessment on the impacts of geographical location and cultivar types on the leaf morpho-physiology and phytochemistry of olive trees. Thus, leaves of the two most cultivated olive tree varieties, Chemlal and Sigoise, were collected from three geographical regions (Setif, Batna, and Eloued) with increasing aridity in Algeria. Leaf samples from the geographical regions were analyzed using the standard physiological experiment, colorimetric method, and a chromatography assay. Leaves of both cultivars exhibited a significant variance in terms of the leaf shape index but not for the leaf tissue density, specific leaf weight, and specific leaf area. Photosynthetic pigment contents were affected by both cultivar type and geographical location, with the lowest pigment content recorded in the Sigoise cultivar from the Setif region. Compared with the Setif and Batna regions, dried leaves of both cultivars from the Eloued region showed the higher levels of the total polyphenol, total flavonoid, and total tannin, as well as a better antioxidant capacity. Liquid chromatography-mass spectrometry analysis of all leaf extracts identified the following phenolic acids as major compounds: oleuropein, naringin, apigenin-7-O-glucoside, kaempferol, quercetin, quercitrin, luteolin-7-O-naringenin, and quinic acid. Lower contents were found for p-Coumaric acid, trans-Ferulic acid, hyperoside, rutin, apigenin, caffeic acid, protocatechuic acid, o-Coumaric acid, and gallic acid. Also, epicatechin and catechin+ were not found in the leaf extracts of the Sigoise cultivar. The leaf organic extracts in both cultivars displayed promising anti-cancer activity that was affected by geographical location and organic solvent polarity. Briefly, although increasing aridity and soil organic and mineral deficiency affected the leaf morpho-physiological parameters, both cultivars sustained a chemical richness, a good antioxidant, and an anti-tumoral capacity in leaves. Furthermore, the findings revealed that regardless the olive tree genotype, there was a significant impact of geographical location on the leaf morpho-physiology, bioactivity, and chemical composition, which may consequently modulate the growth and oil production of olive trees.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal variation and correlation of soil enzyme activities and soil physicochemical properties in canopy gaps of the Tianshan Mountains, Northwest China
ABAY Peryzat, GONG Lu, CHEN Xin, LUO Yan, WU Xue
Journal of Arid Land    2022, 14 (7): 824-836.   DOI: 10.1007/s40333-022-0098-5
Abstract99)   HTML6)    PDF(pc) (883KB)(287)       Save

The study of the heterogeneity of soil enzyme activities at different sampling locations in canopy gaps will help understand the influence mechanism of canopy gaps on soil ecological processes. In this paper, we analyzed the spatiotemporal variation of soil enzyme activities and soil physicochemical properties at different sampling locations (closed canopy, expanded edge, canopy edge, gap center) in different sampling time (December, February, April, June, August, and October) on the northern slope of the Tianshan Mountains, Northwest China. The results showed that soil catalase, cellulase, sucrase, and acid phosphatase activities were relatively high from June to October and low from December to April, and most of soil enzyme activities were higher at closed canopy than at gap center. Soil urease activity was high during December-February. The soil temperature reached the highest value during June-August and was relatively high at gap center in October, December, and February. Soil water content was significantly higher in December and April than in other months. Soil bulk density was higher at gap center than at closed canopy in December. Soil pH and soil electrical conductivity in most months were higher at closed canopy than at gap center. Soil organic carbon, soil total nitrogen, and soil total phosphorus were generally higher at gap center than at closed canopy. Furthermore, sampling time played a leading role in the dynamic change of soil enzyme activity. The key factors affecting soil enzyme activity were soil temperature and soil water content, which were governed by canopy gaps. These results provide important support for further understanding the influence mechanism of forest ecosystem management and conservation on the Tianshan Mountains.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of different types of guardrails on sand transportation of desert highway pavement
GAO Li, CHENG Jianjun, WANG Haifeng, YUAN Xinxin
Journal of Arid Land    2022, 14 (9): 993-1008.   DOI: 10.1007/s40333-022-0030-z
Abstract96)   HTML5)    PDF(pc) (3492KB)(279)       Save

Guardrail, an important highway traffic safety facility, is mainly used to prevent vehicles from accidentally driving off the road and to ensure driving safety. Desert highway guardrails hinder the movement of wind-blown sand, resulting in the decline of sand transportation by the pavement and the deposition of sand gains on the pavement, and endangering traffic safety. To reveal the influence of guardrails on sand transportation of desert highway pavement, we tested the flow field and sand transport volume distribution around the concrete, W-beam, and cable guardrails under different wind velocities through wind tunnel simulation. Wind velocity attenuation coefficients, sand transportation quantity, and sand transportation efficiency are used to measure sand transportation of highway pavement. The results show that the sand transportation of highway pavement was closely related to the zoning characteristics of flow field and variation of wind velocity around the guardrails. The flow field of the concrete guardrail was divided into deceleration, acceleration, and vortex zones. The interaction between the W-beam guardrail and wind-blown sand was similar to that of lower wind deflector. Behind and under the plates, there were the vortex zone and acceleration zone, respectively. The acceleration zone was conducive to transporting sand on the pavement. The cable guardrail only caused wind velocity variability within the height range of guardrail, and there was no sand deposition on the highway pavement. When the cable, W-beam, and concrete guardrails were used, the total transportation quantities on the highway pavement were 423.53, 415.74, and 136.53 g/min, respectively, and sand transportation efficiencies were 99.31%, 91.25%, and 12.84%, respectively. From the perspective of effective sand transportation on the pavement, the cable guardrail should be preferred as a desert highway guardrail, followed by the W-beam guardrail, and the concrete guardrail is unsuitable. The study results provide theoretical basis for the optimal design of desert highway guardrails and the prevention of wind-blown sand disasters on the highway pavement.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Plant property regulates soil bacterial community structure under altered precipitation regimes in a semi-arid desert grassland, China
ZHANG Lihua, GAO Han, WANG Junfeng, ZHAO Ruifeng, WANG Mengmeng, HAO Lianyi, GUO Yafei, JIANG Xiaoyu, ZHONG Lingfei
Journal of Arid Land    2023, 15 (5): 602-619.   DOI: 10.1007/s40333-023-0013-8
Abstract39)   HTML3)    PDF(pc) (2457KB)(279)       Save

Variations of precipitation have great impacts on soil carbon cycle and decomposition of soil organic matter. Soil bacteria are crucial participants in regulating these ecological processes and vulnerable to altered precipitation. Studying the impacts of altered precipitation on soil bacterial community structure can provide a novel insight into the potential impacts of altered precipitation on soil carbon cycle and carbon storage of grassland. Therefore, soil bacterial community structure under a precipitation manipulation experiment was researched in a semi-arid desert grassland in Chinese Loess Plateau. Five precipitation levels, i.e., control, reduced and increased precipitation by 40% and 20%, respectively (referred here as CK, DP40, DP20, IP40, and IP20) were set. The results showed that soil bacterial alpha diversity and rare bacteria significantly changed with altered precipitation, but the dominant bacteria and soil bacterial beta diversity did not change, which may be ascribed to the ecological strategy of soil bacteria. The linear discriminate analysis (LDA) effect size (LEfSe) method found that major response patterns of soil bacteria to altered precipitation were resource-limited and drought-tolerant populations. In addition, increasing precipitation greatly promoted inter-species competition, while decreasing precipitation highly facilitated inter-species cooperation. These changes in species interaction can promote different distribution ratios of bacterial populations under different precipitation conditions. In structural equation model (SEM) analysis, with changes in precipitation, plant growth characteristics were found to be drivers of soil bacterial community composition, while soil properties were not. In conclusion, our results indicated that in desert grassland ecosystem, the sensitive of soil rare bacteria to altered precipitation was stronger than that of dominant taxa, which may be related to the ecological strategy of bacteria, species interaction, and precipitation-induced variations of plant growth characteristics.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatial changes and driving factors of lake water quality in Inner Mongolia, China
REN Xiaohui, YU Ruihong, LIU Xinyu, SUN Heyang, GENG Yue, QI Zhen, ZHANG Zhuangzhuang, LI Xiangwei, WANG Jun, ZHU Penghang, GUO Zhiwei, WANG Lixin, XU Jifei
Journal of Arid Land    2023, 15 (2): 164-179.   DOI: 10.1007/s40333-022-0080-2
Abstract97)   HTML11)    PDF(pc) (1258KB)(277)       Save

Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China, but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear. This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes (Juyanhai Lake, Ulansuhai Lake, Hongjiannao Lake, Daihai Lake, Chagannaoer Lake, Hulun Lake, and Wulannuoer Lake) across the longitudinal axis (from the west to the east) of Inner Mongolia. Large-scale research was conducted using the comprehensive trophic level index (TLI (Σ)), multivariate statistics, and spatial analysis methods. The results showed that most lakes in Inner Mongolia were weakly alkaline. Total dissolved solids and salinity of lake water showed obvious zonation characteristics. Nitrogen and phosphorus were identified as the main pollutants in lakes, with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L, respectively. The values of TLI (Σ) ranged from 49.14 to 71.77, indicating varying degrees of lake eutrophication, and phosphorus was the main driver of lake eutrophication. The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI (Σ). The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake, whereas the opposite trend was observed for lake trophic level. The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality. It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment. These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia, which can be used to develop strategies for lake ecosystem protection and water resources management in this region.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Morphological and physiological responses to drought stress of carob trees in Mediterranean ecosystems
Khouloud ZAGOUB, Khouloud KRICHEN, Mohamed CHAIEB, Lobna F MNIF
Journal of Arid Land    2023, 15 (5): 562-577.   DOI: 10.1007/s40333-023-0011-x
Abstract146)   HTML3)    PDF(pc) (901KB)(271)       Save

The greatest failure rate of reforestation programs is basically related to water deficit, especially at the seedling stage. Therefore, the main objective of this work is to investigate the responses of three accessions of carob trees (Ceratonia siliqua L.) with 2-year-old from different climate regions to drought generated by four water treatments: Tc (250 mm), T1 (180 mm), T2 (100 mm), and T3 (50 mm). The first accession (A1) comes from the protected national park of Ichkeul in northern Tunisia. This zone belongs to the bioclimatic sub-humid stage. The second accession (A2) comes from Melloulech, located in the center-east of Tunisia, belonging to the bioclimatic semi-arid stage. The third accession (A3) comes from the mountain of Matmata, located in the south of Tunisia, belonging to the bioclimatic hyper-arid stage. The experiment was undertaken in a greenhouse. Gaz exchange indices (net photosynthesis (A), stomatal conductance (gs), transpiration rate (E), and internal CO2 concentration (Ci)) were determined. Predawn (Ψpd) and midday (Ψmd) leaf water potentials, relative soil water content (SWC), and morphological parameters (plant height (H), number of leaves (NL), number of leaflets (Nl), and number of branches (NB)) were estimated. The results showed that significant differences (P<0.001) were found between physiological and morphological parameters of each accession. The highest growth potential was recorded for Tc treatment in both accessions A1 and A2. Significant decreases in gs, E, Ci, and SWC were recorded with the increases in water stress applied from treatment T1 to T3. Positive and significant correlations were found between SWC and Ψpd for all studied accessions. Ψpd and Ψmd decreased as water stress increased, ranging from -0.96 to -1.50 MPa at sunrise and from -1.94 to -2.83 MPa at midday, respectively, under control and T3 treatments. C. siliqua accessions responded to drought through exhibiting significant changes in their physiological and morphological behavior. Both accessions A1 and A2 showed greater drought tolerance than accession A3. These seedlings exhibit different adaptive mechanisms such as stress avoidance, which are aimed at reducing transpiration, limiting leaf growth, and increasing root growth to exploit more soil water. Therefore, C. siliqua can be recommended for the ecological restoration in Mediterranean ecosystems.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Attribution analysis and multi-scenario prediction of NDVI drivers in the Xilin Gol grassland, China
XU Mengran, ZHANG Jing, LI Zhenghai, MO Yu
Journal of Arid Land    2022, 14 (9): 941-961.   DOI: 10.1007/s40333-022-0032-x
Abstract151)   HTML121)    PDF(pc) (4728KB)(269)       Save

Grassland degradation is influenced by climate change and human activities, and has become a major obstacle for the development of arid and semi-arid areas, posing a series of environmental and socio-economic problems. An in-depth understanding of the inner relations among grassland vegetation dynamics, climate change, and human activities is therefore greatly significant for understanding the variation in regional environmental conditions and predicting future developmental trends. Based on MODIS (moderate resolution imaging spectroradiometer) NDVI (normalized difference vegetation index) data from 2000 to 2020, our objective is to investigate the spatiotemporal changes of NDVI in the Xilin Gol grassland, Inner Mongolia Autonomous Region, China. Combined with 12 natural factors and human activity factors in the same period, the dominant driving factors and their interactions were identified by using the geographic detector model, and multiple scenarios were also simulated to forecast the possible paths of future NDVI changes in this area. The results showed that: (1) in the past 21 a, vegetation cover in the Xilin Gol grassland exhibited an overall increasing trend, and the vegetation restoration (84.53%) area surpassed vegetation degradation area (7.43%); (2) precipitation, wind velocity, and livestock number were the dominant factors affecting NDVI (the explanatory power of these factors exceeded 0.4). The interaction between average annual wind velocity and average annual precipitation, and between average annual precipitation and livestock number greatly affected NDVI changes (the explanatory power of these factors exceeded 0.7). Moreover, the impact of climate change on NDVI was more significant than human activities; and (3) scenario analysis indicated that NDVI in the Xinlin Gol grassland increased under the scenarios of reduced wind velocity, increased precipitation, and ecological protection. In contrast, vegetation coverage restoration in this area was significantly reduced under the scenarios of unfavorable climate conditions and excessive human activities. This study provides a scientific basis for future vegetation restoration and management, ecological environmental construction, and sustainable natural resource utilization in this area.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Leaf stoichiometry of Leontopodium lentopodioides at high altitudes on the northeastern Qinghai-Tibetan Plateau, China
WANG Hairu, SU Haohai, Asim BISWAS, CAO Jianjun
Journal of Arid Land    2022, 14 (10): 1124-1137.   DOI: 10.1007/s40333-022-0033-9
Abstract83)   HTML7)    PDF(pc) (1301KB)(268)       Save

Altitude affects leaf stoichiometry by regulating temperature and precipitation, and influencing soil properties in mountain ecosystems. Leaf carbon concentration (C), leaf nitrogen concentration (N), leaf phosphorous concentration (P), and their stoichiometric ratios of Leontopodium lentopodioides (Willd.) Beauv., a widespread species in degraded grasslands, were investigated to explore its response and adaptation strategy to environmental changes along four altitude gradients (2500, 3000, 3500, and 3800 m a.s.l.) on the northeastern Qinghai-Tibetan Plateau (QTP), China. The leaf C significantly varied but without any clear trend with increasing altitude. Leaf N showed an increasing trend, and leaf P showed a little change with increasing altitude, with a lower value of leaf P at 3500 m than those at other altitudes. Similarity, leaf C:P and N:P exhibited a little change with increasing altitude, which both had greater values at 3500 m than those at other altitudes. However, leaf C:N exhibited a decreasing trend with increasing altitude. Soil NH+ 4-N, soil pH, soil total phosphorus (STP), mean annual temperature (MAT), and mean annual precipitation (MAP) were identified as the main factors driving the variations in leaf stoichiometry of L. lentopodioides across all altitudes, with NH+ 4-N alone accounting for 50.8% of its total variation. Specifically, leaf C and N were mainly controlled by MAT, soil pH, and NH+ 4-N, while leaf P by MAP and STP. In the study area, it seems that the growth of L. lentopodioides may be mainly limited by STP. The results could help to strengthen our understanding of the plasticity of plant growth to environmental changes and provide new information on global grassland management and restoration.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Transformation among precipitation, surface water, groundwater, and mine water in the Hailiutu River Basin under mining activity
LI Qian, MA Long, LIU Tingxi
Journal of Arid Land    2022, 14 (6): 620-636.   DOI: 10.1007/s40333-022-0020-1
Abstract103)   HTML6)    PDF(pc) (4487KB)(267)       Save

Coal mining has changed the hydrogeological conditions of river basins, and studying how the relationship among different types of water body has changed under the influence of coal mining is of great significance for understanding the regional hydrological cycle. We analyzed the temporal and spatial distribution of hydrochemical properties and environmental isotopes in the Hailiutu River Basin (HRB), China with a mixed model. The results showed that: (1) human activity (e.g., coal mining and agricultural production) causes considerable changes in the hydrochemical properties of surface water in and around the mining areas, and leads to significant increases in the concentrations of Na+ and SO2- 4; (2) precipitation is the main source of water vapour in the HRB. The transformation between surface water and groundwater in the natural watershed is mainly affected by precipitation; and (3) in the mining areas, the average contribution rates of precipitation to the recharge of surface water and groundwater increased by 2.6%-7.9% and 2.7%-9.9%, respectively. Groundwater in the Salawusu Formation constitutes up to 61.3%-72.4% of mine water. Overall, this study is beneficial for quantifying the effects of coal mining on local hydrological cycles. The research results can provide a reference for local water resources management and ecological environment improvement.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Dependency of litter decomposition on litter quality, climate change, and grassland type in the alpine grassland of Tianshan Mountains, Northwest China
SU Yuan, GONG Yanming, HAN Wenxuan, LI Kaihui, LIU Xuejun
Journal of Arid Land    2022, 14 (6): 691-703.   DOI: 10.1007/s40333-022-0096-7
Abstract117)   HTML10)    PDF(pc) (811KB)(265)       Save

Litter decomposition is an important component of the nutrient recycling process and is highly sensitive to climate change. However, the impacts of warming and increased precipitation on litter decomposition have not been well studied, especially in the alpine grassland of Tianshan Mountains. We conducted a manipulative warming and increased precipitation experiment combined with different grassland types to examine the impact of litter quality and climate change on the litter decomposition rate based on three dominant species (Astragalus mongholicus, Potentilla anserina, and Festuca ovina) in Tianshan Mountains from 2019 to 2021. The results of this study indicated there were significant differences in litter quality, specific leaf area, and leaf dry matter content. In addition, litter quality exerted significant effects on litter decomposition, and the litter decomposition rate varied in different grassland types. Increased precipitation significantly accelerated the litter decomposition of P. anserina; however, it had no significant effect on the litter decomposition of A. mongholicus and F. ovina. However, warming consistently decreased the litter decomposition rate, with the strongest impact on the litter decomposition of F. ovina. There was a significant interaction between increased precipitation and litter type, but there was no significant interaction between warming and litter type. These results indicated that warming and increased precipitation significantly influenced litter decomposition; however, the strength was dependent on litter quality. In addition, soil water content played a crucial role in regulating litter decomposition in different grassland types. Moreover, we found that the litter decomposition rate exhibited a hump-shaped or linear response to the increase of soil water content. Our study emphasizes that ongoing climate change significantly altered litter decomposition in the alpine grassland, which is of great significance for understanding the nutrient supply and turnover of litter.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatial-temporal changes and driving factors of eco- environmental quality in the Three-North region of China
LONG Yi, JIANG Fugen, DENG Muli, WANG Tianhong, SUN Hua
Journal of Arid Land    2023, 15 (3): 231-252.   DOI: 10.1007/s40333-023-0053-0
Abstract130)   HTML253)    PDF(pc) (5474KB)(265)       Save

Eco-environmental quality is a measure of the suitability of the ecological environment for human survival and socioeconomic development. Understanding the spatial-temporal distribution and variation trend of eco-environmental quality is essential for environmental protection and ecological balance. The remote sensing ecological index (RSEI) can quickly and objectively quantify eco-environmental quality and has been extensively utilized in regional ecological environment assessment. In this paper, Moderate Resolution Imaging Spectroradiometer (MODIS) images during the growing period (July-September) from 2000 to 2020 were obtained from the Google Earth Engine (GEE) platform to calculate the RSEI in the three northern regions of China (the Three-North region). The Theil-Sen median trend method combined with the Mann-Kendall test was used to analyze the spatial-temporal variation trend of eco-environmental quality, and the Hurst exponent and the Theil-Sen median trend were superimposed to predict the future evolution trend of eco-environmental quality. In addition, ten variables from two categories of natural and anthropogenic factors were analyzed to determine the drivers of the spatial differentiation of eco-environmental quality by the geographical detector. The results showed that from 2000 to 2020, the RSEI in the Three-North region exhibited obvious regional characteristics: the RSEI values in Northwest China were generally between 0.2 and 0.4; the RSEI values in North China gradually increased from north to south, ranging from 0.2 to 0.8; and the RSEI values in Northeast China were mostly above 0.6. The average RSEI value in the Three-North region increased at an average growth rate of 0.0016/a, showing the spatial distribution characteristics of overall improvement and local degradation in eco-environmental quality, of which the areas with improved, basically stable and degraded eco-environmental quality accounted for 65.39%, 26.82% and 7.79% of the total study area, respectively. The Hurst exponent of the RSEI ranged from 0.20 to 0.76 and the future trend of eco-environmental quality was generally consistent with the trend over the past 21 years. However, the areas exhibiting an improvement trend in eco-environmental quality mainly had weak persistence, and there was a possibility of degradation in eco-environmental quality without strengthening ecological protection. Average relative humidity, accumulated precipitation and land use type were the dominant factors driving the spatial distribution of eco-environmental quality in the Three-North region, and two-factor interaction also had a greater influence on eco-environmental quality than single factors. The explanatory power of meteorological factors on the spatial distribution of eco-environmental quality was stronger than that of topographic factors. The effect of anthropogenic factors (such as population density and land use type) on eco-environmental quality gradually increased over time. This study can serve as a reference to protect the ecological environment in arid and semi-arid regions.

Table and Figures | Reference | Related Articles | Metrics | Comments0