Most Downloaded

Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 2 years
Please wait a minute...
For Selected: Toggle Thumbnails
Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index
Journal of Arid Land    2021, 13 (4): 413-430.   DOI: 10.1007/s40333-021-0062-9
Abstract367)   HTML31)    PDF (3359KB)(516)      

Drought was a severe recurring phenomenon in Iraq over the past two decades due to climate change despite the fact that Iraq has been one of the most water-rich countries in the Middle East in the past. The Iraqi Kurdistan Region (IKR) is located in the north of Iraq, which has also suffered from extreme drought. In this study, the drought severity status in Sulaimaniyah Province, one of four provinces of the IKR, was investigated for the years from 1998 to 2017. Thus, Landsat time series dataset, including 40 images, were downloaded and used in this study. The Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI) were utilized as spectral-based drought indices and the Standardized Precipitation Index (SPI) was employed as a meteorological-based drought index, to assess the drought severity and analyse the changes of vegetative cover and water bodies. The study area experienced precipitation deficiency and severe drought in 1999, 2000, 2008, 2009, and 2012. Study findings also revealed a drop in the vegetative cover by 33.3% in the year 2000. Furthermore, the most significant shrinkage in water bodies was observed in the Lake Darbandikhan (LDK), which lost 40.5% of its total surface area in 2009. The statistical analyses revealed that precipitation was significantly positively correlated with the SPI and the surface area of the LDK (correlation coefficients of 0.92 and 0.72, respectively). The relationship between SPI and NDVI-based vegetation cover was positive but not significant. Low precipitation did not always correspond to vegetative drought; the delay of the effect of precipitation on NDVI was one year.

Table and Figures | Reference | Related Articles | Metrics
Source identification of nitrate in the upper aquifer system of the Wadi Shueib catchment area in Jordan based on stable isotope composition
Journal of Arid Land    2021, 13 (4): 350-374.   DOI: 10.1007/s40333-021-0055-8
Abstract184)   HTML8)    PDF (1114KB)(463)      

Groundwater forms the main freshwater supply in arid and semi-arid areas, and contamination of this precious resource is complicated by the slow rate of recharge in these areas. Nitrate contamination of groundwater is a global water quality problem, as it entails threat to human health as well as aquatic ecosystems. Source identification of contamination is the cornerstone and a prerequisite for any effective management program of water quality. Stable isotope composition of the dissolved nitrate (δ15N-NO3- and δ 18O-NO3-) has been applied to identify NO3- sources and the main transformation processes in the upper aquifer system (A1/2, A4, and B2/A7 aquifers) in the Wadi Shueib catchment area, Jordan. Moreover, the stable isotope compositions of the groundwater (δ2H-H2O and δ18O-H2O) in conjunction with the groundwater hydrochemistry were integrated to investigate the origin and evolution of the groundwater. Results revealed that groundwater in the study area is fresh and hard-very hard water, and mainly a Ca-Mg-Cl type. NO3- concentration was in the range of 7.0-74.0 mg/L with an average of 37.0 mg/L. Most of the samples showed concentration higher than the natural background concentration of NO3- (5.0-10.0 mg/L). The δ 2H-H2O and δ18O-H2O values indicated that the groundwater is meteoric, and of Mediterranean origin, with a strong evaporation effect. The δ15N-NO3- values ranged between 6.0‰ and 11.3‰ with an average of 8.7‰, and the δ18O-NO3- values ranged between 1.6‰ and 5.9‰ with an average of 3.4‰. These values are in conformity with the stable isotope composition of nitrate derived the nitrification of wastewater/manure, and soil NH4. Nitrification and denitrification are the main transformation processes affecting nitrogen species. Statistical analysis revealed no significant differences in the δ2H-H2O and δ18O-H2O values, and δ15N-NO3- and δ 18O-NO3- values for the three aquifers (A1/2, A4, and B2/A7), indicating that the groundwater of these aquifers has the same origin, and a common source of pollution.

Table and Figures | Reference | Related Articles | Metrics
Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities
YU Yang, CHEN Xi, Ireneusz MALIK, Malgorzata WISTUBA, CAO Yiguo, HOU Dongde, TA Zhijie, HE Jing, ZHANG Lingyun, YU Ruide, ZHANG Haiyan, SUN Lingxiao
Journal of Arid Land    2021, 13 (9): 881-890.   DOI: 10.1007/s40333-021-0084-3
Abstract199)   HTML22)    PDF (472KB)(424)      

Central Asia is located in the hinterland of Eurasia, comprising Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan; over 93.00% of the total area is dryland. Temperature rise and human activities have severe impacts on the fragile ecosystems. Since the 1970s, nearly half the great lakes in Central Asia have shrunk and rivers are drying rapidly owing to climate changes and human activities. Water shortage and ecological crisis have attracted extensive international attention. In general, ecosystem services in Central Asia are declining, particularly with respect to biodiversity, water, and soil conservation. Furthermore, the annual average temperature and annual precipitation in Central Asia increased by 0.30°C/decade and 6.9 mm/decade in recent decades, respectively. Temperature rise significantly affected glacier retreat in the Tianshan Mountains and Pamir Mountains, which may intensify water shortage in the 21st century. The increase in precipitation cannot counterbalance the aggravation of water shortage caused by the temperature rise and human activities in Central Asia. The population of Central Asia is growing gradually, and its economy is increasing steadily. Moreover, the agricultural land has not been expended in the last two decades. Thus, water and ecological crises, such as the Aral Sea shrinkage in the 21st century, cannot be attributed to agriculture extension any longer. Unbalanced regional development and water interception/transfer have led to the irrational exploitation of water resources in some watersheds, inducing downstream water shortage and ecological degradation. In addition, accelerated industrialization and urbanization have intensified this process. Therefore, all Central Asian countries must urgently reach a consensus and adopt common measures for water and ecological protection.

Table and Figures | Reference | Related Articles | Metrics
Plant community dynamics in arid lands: the role of desert ants
Journal of Arid Land    2021, 13 (3): 303-316.   DOI: 10.1007/s40333-021-0006-4
Abstract162)   HTML7)    PDF (499KB)(385)      

Ants (Formicidae, Hymenoptera) play an important role in seed bank, seedling establishment and plant composition of arid ecosystems. Thus, knowing plant-ant interaction provides useful information for managers to design restoration and conservation plans. In this study, the roles of desert harvester ants (Messor intermedius and Messor melancholicus) and scavenger ants (Cataglyphis nodus and Lepisiota semenovi) on plant communities were investigated in arid ecosystems of southeastern Iran. Two vegetation types were distinguished in the study area and the nest density of ant species was determined. Furthermore, plant composition and soil seed bank were estimated at different distances from the ant nests. Results showed that the density of M. intermedius and M. melancholicus nests was higher in dwarf shrub-shrub vegetation type and the density of C. nodus and L. semenovi nests was higher in dwarf shrub vegetation type. The harvester and scavenger ants had enhanced the seed bank to 55% and 70%, respectively. Therefore, the role of scavenger ants on the plant communities' seed bank was greater than that of harvester ants. Although the scavenger ants were more influential on the annuals and the invasive plant species, the radius impact of the harvester ants on the perennials was greater, i.e., a positive interaction existed between the perennial plants and the harvester ants. C. nodus and L. semenovi played an important role in enhancing the ecosystem's potential for restoration through establishment of pioneer species in early stage of succession. The activity of M. intermedius is crucial for the development and maintenance of climax plant communities in arid ecosystems through assisting the plant species' establishment in late stage of succession. It is essential to preserve the diversity of these key ant species for the maintenance and sustainability of shrubs in arid ecosystems.

Table and Figures | Reference | Related Articles | Metrics
Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957-2016 in Iran based on CRU TS gridded dataset
Journal of Arid Land    2021, 13 (8): 858-878.   DOI: 10.1007/s40333-021-0103-4
Abstract102)   HTML9)    PDF (6486KB)(366)      

Agriculture needs to produce more food to feed the growing population in the 21st century. It makes the reference crop water requirement (WREQ) a major challenge especially in regions with limited water and high water demand. Iran, with large climatic variability, is experiencing a serious water crisis due to limited water resources and inefficient agriculture. In order to overcome the issue of uneven distribution of weather stations, gridded Climatic Research Unit (CRU) data was applied to analyze the changes in potential evapotranspiration (PET), effective precipitation (EFFPRE) and WREQ. Validation of data using in situ observation showed an acceptable performance of CRU in Iran. Changes in PET, EFFPRE and WREQ were analyzed in two 30-a periods 1957-1986 and 1987-2016. Comparing two periods showed an increase in PET and WREQ in regions extended from the southwest to northeast and a decrease in the southeast, more significant in summer and spring. However, EFFPRE decreased in the southeast, northeast, and northwest, especially in winter and spring. Analysis of annual trends revealed an upward trend in PET (14.32 mm/decade) and WREQ (25.50 mm/decade), but a downward trend in EFFPRE (-11.8 mm/decade) over the second period. Changes in PET, EFFPRE and WREQ in winter have the impact on the annual trend. Among climate variables, WREQ showed a significant correlation (r=0.59) with minimum temperature. The increase in WREQ and decrease in EFFPRE would exacerbate the agricultural water crisis in Iran. With all changes in PET and WREQ, immediate actions are needed to address the challenges in agriculture and adapt to the changing climate.

Table and Figures | Reference | Related Articles | Metrics
Optimization designs of artificial facilities in deserts based on computational simulation
DUN Hongchao, HUANG Ning, ZHANG Jie
Journal of Arid Land    2021, 13 (3): 290-302.   DOI: 10.1007/s40333-021-0059-4
Abstract67)   HTML6)    PDF (926KB)(359)      

Sediment transport of sand particles by wind is one of the main processes leading to desertification in arid regions, which severely impairs the ability of mankind to produce and live by drifting sand into settlements. Optimization designs of artificial facilities have lately attracted extensive interest for human settlement systems in deserts because of their acceptable protection effect, convenience of implementation, and low material cost. However, the complexity of a settlement system poses challenges concerning finding suitable materials, artificial facilities, and optimization designs for sand deposition protection. In an effort to overcome these challenges, we propose a settlement system built with brick, solar panel, and building arrays to meet the basic needs of human settlements in arid regions while preventing wind-sand disasters. The wind flow and movement characteristics of sand particles in the brick, panel, and building arrays were calculated using computational fluid dynamics and discrete phase model. The performance of three types of arrays in wind-sand flow in terms of decreasing the wind velocity and sand-particle invasion distance was evaluated. The results show that the wind velocity near the surface and the sand invasion distance were significantly decreased in the space between the brick arrays through properly selected vertical size and interspaces, indicating that the brick arrays have an impressive sand fixing and blocking performance; their effective protection distance was 3-4 m. The building arrays increased the near-surface wind velocity among buildings, resulting in less deposition of sand particles. The solar panel arrays were similar to the building arrays in most cases, but the deposition of sand particles on solar panels exerted a negative effect on energy utilization efficiency. Therefore, taking the optimal configuration of the settlement system into consideration, this study concludes that (1) brick arrays, which were proven effective in preventing sand particles, must be arranged in an upwind area; (2) solar panel arrays could accelerate the wind flow, so they are best to be arranged at the place where sand particles deposited easily; and (3) building arrays present a better arrangement in downwind areas.

Table and Figures | Reference | Related Articles | Metrics
Mass balance of saline lakes considering inflow loads of rivers and groundwater: the case of Lake Issyk- Kul, Central Asia
Journal of Arid Land    2021, 13 (12): 1260-1273.   DOI: 10.1007/s40333-021-0026-0
Abstract51)   HTML9)    PDF (1155KB)(352)      

This study aimed to elucidate the influence of inflow water on the salinity concentration process of a saline lake and the mass balance of Lake Issyk-Kul, a tectonic saltwater lake in Kyrgyzstan. Based on the survey results and meteorological data from 2012 to 2015, we analyzed the dissolved chemical composition loads due to water inflow. Then, we discussed the relationship between the increase in salinity and water inflow into the lake. Through the water quality analysis data, we used the tank model to estimate the river inflow and analyze the loads by the L-Q curve. The groundwater loads were then estimated from the average annual increase in salinity of the lake over a period of 30 a. The results suggest that Lake Issyk-Kul was temporarily freshened between about AD 1500 and 1800 when an outflowing river existed, and thereafter, it became a closed lake in AD 1800 and continued to remain a saline lake until present. The chemical components that cause salinization are supplied from the rivers and groundwater in the catchment area, and when they flow into the lake, Ca2+, HCO3- and Mg2+ precipitate as CaCO3 and MgCO3. These compounds were confirmed to have been left on the lakeshore as evaporite. The model analysis showed that 1.67 mg/L of Ca2+ and Mg2+ supplied from rivers and groundwater are precipitated as evaporite and in other forms per year. On the other hand, salinity continues to remain in the lake water at a rate of 27.5 mg/L per year. These are the main causes of increased salinity in Lake Issyk-Kul. Since Na+ and Cl- are considered to be derived from geothermal water, they will continue to flow in regardless of the effects of human activities. Therefore, as long as these components are accumulated in Lake Issyk-Kul as a closed lake, the salinity will continue to increase in the future.

Table and Figures | Reference | Related Articles | Metrics
Soil quality assessment in different dammed-valley farmlands in the hilly-gully mountain areas of the northern Loess Plateau, China
CHEN Shumin, JIN Zhao, ZHANG Jing, YANG Siqi
Journal of Arid Land    2021, 13 (8): 777-789.   DOI: 10.1007/s40333-021-0014-4
Abstract142)   HTML18)    PDF (1224KB)(349)      

There are numerous valley farmlands on the Chinese Loess Plateau (CLP), where suffers from low soil quality and high risk of soil salinization due to the shallow groundwater table and poor drainage system. Currently, research on the evolution processes and mechanisms of soil quality and salinization in these dammed-valley farmlands on the CLP is still inadequately understood. In this study, three kinds of dammed-valley farmlands in the hilly-gully areas of the northern CLP were selected, and the status of soil quality and the impact factors of soil salinization were examined. The dammed-valley farmlands include the new farmland created by the project of Gully Land Consolidation, the 60-a farmland created by sedimentation from check dam, and the 400-a farmland created by sedimentation from an ancient landslide-dammed lake. Results showed that (1) the newly created farmland had the lowest soil quality in terms of soil bulk density, porosity, soil organic carbon and total nitrogen among the three kinds of dammed-valley farmlands; (2) soil salinization occurred in the middle and upper reaches of the new and 60-a valley farmlands, whereas no soil salinization was found in the 400-a valley farmland; and (3) soil salinization and low soil nutrient were determined to be the two important factors that impacted the soil quality of the valley farmlands in the hilly-gully mountain areas of the CLP. We conclude that the dammed-valley farmlands on the CLP have a high risk of soil salinization due to the shallow groundwater table, alkalinity of the loessial soil and local landform feature, thus resulting in the low soil quality of the valley farmlands. Therefore, strengthening drainage and decreasing groundwater table are extremely important to improve the soil quality of the valley farmlands and guarantee the sustainable development of the valley agriculture on the CLP.

Table and Figures | Reference | Related Articles | Metrics
Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau
SA Chula, MENG Fanhao, LUO Min, LI Chenhao, WANG Mulan, ADIYA Saruulzaya, BAO Yuhai
Journal of Arid Land    2021, 13 (4): 332-349.   DOI: 10.1007/s40333-021-0056-7
Abstract203)   HTML17)    PDF (2744KB)(347)      

Snow cover is an important water source for vegetation growth in arid and semi-arid areas, and grassland phenology provides valuable information on the response of terrestrial ecosystems to climate change. The Mongolian Plateau features both abundant snow cover resources and typical grassland ecosystems. In recent years, with the intensification of global climate change, the snow cover on the Mongolian Plateau has changed correspondingly, with resulting effects on vegetation growth. In this study, using MOD10A1 snow cover data and MOD13A1 Normalized Difference Vegetation Index (NDVI) data combined with remote sensing (RS) and geographic information system (GIS) techniques, we analyzed the spatiotemporal changes in snow cover and grassland phenology on the Mongolian Plateau from 2001 to 2018. The correlation analysis and grey relation analysis were used to determine the influence of snow cover parameters (snow cover fraction (SCF), snow cover duration (SCD), snow cover onset date (SCOD), and snow cover end date (SCED)) on different types of grassland vegetation. The results showed wide snow cover areas, an early start time, a late end time, and a long duration of snow cover over the northern Mongolian Plateau. Additionally, a late start, an early end, and a short duration were observed for grassland phenology, but the southern area showed the opposite trend. The SCF decreased at an annual rate of 0.33%. The SCD was shortened at an annual rate of 0.57 d. The SCOD and SCED in more than half of the study area advanced at annual rates of 5.33 and 5.74 DOY (day of year), respectively. For grassland phenology, the start of the growing season (SOS) advanced at an annual rate of 0.03 DOY, the end of the growing season (EOS) was delayed at an annual rate of 0.14 DOY, and the length of the growing season (LOS) was prolonged at an annual rate of 0.17 d. The SCF, SCD, and SCED in the snow season were significantly positively correlated with the SOS and negatively correlated with the EOS and LOS. The SCOD was significantly negatively correlated with the SOS and positively correlated with the EOS and LOS. The SCD and SCF can directly affect the SOS of grassland vegetation, while the EOS and LOS were obviously influenced by the SCOD and SCED. This study provides a scientific basis for exploring the response trends of alpine vegetation to global climate change.

Table and Figures | Reference | Related Articles | Metrics
Climate change impacts on the streamflow of Zarrineh River, Iran
Journal of Arid Land    2021, 13 (9): 891-904.   DOI: 10.1007/s40333-021-0091-4
Abstract139)   HTML8)    PDF (1733KB)(344)      

Zarrineh River is located in the northwest of Iran, providing more than 40% of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth. Lake Urmia is a highly endangered ecosystem on the brink of desiccation. This paper studied the impacts of climate change on the streamflow of Zarrineh River. The streamflow was simulated and projected for the period 1992-2050 through seven CMIP5 (coupled model intercomparison project phase 5) data series (namely, BCC-CSM1-1, BNU-ESM, CSIRO-Mk3-6-0, GFDL-ESM2G, IPSL-CM5A-LR, MIROC-ESM and MIROC-ESM-CHEM) under RCP2.6 (RCP, representative concentration pathways) and RCP8.5. The model data series were statistically downscaled and bias corrected using an artificial neural network (ANN) technique and a Gamma based quantile mapping bias correction method. The best model (CSIRO-Mk3-6-0) was chosen by the TOPSIS (technique for order of preference by similarity to ideal solution) method from seven CMIP5 models based on statistical indices. For simulation of streamflow, a rainfall-runoff model, the hydrologiska byrans vattenavdelning (HBV-Light) model, was utilized. Results on hydro-climatological changes in Zarrineh River basin showed that the mean daily precipitation is expected to decrease from 0.94 and 0.96 mm in 2015 to 0.65 and 0.68 mm in 2050 under RCP2.6 and RCP8.5, respectively. In the case of temperature, the numbers change from 12.33°C and 12.37°C in 2015 to 14.28°C and 14.32°C in 2050. Corresponding to these climate scenarios, this study projected a decrease of the annual streamflow of Zarrineh River by half from 2015 to 2050 as the results of climatic changes will lead to a decrease in the annual streamflow of Zarrineh River from 59.49 m3/s in 2015 to 22.61 and 23.19 m3/s in 2050. The finding is of important meaning for water resources planning purposes, management programs and strategies of the Lake's endangered ecosystem.

Table and Figures | Reference | Related Articles | Metrics
Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019
ZHOU Siyuan, DUAN Yufeng, ZHANG Yuxiu, GUO Jinjin
Journal of Arid Land    2021, 13 (5): 534-547.   DOI: 10.1007/s40333-021-0007-3
Abstract238)   HTML12)    PDF (3342KB)(321)      

Coal mining has led to serious ecological damages in arid desert region of Northwest China. However, effects of climatic factor and mining activity on vegetation dynamics and plant diversity in this region remain unknown. Wuhai City located in the arid desert region of Northwest China is an industrial city and dominated by coal mining. Based on Landsat data and field investigation in Wuhai City, we analyzed the vegetation dynamics and the relationships with climate factors, coal mining activity and ecological restoration projects from 2000 to 2019. Results showed that vegetation in Wuhai City mostly consisted of desert plants, such as Caragana microphylla, Tetraena mongolica and Achnatherum splendens. And the vegetation fractional coverage (VFC) and greenness rate of change (GRC) showed that vegetation was slightly improved during the study period. Normalized difference vegetation index (NDVI) was positively correlated with annual mean precipitation, relative humidity and annual mean temperature, indicating that these climate factors might play important roles in the improved vegetation. Vegetation coverage and plant diversity around the coal mining area were reduced by coal mining, while the implementation of ecological restoration projects improved the vegetation coverage and plant diversity. Our results suggested that vegetation in the arid desert region was mainly affected by climate factors, and the implementation of ecological restoration projects could mitigate the impacts of coal mining on vegetation and ecological environment.

Table and Figures | Reference | Related Articles | Metrics
Delayed seed dispersal species and related traits in the desert of the United Arab Emirates
Journal of Arid Land    2021, 13 (9): 962-976.   DOI: 10.1007/s40333-021-0018-0
Abstract69)   HTML9)    PDF (397KB)(316)      

The ability of plants to safely retain seeds in the mother plant is an adaptive mechanism described in many desert plants. However, research about delayed seed dispersal species in the desert of the United Arab Emirates (UAE) is lacking. This study aims to identify these delayed seed dispersal species and assess the relationships of the presence of delayed seed dispersal with plant growth form, habit, spatial dispersal, antitelechoric mechanism, and seed release time. The relationships between the presence of delayed seed dispersal and the above studied traits were assessed by using the Pearson Chi-square test and Nonlinear Principal Components Analysis (NLPCA). Results showed that a total of 46 delayed seed dispersal species were recorded (15.0% of 307 studied species) and the highest incidence occurred in the Fabaceae family (17.4%). Delayed seed dispersal species were predominantly perennial plants (73.9%) with spatial restricted dispersal (67.4%), which released seed in the dry season (45.7%). The dominant groups of delayed seed dispersal species were persistent fruits species and synaptospermy (28.3%). All graminoids showed persistent lignified fruits, while prostrate annuals were basicarpic species with myxospermy. Sandy habitats had the highest number of delayed seed dispersal species (54.3%), whereas salt flats had the lowest (23.9%). In the desert of the UAE, delayed seed dispersal species spread seeds until the end of the dry and windy season, thus breaking seed dormancy at this time and ensuring seed germination in the next arrival of the rainy season. This morphological and ecological adaptation of delayed dispersal species is essential to the survival and sustainable development of vegetation in desert environments.

Table and Figures | Reference | Related Articles | Metrics
Using statistical models and GIS to delimit the groundwater recharge potential areas and to estimate the infiltration rate: A case study of Nadhour-Sisseb-El Alem Basin, Tunisia
Journal of Arid Land    2021, 13 (11): 1122-1141.   DOI: 10.1007/s40333-021-0092-3
Abstract80)   HTML10)    PDF (2645KB)(314)      

The water resources of the Nadhour-Sisseb-El Alem Basin in Tunisia exhibit semi-arid and arid climatic conditions. This induces an excessive pumping of groundwater, which creates drops in water level ranging about 1-2 m/a. Indeed, these unfavorable conditions require interventions to rationalize integrated management in decision making. The aim of this study is to determine a water recharge index (WRI), delineate the potential groundwater recharge area and estimate the potential groundwater recharge rate based on the integration of statistical models resulted from remote sensing imagery, GIS digital data (e.g., lithology, soil, runoff), measured artificial recharge data, fuzzy set theory and multi-criteria decision making (MCDM) using the analytical hierarchy process (AHP). Eight factors affecting potential groundwater recharge were determined, namely lithology, soil, slope, topography, land cover/use, runoff, drainage and lineaments. The WRI is between 1.2 and 3.1, which is classified into five classes as poor, weak, moderate, good and very good sites of potential groundwater recharge area. The very good and good classes occupied respectively 27% and 44% of the study area. The potential groundwater recharge rate was 43% of total precipitation. According to the results of the study, river beds are favorable sites for groundwater recharge.

Table and Figures | Reference | Related Articles | Metrics
Effect of nitrogen and phosphorus addition on leaf nutrient concentrations and nutrient resorption efficiency of two dominant alpine grass species
LIU Yalan, LI Lei, LI Xiangyi, YUE Zewei, LIU Bo
Journal of Arid Land    2021, 13 (10): 1041-1053.   DOI: 10.1007/s40333-021-0080-7
Abstract91)   HTML4)    PDF (605KB)(312)      

Nitrogen (N) and phosphorus (P) are two essential nutrients that determine plant growth and many nutrient cycling processes. Increasing N and P deposition is an important driver of ecosystem changes. However, in contrast to numerous studies about the impacts of nutrient addition on forests and temperate grasslands, how plant foliar stoichiometry and nutrient resorption respond to N and P addition in alpine grasslands is poorly understood. Therefore, we conducted an N and P addition experiment (involving control, N addition, P addition, and N+P addition) in an alpine grassland on Kunlun Mountains (Xinjiang Uygur Autonomous Region, China) in 2016 and 2017 to investigate the changes in leaf nutrient concentrations (i.e., leaf N, Leaf P, and leaf N:P ratio) and nutrient resorption efficiency of Seriphidium rhodanthum and Stipa capillata, which are dominant species in this grassland. Results showed that N addition has significant effects on soil inorganic N (NO3--N and NH4+-N) and leaf N of both species in the study periods. Compared with green leaves, leaf nutrient concentrations and nutrient resorption efficiency in senesced leaves of S. rhodanthum was more sensitive to N addition, whereas N addition influenced leaf N and leaf N:P ratio in green and senesced leaves of S. capillata. N addition did not influence N resorption efficiency of the two species. P addition and N+P addition significantly improved leaf P and had a negative effect on P resorption efficiency of the two species in the study period. These influences on plants can be explained by increasing P availability. The present results illustrated that the two species are more sensitive to P addition than N addition, which implies that P is the major limiting factor in the studied alpine grassland ecosystem. In addition, an interactive effect of N+P addition was only discernable with respect to soil availability, but did not affect plants. Therefore, exploring how nutrient characteristics and resorption response to N and P addition in the alpine grassland is important to understand nutrient use strategy of plants in terrestrial ecosystems.

Table and Figures | Reference | Related Articles | Metrics
Ecosystem service values of gardens in the Yellow River Basin, China
GE Qianqian, XU Wenjie, FU Meichen, HAN Yingxin, AN Guoqiang, XU Yuetong
Journal of Arid Land    2022, 14 (3): 284-296.   DOI: 10.1007/s40333-022-0061-5
Abstract131)   HTML38)    PDF (802KB)(307)      

Studies on the ecosystem service value (ESV) of gardens are critical for informing evidence- based land management practices based on an understanding of the local ecosystem. By analyzing equivalent value factors (EVFs), this paper evaluated the values of 11 ecosystem services of gardens in the Yellow River Basin of China in 2019. High-precision land use survey data were used to improve the accuracy of the land use classification, garden areas, and spatial distribution of the ESVs of gardens. The results showed that garden ecosystem generally had high ESVs, especially in terms of the ESV of food production, which is worthy of further research and application to the practice of land use planning and management. Specifically, the value of one standard EVF of ecosystem services in 2019 was 3587.04 CNY/(hm2•a), and the ESV of food production of gardens was much higher than that of croplands. Garden ecosystem provided an ESV of 1348.66×108 CNY/a in the Yellow River Basin. The areas with the most concentrated ESVs of gardens were located in four regions: downstream in the Shandong-Henan zone along the Yellow River, mid-stream in the Shanxi-Shaanxi zone along the Yellow River, the Weihe River Basin, and upstream in the Qinghai-Gansu-Ningxia-Inner Mongolia zone along the Yellow River. The spatial correlation of the ESVs in the basin was significant (global spatial autocorrelation index Moran's I=0.464), which implied that the characteristics of high ESVs adjacent to high ESVs and low ESVs adjacent to low ESVs are prominent. In the Yellow River Basin, the contribution of the ESVs of gardens to the local environment and economy varied across regions. We also put forward some suggestions for promoting the construction of ecological civilization in the Yellow River Basin. The findings of this study provide important contributions to the research of ecosystem service evaluation in the Yellow River Basin.

Table and Figures | Reference | Related Articles | Metrics
Plant cover as an estimator of above-ground biomass in semi-arid woody vegetation in Northeast Patagonia, Argentina
Journal of Arid Land    2021, 13 (9): 918-933.   DOI: 10.1007/s40333-021-0083-4
Abstract137)   HTML7)    PDF (1377KB)(305)      

The quantification of carbon storage in vegetation biomass is a crucial factor in the estimation and mitigation of CO2 emissions. Globally, arid and semi-arid regions are considered an important carbon sink. However, they have received limited attention and, therefore, it should be a priority to develop tools to quantify biomass at the local and regional scales. Individual plant variables, such as stem diameter and crown area, were reported to be good predictors of individual plant weight. Stand-level variables, such as plant cover and mean height, are also easy-to-measure estimators of above-ground biomass (AGB) in dry regions. In this study, we estimated the AGB in semi-arid woody vegetation in Northeast Patagonia, Argentina. We evaluated whether the AGB at the stand level can be estimated based on plant cover and to what extent the estimation accuracy can be improved by the inclusion of other field-measured structure variables. We also evaluated whether remote sensing technologies can be used to reliably estimate and map the regional mean biomass. For this purpose, we analyzed the relationships between field-measured woody vegetation structure variables and AGB as well as LANDSAT TM-derived variables. We obtained a model-based ratio estimate of regional mean AGB and its standard error. Total plant cover allowed us to obtain a reliable estimation of local AGB, and no better fit was attained by the inclusion of other structure variables. The stand-level plant cover ranged between 18.7% and 95.2% and AGB between about 2.0 and 70.8 Mg/hm2. AGB based on total plant cover was well estimated from LANDSAT TM bands 2 and 3, which facilitated a model-based ratio estimate of the regional mean AGB (approximately 12.0 Mg/hm2) and its sampling error (about 30.0%). The mean AGB of woody vegetation can greatly contribute to carbon storage in semi-arid lands. Thus, plant cover estimation by remote sensing images could be used to obtain regional estimates and map biomass, as well as to assess and monitor the impact of land-use change on the carbon balance, for arid and semi-arid regions.

Table and Figures | Reference | Related Articles | Metrics
Disturbance of plateau zokor-made mound stimulates plant community regeneration in the Qinghai-Tibetan Plateau, China
XIANG Zeyu, Arvind BHATT, TANG Zhongbin, PENG Yansong, WU Weifeng, ZHANG Jiaxin, WANG Jingxuan, David GALLACHER, ZHOU Saixia
Journal of Arid Land    2021, 13 (10): 1054-1070.   DOI: 10.1007/s40333-021-0020-6
Abstract74)   HTML8)    PDF (3110KB)(299)      

Mounds constructed by plateau zokors, which is widely distributed in alpine meadows significantly modified plant community structure. However, the variations of plant community structure under the disturbance of plateau zokor-made mound are less concerned. Therefore, we investigated the responses of plant community on zokor-made mound of different years (1 a and 3-4 a), and compared with undisturbed sites (no mound) in an alpine meadow in the eastern Qinghai-Tibetan Plateau (QTP), China. Species richness, coverage and Simpson diversity index were all significantly reduced by the presence of zokor-made mound, but plant heights were significantly increased, particularly in grasses and sedges. Several perennial forage species showed an increased importance value and niche breadth, including Koeleria macrantha, Elymus nutans and Poa pratensis. The effect of zokor-made mound on niche overlap showed that more intense interspecific competition produced a greater utilization of environmental resources. And this interspecific niche overlap was strengthened as succession progressed. The bare mound created by zokor burrowing activities provided a colonizing opportunity for non-dominant forage species, resulting in abundant plant species and plant diversity during the succession period. We concluded that presence of zokor-made mound was conducive to regeneration and vitality of plant community in alpine meadows, thus improving their resilience to anthropogenic stress.

Table and Figures | Reference | Related Articles | Metrics
Predicting of dust storm source by combining remote sensing, statistic-based predictive models and game theory in the Sistan watershed, southwestern Asia
Journal of Arid Land    2021, 13 (11): 1103-1121.   DOI: 10.1007/s40333-021-0023-3
Abstract75)   HTML10)    PDF (2110KB)(299)      

Dust storms in arid and desert areas affect radiation budget, air quality, visibility, enzymatic activities, agricultural products and human health. Due to increased drought and land use changes in recent years, the frequency of dust storms occurrence in Iran has been increased. This study aims to identify dust source areas in the Sistan watershed (Iran-Afghanistan borders)-an important regional source for dust storms in southwestern Asia, using remote sensing (RS) and bivariate statistical models. Furthermore, this study determines the relative importance of factors controlling dust emissions using frequency ratio (FR) and weights of evidence (WOE) models and interpretability of predictive models using game theory. For this purpose, we identified 211 dust sources in the study area and generated a dust source distribution map-inventory map-by dust source potential index based on RS data. In addition, spatial maps of topographic factors affecting dust source areas including soil, lithology, slope, Normalized difference vegetation index (NDVI), geomorphology and land use were prepared. The performance of two models (WOE and FR) was evaluated using the area under curve (AUC) of the receiver operating characteristic curve. The results showed that soil, geomorphology and slope exhibited the greatest influence in the dust source areas. The 55.3% (according to FR) and 62.6% (according to WOE) of the total area were classified as high and very high potential dust sources, while both models displayed acceptable accuracy with subsurface levels of 0.704 for FR and 0.751 for WOE, although they predict different fractions of dust potential classes. Based on Shapley additive explanations (SHAP), three factors, i.e., soil, slope and NDVI have the highest impact on the model's output. Overall, combination of statistic-based predictive models (or data mining models), RS and game theory techniques can provide accurate maps of dust source areas in arid and semi-arid regions, which can be helpful for mitigation of negative effects of dust storms.

Table and Figures | Reference | Related Articles | Metrics
Erratum to: Snowpack shifts cyanobacterial community in biological soil crusts
ZHANG Bingchang, ZHANG Yongqing, ZHOU Xiaobing, LI Xiangzhen, ZHANG Yuanming
Journal of Arid Land    2021, 13 (5): 548-548.   DOI: 10.1007/s40333-021-0073-6
Abstract136)   HTML10)    PDF (103KB)(298)      
Reference | Related Articles | Metrics
A study on historical location and evolution of Lop Nor in China with maps and DEM
ZHANG Tingting, SHAO Yun, GENG Yuyang, GONG Huaze, YANG Lan
Journal of Arid Land    2021, 13 (6): 639-652.   DOI: 10.1007/s40333-021-0099-9
Abstract175)   HTML15)    PDF (2943KB)(290)      

Lop Sea, located at the east end of the Tarim Basin, Northwest China, dried up permanently, which is the terminal lake of the Tarim River. Lop Sea was considered as the lake basin of Lop Nor since Quaternary. However, the possibility that Lop Nor was away from the Lop Sea in historical time is crucial to be discussed to interpret the proxy records in sediment profiles. To obtain a general view of the evolution of Lop Nor and Lop Sea in a historical period, several approaches were adopted in this paper. First, the Qianlong Thirteen-Row Atlas, an ancient imperial atlas of the Qing Dynasty, which was completed around 1760, indicated that the Tarim River formed a relatively large lake at its modern upstream region. Second, a Digital Elevation Model (DEM) with a 10-m spatial resolution and a relative precision of 0.42 m was derived from TanDEM-X/TerraSAR-X satellite image pairs using the interferometry method, which was verified using ICESat-GLAS laser footprints and a local DEM acquired by a drone. Finally, based on the spatial analysis of historical documents, expedition reports, sediment profiles and archaeological evidence, it can be deduced that the lacustrine deposition was discontinued in the Lop Sea. Six episodes in the evolutionary history of the drainage system in eastern Tarim Basin were summarized. The proved depositional condition variations could be used for future interpretation of proxy records in sediment. The high-accurate DEM provided a reference for the location of further fieldwork in the Lop Sea. The method proposed in this paper may be efficient for the research of inland lakes or rivers in global arid regions.

Table and Figures | Reference | Related Articles | Metrics
Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China
BAI Jie, LI Junli, BAO Anmin, CHANG Cun
Journal of Arid Land    2021, 13 (8): 814-834.   DOI: 10.1007/s40333-021-0079-0
Abstract122)   HTML12)    PDF (4053KB)(284)      

As the largest inland river basin of China, the Tarim River Basin (TRB), known for its various natural resources and fragile environment, has an increased risk of ecological crisis due to the intensive exploitation and utilization of water and land resources. Since the Ecological Water Diversion Project (EWDP), which was implemented in 2001 to save endangered desert vegetation, there has been growing evidence of ecological improvement in local regions, but few studies have performed a comprehensive ecological vulnerability assessment of the whole TRB. This study established an evaluation framework integrating the analytic hierarchy process (AHP) and entropy method to estimate the ecological vulnerability of the TRB covering climatic, ecological, and socioeconomic indicators during 2000-2017. Based on the geographical detector model, the importance of ten driving factors on the spatial-temporal variations of ecological vulnerability was explored. The results showed that the ecosystem of the TRB was fragile, with more than half of the area (57.27%) dominated by very heavy and heavy grades of ecological vulnerability, and 28.40% of the area had potential and light grades of ecological vulnerability. The light grade of ecological vulnerability was distributed in the northern regions (Aksu River and Weigan River catchments) and western regions (Kashgar River and Yarkant River catchments), while the heavy grade was located in the southern regions (Kunlun Mountains and Qarqan River catchments) and the Mainstream catchment. The ecosystems in the western and northern regions were less vulnerable than those in the southern and eastern regions. From 2000 to 2017, the overall improvement in ecological vulnerability in the whole TRB showed that the areas with great ecological improvement increased by 46.11%, while the areas with ecological degradation decreased by 9.64%. The vegetation cover and potential evapotranspiration (PET) were the obvious driving factors, explaining 57.56% and 21.55% of the changes in ecological vulnerability across the TRB, respectively. In terms of ecological vulnerability grade changes, obvious spatial differences were observed in the upper, middle, and lower reaches of the TRB due to the different vegetation and hydrothermal conditions. The alpine source region of the TRB showed obvious ecological improvement due to increased precipitation and temperature, but the alpine meadow of the Kaidu River catchment in the Middle Tianshan Mountains experienced degradation associated with overgrazing and local drought. The improved agricultural management technologies had positive effects on farmland ecological improvement, while the desert vegetation in oasis-desert ecotones showed a decreasing trend as a result of cropland reclamation and intensive drought. The desert riparian vegetation in the lower reaches of the Tarim River was greatly improved due to the implementation of the EWDP, which has been active for tens of years. These results provide comprehensive knowledge about ecological processes and mechanisms in the whole TRB and help to develop environmental restoration measures based on different ecological vulnerability grades in each sub-catchment.

Table and Figures | Reference | Related Articles | Metrics
Contribution of underlying terrain to sand dunes: evidence from the Qaidam Basin, Northwest China
LI Jiyan, QU Xin, DONG Zhibao, CAI Yingying, LIU Min, REN Xiaozong, CUI Xujia
Journal of Arid Land    2021, 13 (12): 1215-1229.   DOI: 10.1007/s40333-021-0028-y
Abstract80)   HTML17)    PDF (3434KB)(275)      

Underlying terrain strongly influences dune formation. However, the impacts of underlying terrain on the dune formation are poorly studied. In the present research, we focused on dunes that formed in the alluvial fans and dry salt flats in the Qaidam Basin, Northwest China. We quantified the dunes' sediment characteristics on different types of underlying terrain and the terrain's effects on the surface quartz grains by analyzing grain-size distribution, soluble salt contents and grain surface micro-textures. Results showed that barchan dunes were dominated by medium sands with a unimodal frequency distribution, whose peak corresponded to the saltation load. Linear dunes were mainly composed of fine sands with a bimodal frequency distribution, whose main peak represented the saltation load, and whose secondary peak represented the modified saltation or suspension load. Sand was transported from source area by running water (inland rivers) over short distances and by wind over relatively longer distances. Thus, quartz grains had poor roundness and were dominated by sub-angular and angular shapes. Surface micro-textures indicated that dune sands were successively transported by exogenic agents (glaciation, fluviation and wind). Soluble salt contents were low in dunes that developed in the alluvial fans, which represented a low-energy chemical environment, so the grain surface micro-textures mainly resulted from mechanical erosion, with weak micro-textures formed by SiO2 solution and precipitation. However, soluble salt contents were much higher in dunes that developed in the dry salt flats, which indicated a high-energy chemical environment. Therefore, in addition to micro-structures caused by mechanical erosion, micro-textures formed by SiO2 solution and precipitation also well developed. Our results improve understanding of the sediment characteristics of dune sands and the effects of underlying terrain on dune development in the Qaidam Basin, China.

Table and Figures | Reference | Related Articles | Metrics
Potential responses of vegetation to atmospheric aerosols in arid and semi-arid regions of Asia
JIAO Linlin, WANG Xunming, CAI Diwen, HUA Ting
Journal of Arid Land    2021, 13 (5): 516-533.   DOI: 10.1007/s40333-021-0005-5
Abstract132)   HTML15)    PDF (3026KB)(267)      

Changes in atmospheric aerosols have profound effects on ecosystem productivity, vegetation growth and activity by directly and indirectly influencing climate and environment conditions. However, few studies have focused on the effects of atmospheric aerosols on vegetation growth and activity in the vulnerable arid and semi-arid regions, which are also the source areas of aerosols. Using the datasets of aerosol optical depth (AOD), normalized difference vegetation index (NDVI) and multiple climatic variables including photosynthetically active radiation (PAR), surface solar radiation (SSR), surface air temperature (TEM) and total precipitation (PRE), we analyzed the potential responses of vegetation activity to atmospheric aerosols and their associated climatic factors in arid and semi-arid regions of Asia from 2005 to 2015. Our results suggested that areas with decreasing growing-season NDVI were mainly observed in regions with relatively sparse vegetation coverage, while AOD tended to increase as NDVI decreased in these regions. Upon further analysis, we found that aerosols might exert a negative influence on vegetation activity by reducing SSR, PAR and TEM, as well as suppressing PRE in most arid and semi-arid regions of Asia. Moreover, the responses of atmospheric aerosols on vegetation activity varied among different growing stages. At the early growing stage, higher concentration of aerosol was accompanied with suppressed vegetation growth by enhancing cooling effects and reducing SSR and PAR. At the middle growing stage, aerosols tended to alter microphysical properties of clouds with suppressed PRE, thereby restricting vegetation growth. At the late growing stage, aerosols exerted significantly positive influences on vegetation activity by increasing SSR, PAR and TEM in regions with high anthropogenic aerosols. Overall, at different growing stages, aerosols could influence vegetation activity by changing different climatic factors including SSR, PAR, TEM and PRE in arid and semi-arid regions of Asia. This study not only clarifies the impacts of aerosols on vegetation activity in source areas, but also explains the roles of aerosols in climate.

Table and Figures | Reference | Related Articles | Metrics
Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang
YAO Kaixuan, Abudureheman HALIKE, CHEN Limei, WEI Qianqian
Journal of Arid Land    2022, 14 (3): 262-283.   DOI: 10.1007/s40333-022-0011-2
Abstract104)   HTML13)    PDF (4002KB)(262)      

The rapid economic development that the Hotan Oasis in Xinjiang Uygur Autonomous Region, China has undergone in recent years may face some challenges in its ecological environment. Therefore, an analysis of the spatiotemporal changes in ecological environment of the Hotan Oasis is important for its sustainable development. First, we constructed an improved remote sensing-based ecological index (RSEI) in 1990, 1995, 2000, 2005, 2010, 2015 and 2020 on the Google Earth Engine (GEE) platform and implemented change detection for their spatial distribution. Second, we performed a spatial autocorrelation analysis on RSEI distribution map and used land-use and land-cover change (LUCC) data to analyze the reasons of RSEI changes. Finally, we investigated the applicability of improved RSEI to arid area. The results showed that mean of RSEI rose from 0.41 to 0.50, showing a slight upward trend. During the 30-a period, 2.66% of the regions improved significantly, 10.74% improved moderately and 32.21% improved slightly, respectively. The global Moran's I were 0.891, 0.889, 0.847 and 0.777 for 1990, 2000, 2010 and 2020, respectively, and the local indicators of spatial autocorrelation (LISA) distribution map showed that the high-high cluster was mainly distributed in the central part of the Hotan Oasis, and the low-low cluster was mainly distributed in the outer edge of the oasis. RSEI at the periphery of the oasis changes from low to high with time, with the fragmentation of RSEI distribution within the oasis increasing. Its distribution and changes are predominantly driven by anthropologic factors, including the expansion of artificial oasis into the desert, the replacement of desert ecosystems by farmland ecosystems, and the increase in the distribution of impervious surfaces. The improved RSEI can reflect the eco-environmental quality effectively of the oasis in arid area with relatively high applicability. The high efficiency exhibited with this approach makes it convenient for rapid, high frequency and macroscopic monitoring of eco-environmental quality in study area.

Table and Figures | Reference | Related Articles | Metrics
Enhancement of freshwater production of the seawater greenhouse condenser
Journal of Arid Land    2021, 13 (4): 397-412.   DOI: 10.1007/s40333-021-0063-8
Abstract130)   HTML6)    PDF (2145KB)(253)      

Seawater greenhouse (SWGH) is a technology established to overcome issues related to open field cultivation in arid areas, such as the high ambient temperature and the shortage of freshwater. It adopts the humidification-dehumidification concept where evaporated moisture from a saline water source is condensed to produce freshwater within the greenhouse body. Various condenser designs are adopted to increase freshwater production in order to meet the irrigation demand. The aim of this study was to experimentally investigate the practicality of using the packed-type direct contact condenser in the SWGH to produce more freshwater at low costs, simple design and high efficiency, and to explore the impact of the manipulating six operational variables (inlet air temperature of the humidifier, air mass flowrate of the humidifier, inlet water temperature of the humidifier, water mass flowrate of the humidifier, inlet water temperature of the dehumidifier and water mass flowrate of the dehumidifier) on freshwater condensation rate. For this purpose, a direct contact condenser was designed and manufactured. Sixty-four full factorial experiments were conducted to study the effect of the six operational variables. Each variable was operated at two levels (high and low flowrate), and each experiment lasted for 10 min and followed by a 30-min waiting time. Results showed that freshwater production varied between 0.257 and 2.590 L for every 10 min. When using Minitab statistical software to investigate the significant variables that contributed to the maximum freshwater production, it was found that the inlet air temperature of the humidifier had the greatest influence, followed by the inlet water temperature of the humidifier; the former had a negative impact while the latter had a positive impact on freshwater production. The response optimizer tool revealed that the optimal combination of variables contributed to maximize freshwater production when all variables were in the high mode and the inlet air temperature of the humidifier was in the low mode. The comparison between the old plastic condenser and the new proposed direct contact condenser showed that the latter can produce 75.9 times more freshwater at the same condenser volume.

Table and Figures | Reference | Related Articles | Metrics
Assessing the response of dryland barley yield to climate variability in semi-arid regions, Iran
Journal of Arid Land    2021, 13 (9): 905-917.   DOI: 10.1007/s40333-021-0017-1
Abstract95)   HTML8)    PDF (733KB)(250)      

Precipitation and temperature are the most abiotic factors that greatly impact the yield of crop, particularly in dryland. Barley, as the main cereal is predominantly cultivated in dryland and the livelihood of smallholders depends on the production of this crop, particularly in arid and semi-arid regions. This study aimed to investigate the response of the grain yield of dryland barley to temperature and precipitation variations at annual, seasonal and monthly scales in seven counties of East and West Azerbaijan provinces in northwestern Iran during 1991-2010. Humidity index (HI) was calculated and its relationship with dryland barley yield was evaluated at annual and monthly scales. The results showed that the minimum, maximum and mean temperatures increased by 0.19°C/a, 0.11°C/a and 0.10°C/a, respectively, while annual precipitation decreased by 0.80 mm/a during 1991-2010. Climate in study area has become drier by 0.22/a in annual HI during the study period. Negative effects of increasing temperature on the grain yield of dryland barley were more severe than the positive effects of increasing precipitation. Besides, weather variations in April and May were related more to the grain yield of dryland barley than those in other months. The grain yield of dryland barley was more drastically affected by the variation of annual minimum temperature comparing with other weather variables. Furthermore, our findings illustrated that the grain yield of dryland barley increased by 0.01 t/hm2 for each unit increase in annual HI during 1991-2010. Finally, any increase in the monthly HI led to crop yield improvement in the study area, particularly in the drier counties, i.e., Myaneh, Tabriz and Khoy in Iran.

Table and Figures | Reference | Related Articles | Metrics
Elevated CO 2 increases shoot growth but not root growth and C:N:P stoichiometry of Suaeda aralocaspica plants
WANG Lei, FAN Lianlian, JIANG Li, TIAN Changyan
Journal of Arid Land    2021, 13 (11): 1155-1162.   DOI: 10.1007/s40333-021-0025-1
Abstract54)   HTML3)    PDF (401KB)(241)      

The purpose of the current study was to investigate the eco-physiological responses, in terms of growth and C:N:P stoichiometry of plants cultured from dimorphic seeds of a single-cell C4 annual Suaeda aralocaspica (Bunge) Freitag and Schütze under elevated CO2. A climatic chamber experiment was conducted to examine the effects of ambient (720 μg/L) and CO2-enriched (1440 μg/L) treatments on these responses in S. aralocaspica at vegetative and reproductive stages in 2012. Result showed that elevated CO2 significantly increased shoot dry weight, but decreased N:P ratio at both growth stages. Plants grown from dimorphic seeds did not exhibit significant differences in growth and C:N:P stoichiometric characteristics. The transition from vegetation to reproductive stage significantly increased shoot:root ratio, N and P contents, but decreased C:N, C:P and N:P ratios, and did not affect shoot dry weight. Moreover, our results indicate that the changes in N:P and C:N ratios between ambient and elevated CO2 are mainly caused by the decrease of N content under elevated CO2. These results provide an insight into nutritional metabolism of single-cell C4 plants under climate change.

Table and Figures | Reference | Related Articles | Metrics
Isotope implications of groundwater recharge, residence time and hydrogeochemical evolution of the Longdong Loess Basin, Northwest China
LING Xinying, MA Jinzhu, CHEN Peiyuan, LIU Changjie, Juske HORITA
Journal of Arid Land    2022, 14 (1): 34-55.   DOI: 10.1007/s40333-022-0051-7
Abstract49)   HTML4)    PDF (1908KB)(241)      

Groundwater plays a dominant role in the eco-environmental protection of arid and semi-arid regions. Understanding the sources and mechanisms of groundwater recharge, the interactions between groundwater and surface water and the hydrogeochemical evolution and transport processes of groundwater in the Longdong Loess Basin, Northwest China, is of importance for water resources management in this ecologically sensitive area. In this study, 71 groundwater samples (mainly distributed at the Dongzhi Tableland and along the Malian River) and 8 surface water samples from the Malian River were collected, and analysis of the aquifer system and hydrological conditions, together with hydrogeochemical and isotopic techniques were used to investigate groundwater sources, residence time and their associated recharge processes. Results show that the middle and lower reaches of the Malian River receive water mainly from groundwater discharge on both sides of valley, while the source of the Malian River mainly comes from local precipitation. Groundwater of the Dongzhi Tableland is of a HCO3-Ca-Na type with low salinity. The reverse hydrogeochemical simulation suggests that the dissolution of carbonate minerals and cation exchange between Ca2+, Mg2+ and Na+ are the main water-rock interactions in the groundwater system of the Dongzhi Tableland. The δ 18O (from -11.70‰ to -8.52‰) and δ2H (from -86.15‰ to -65.75‰) values of groundwater are lower than the annual weighted average value of precipitation but closer to summer-autumn precipitation and soil water in the unsaturated zone, suggesting that possible recharge comes from the summer-autumn monsoonal heavy precipitation in the recent past (≤220 a). The corrected14C ages of groundwater range from 3,000 to 25,000 a old, indicating that groundwater was mainly from precipitation during the humid and cold Late Pleistocene and Holocene periods. Groundwater flows deeper from the groundwater table and from the center to the east, south and west of the Dongzhi Tableland with estimated migration rate of 1.29-1.43 m/a. The oldest groundwater in the Quaternary Loess Aquifer in the Dongzhi Tableland is approximately 32,000 a old with poor renewability. Based on the δ 18O temperature indicator of groundwater, we speculate that temperature of the Last Glacial Maximum in the Longdong Loess Basin was 2.4°C-6.0°C colder than the present. The results could provide us the valuable information on groundwater recharge and evolution under thick loess layer, which would be significative for the scientific water resources management in semi-arid regions.

Table and Figures | Reference | Related Articles | Metrics
Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau
ZHOU Tairan, HAN Chun, QIAO Linjie, REN Chaojie, WEN Tao, ZHAO Changming
Journal of Arid Land    2021, 13 (10): 1015-1025.   DOI: 10.1007/s40333-021-0021-5
Abstract87)   HTML5)    PDF (902KB)(239)      

Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area. To further understand the impact of vegetation types and environmental factors such as precipitation on soil water content, we continuously monitored the seasonal dynamics in soil water content in four plots (natural grassland, Caragana korshinskii, Armeniaca sibirica and Pinus tabulaeformis) in Chinese Loess Plateau. The results show that the amplitude of soil water content fluctuation decreases with an increase in soil depth, showing obvious seasonal variations. Soil water content of artificial vegetation was found to be significantly lower than that of natural grassland, and most precipitation events have difficulty replenishing soil water content below a depth of 40 cm. Spring and autumn are the key seasons for replenishment of soil water by precipitation. Changes in soil water content are affected by precipitation, vegetation types, soil evaporation and other factors. The interception effect of vegetation on precipitation and the demand for water consumption by transpiration are the key factors affecting the efficiency of soil water replenishment by precipitation in this area. Due to artificial vegetation plantation in this area, soil will face a water deficit crisis in the future.

Table and Figures | Reference | Related Articles | Metrics
Potential reduction in water consumption of greenhouse evaporative coolers in arid areas via earth-tube heat exchangers
Journal of Arid Land    2021, 13 (4): 388-396.   DOI: 10.1007/s40333-021-0057-6
Abstract108)   HTML7)    PDF (858KB)(233)      

This study aimed to explore the potential of developing a novel cooling system combining a greenhouse and an earth-tube heat exchanger (ETHE). In this system, greenhouse air is circulated through the underneath soil mass to use the deep-soil cooling effect. This was achieved through the following steps. First, soil temperature profile inside and outside the cultivated greenhouse was monitored for almost one year to study the possibility of using deep-soil coldness for cooling the greenhouse air. Second, a prototype ETHE was built to practically investigate the potential reduction in air temperature as the air flows inside the deep earth pipes. Third, a prototype greenhouse was erected to study the ETHE concept. Results from the first experiment revealed that soil temperature at a soil depth of 2.5 m inside the greenhouse offers good conditions to bury the ETHE. The soil temperature at this soil depth was below the maximum temperature (32°C) that most greenhouse crops can withstand. Results from the prototype ETHE showed a slight reduction in air temperature as it passed through the pipes. From the prototype of the integrated greenhouse and ETHE system, reduction in air temperature was observed as the air passed through the ETHE pipes. At night, the air was heated up across the ETHE pipes, indicating that the ETHE was working as a heater. We concluded from this study that greenhouses in arid climates can be cooled using the ETHE concept which would save a large amount of water that would otherwise be consumed in the evaporative coolers. Further investigations are highly encouraged.

Table and Figures | Reference | Related Articles | Metrics
Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China
WU Jun, DENG Guoning, ZHOU Dongmei, ZHU Xiaoyan, MA Jing, CEN Guozhang, JIN Yinli, ZHANG Jun
Journal of Arid Land    2021, 13 (7): 674-687.   DOI: 10.1007/s40333-021-0074-5
Abstract130)   HTML13)    PDF (1186KB)(232)      

Water resources are a crucial factor that determines the health of ecosystems and socio-economic development; however, they are under threat due to climate change and human activities. The quantitative assessment of water resources using the concept of blue water and green water can improve regional water resources management. In this study, spatiotemporal distributions of blue water and green water were simulated and analyzed under scenarios of climate change and land-use changes using the Soil and Water Assessment Tool (SWAT) in Ningxia Hui Autonomous Region, Northwest China, between 2009 and 2014. Green water, a leading component of water resources, accounted for more than 69.00% of the total water resources in Ningxia. Blue water and green water showed a single peak trend on the monthly and annual scales during the study period. On the spatial scale, the southern region of Ningxia showed higher blue water and green water resources than the northern region. The spatiotemporal distribution features of blue water, green water, and green water flow had strong correlations with precipitation. Furthermore, the simulation identified the climate change in Ningxia to be more influential on blue water and green water than land-use changes. This study provides a specific scientific foundation to manage water resources in Ningxia when encountered with climate change together with human activities.

Table and Figures | Reference | Related Articles | Metrics
Two-dimensional hydrodynamic robust numerical model of soil erosion based on slopes and river basins
KANG Yongde, HUANG Miansong, HOU Jingming, TONG Yu, PAN Zhanpeng
Journal of Arid Land    2021, 13 (10): 995-1014.   DOI: 10.1007/s40333-021-0085-2
Abstract71)   HTML7)    PDF (1945KB)(232)      

Erosion is an important issue in soil science and is related to many environmental problems, such as soil erosion and sediment transport. Establishing a simulation model suitable for soil erosion prediction is of great significance not only to accurately predict the process of soil separation by runoff, but also improve the physical model of soil erosion. In this study, we develop a graphic processing unit (GPU)-based numerical model that combines two-dimensional (2D) hydrodynamic and Green-Ampt (G-A) infiltration modelling to simulate soil erosion. A Godunov-type scheme on a uniform and structured square grid is then generated to solve the relevant shallow water equations (SWEs). The highlight of this study is the use of GPU-based acceleration technology to enable numerical models to simulate slope and watershed erosion in an efficient and high-resolution manner. The results show that the hydrodynamic model performs well in simulating soil erosion process. Soil erosion is studied by conducting calculation verification at the slope and basin scales. The first case involves simulating soil erosion process of a slope surface under indoor artificial rainfall conditions from 0 to 1000 s, and there is a good agreement between the simulated values and the measured values for the runoff velocity. The second case is a river basin experiment (Coquet River Basin) that involves watershed erosion. Simulations of the erosion depth change and erosion cumulative amount of the basin during a period of 1-40 h show an elevation difference of erosion at 0.5-3.0 m, especially during the period of 20-30 h. Nine cross sections in the basin are selected for simulation and the results reveal that the depth of erosion change value ranges from -0.86 to -2.79 m and the depth of deposition change value varies from 0.38 to 1.02 m. The findings indicate that the developed GPU-based hydrogeomorphological model can reproduce soil erosion processes. These results are valuable for rainfall runoff and soil erosion predictions on rilled hillslopes and river basins.

Table and Figures | Reference | Related Articles | Metrics
Size- and leaf age-dependent effects on the photosynthetic and physiological responses of Artemisia ordosica to drought stress
WANG Chunyuan, YU Minghan, DING Guodong, GAO Guanglei, ZHANG Linlin, HE Yingying, LIU Wei
Journal of Arid Land    2021, 13 (7): 744-758.   DOI: 10.1007/s40333-021-0013-5
Abstract103)   HTML8)    PDF (743KB)(231)      

Drought is one of the most significant natural disasters in the arid and semi-arid areas of China. Populations or plant organs often differ in their responses to drought and other adversities at different growth stages. At present, little is known about the size- and leaf age-dependent differences in the mechanisms of shrub-related drought resistance in the deserts of China. Here, we evaluated the photosynthetic and physiological responses of Artemisia ordosica Krasch. to drought stress using a field experiment in Mu Us Sandy Land, Ningxia Hui Autonomous Region, China in 2018. Rainfall was manipulated by installing outdoor shelters, with four rainfall treatments applied to 12 plots (5 m×5 m). There were four rainfall levels, including a control and rainfall reductions of 30%, 50% and 70%, each with three replications. Taking individual crown size as the dividing basis, we measured the responses of A. ordosica photosynthetic and physiological responses to drought at different growth stages, i.e., large-sized (>0.5 m2) and small-sized (≤0.5 m2) plants. The leaves of A. ordosica were divided into old leaves and young leaves for separate measurement. Results showed that: (1) under drought stress, the transfer efficiency of light energy captured by antenna pigments to the photosystem II (PSII) reaction center decreased, and the heat dissipation capacity increased simultaneously. To resist the photosynthetic system damage caused by drought, A. ordosica enhanced its free radical scavenging capacity by activating its antioxidant enzyme system; and (2) growth stage and leaf age had effects on the reaction of the photosynthetic system to drought. Small A. ordosica plants could not withstand severe drought stress (70% rainfall reduction), whereas large A. ordosica individuals could absorb deep soil water to ensure their survival in severe drought stressed condition. Under 30% and 50% rainfall reduction conditions, young leaves had a greater ability to resist drought than old leaves, whereas the latter were more resistant to severe drought stress. The response of A. ordosica photosynthetic system reflected the trade-off at different growth stages and leaf ages of photosynthetic production under different degrees of drought. This study provides a more comprehensive and systematic perspective for understanding the drought resistance mechanisms of desert plants.

Table and Figures | Reference | Related Articles | Metrics
Diversity of cultivable endophytic bacteria associated with halophytes in Xinjiang of China and their plant beneficial traits
LI Li, GAO Lei, LIU Yonghong, FANG Baozhu, HUANG Yin, Osama A A MOHAMAD, Dilfuza EGAMBERDIEVA, LI Wenjun, MA Jinbiao
Journal of Arid Land    2021, 13 (8): 790-800.   DOI: 10.1007/s40333-021-0016-2
Abstract132)   HTML13)    PDF (550KB)(225)      

Endophytic bacteria from halophytes have a wide range of application prospects in various fields, such as plant growth-promoting, biocontrol activity and stress resistance. The current study aimed to identify cultivable endophytic bacteria associated with halophytes grown in the salt-affected soil in Xinjiang Uygur Autonomous Region, China and to evaluate their plant beneficial traits and enzyme-producing activity. Endophytic bacteria were isolated from Reaumuria soongorica (PalL Maxim.), Artemisia carvifolia (Buch.-Ham. ex Roxb. Hort. Beng.), Peganum harmala L. and Suaeda dendroides (C. A. Mey. Moq.) by using the cultural-dependent method. Then we classified these bacteria based on the difference between their sequences of 16S rRNA (16S ribosomal RNA) gene. Results showed that the isolated bacteria from R. soongorica belonged to the genera Brucella, Bacillus and Variovorax. The bacteria from A. carvifolia belonged to the genera Micromonospora and Brucella. The bacteria from P. harmala belonged to the genera Paramesorhizobium, Bacillus and Peribacillus. The bacteria from S. dendroides belonged to the genus Bacillus. Notably, the genus Bacillus was detected in the three above plants, indicating that Bacillus is a common taxon of endophytic bacteria in halophytes. And, our results found that about 37.50% of the tested strains showed strong protease-producing activity, 6.25% of the tested strains showed strong cellulase-producing activity and 12.50% of the tested strains showed moderate lipase-producing activity. Besides, all isolated strains were positive for IAA (3-Indoleacetic acid) production, 31.25% of isolated strains exhibited a moderate phosphate solubilization activity and 50.00% of isolated strains exhibited a weak siderophore production activity. Our findings suggest that halophytes are valuable resources for identifying microbes with the ability to increase host plant growth and health in salt-affected soils.

Table and Figures | Reference | Related Articles | Metrics
Geochronology, geochemistry, and Sr-Nd isotopes of Early Carboniferous magmatism in southern West Junggar, northwestern China: Implications for Junggar oceanic plate subduction
LIU Pengde, LIU Xijun, XIAO Wenjiao, ZHANG Zhiguo, SONG Yujia, XIAO Yao, LIU Lei, HU Rongguo, WANG Baohua
Journal of Arid Land    2021, 13 (11): 1163-1182.   DOI: 10.1007/s40333-021-0069-2
Abstract65)   HTML0)    PDF (2358KB)(215)      

West Junggar is a key area for understanding intra-oceanic plate subduction and the final closure of the Junggar Ocean. Knowledge of the Carboniferous tectonic evolution of the Junggar Ocean region is required for understanding the tectonic framework and accretionary processes in West Junggar, Central Asian Orogenic Belt. A series of Early Carboniferous volcanic and intrusive rocks, namely, basaltic andesite, andesite, dacite, and diorite, occur in the Mayile area of southern West Junggar, northwestern China. Our new LA-ICPMS zircon U-Pb geochronological data reveal that diorite intruded at 334 (±1) Ma, and that basaltic andesite was erupted at 334 (±4) Ma. These intrusive and volcanic rocks are calc-alkaline, display moderate MgO (1.62%-4.18%) contents and Mg# values (40-59), and low Cr (14.5×10-6-47.2×10-6) and Ni (7.5×10-6-34.6×10-6) contents, and are characterized by enrichment in light rare-earth elements and large-ion lithophile elements and depletion in heavy rare-earth elements and high-field-strength elements, meaning that they belong to typical subduction-zone island-arc magma. The samples show low initial 87Sr/86Sr ratios (range of 0.703649-0.705008), positive εNd(t) values (range of 4.8-6.2 and mean of 5.4), and young TDM Nd model ages ranging from 1016 to 616 Ma, indicating a magmatic origin from depleted mantle involving partial melting of 10%-25% garnet and spinel lherzolite. Combining our results with those of previous studies, we suggest that these rocks were formed as a result of northwestward subduction of the Junggar oceanic plate, which caused partial melting of sub-arc mantle. We conclude that intra-oceanic arc magmatism was extensive in West Junggar during the Early Carboniferous.

Table and Figures | Reference | Related Articles | Metrics
Spatial variability of leaf wetness under different soil water conditions in rainfed jujube ( Ziziphus jujuba Mill.) in the loess hilly region, China
GAO Zhiyong, WANG Xing
Journal of Arid Land    2022, 14 (1): 70-81.   DOI: 10.1007/s40333-022-0003-2
Abstract67)   HTML7)    PDF (1421KB)(214)      

Leaf wetness provides a wide range of benefits not only to leaves, but also to ecosystems and communities. It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux. In spite of these functions, little remains known about the spatial distribution of leaf wetness under different soil water conditions. Leaf wetness measurements at the top (180 cm), middle (135 cm), and bottom (85 cm) of the canopy positions of rainfed jujube (Ziziphus jujuba Mill.) in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020. Under soil water non-deficit condition, the frequency of occurrence of leaf wetness was 5.45% higher at the top than at the middle and bottom of the canopy positions. The frequency of occurrence of leaf wetness at the top, middle and bottom of the canopy positions was over 80% at 17:00-18:00 (LST). However, the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions. Correspondingly, leaf drying at the top was also latter than those at the middle and bottom of the canopy positions. Leaf wetness duration at the middle was similar to that at the bottom of the canopy position, but about 1.46-3.01 h less than that at the top. Under soil water deficit condition, the frequency of occurrence of leaf wetness (4.92%-45.45%) followed the order of top>middle>bottom of the canopy position. As the onset of leaf wetness was delayed, the onset of wet leaf drying was advanced and the leaf wetness duration was shortened. Leaf wetness duration at the top was linearly related (R2>0.70) to those at the middle and bottom of the canopy positions under different soil water conditions. In conclusion, the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves, thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.

Table and Figures | Reference | Related Articles | Metrics
Assessment of organic compost and biochar in promoting phytoremediation of crude-oil contaminated soil using Calendula officinalis in the Loess Plateau, China
WANG Jincheng, JING Mingbo, ZHANG Wei, ZHANG Gaosen, ZHANG Binglin, LIU Guangxiu, CHEN Tuo, ZHAO Zhiguang
Journal of Arid Land    2021, 13 (6): 612-628.   DOI: 10.1007/s40333-021-0011-7
Abstract38)   HTML6)    PDF (955KB)(213)      

The Loess Plateau, located in Gansu Province, is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province. In the last 40 a, ecological environment in this region has been extremely destroyed due to the over-exploitation of crude-oil resources. Remediation of crude-oil contaminated soil in this area remains to be a challenging task. In this study, in order to elucidate the effects of organic compost and biochar on phytoremediation of crude-oil contaminated soil (20 g/kg) by Calendula officinalis, we designed five treatments, i.e., natural attenuation (CK), planted C. officinalis only (P), planted C. officinalis with biochar amendment (PB), planted C. officinalis with organic compost amendment (PC), and planted C. officinalis with co-amendment of biochar and organic compost (PBC). After 152 d of cultivation, total petroleum hydrocarbons (TPH) removal rates of CK, P, PB, PC and PBC were 6.36%, 50.08%, 39.58%, 73.10% and 59.87%, respectively. Shoot and root dry weights of C. officinalis significantly increased by 172.31% and 80.96% under PC and 311.61% and 145.43% under PBC, respectively as compared with P (P<0.05). Total chlorophyll contents in leaves ofC. officinalis under P, PC and PBC significantly increased by 77.36%, 125.50% and 79.80%, respectively (P<0.05) as compared with PB. Physical-chemical characteristics and enzymatic activity of soil in different treatments were also assessed. The highest total N, total P, available N, available P and SOM (soil organic matter) occurred in PC, followed by PBC (P<0.05).C. officinalis rhizospheric soil dehydrogenase (DHA) and polyphenol oxidase (PPO) activities in PB were lower than those of other treatments (P<0.05). The values of ACE (abundance-based coverage estimators) and Chao 1 indices for rhizospheric bacteria were the highest under PC followed by PBC, P, PB and CK (P<0.05). However, the Shannon index for bacteria was the highest under PC and PBC, followed by P, PB and CK (P<0.05). In terms of soil microbial community composition,Proteiniphilum, Immundisolibacteraceae and Solimonadaceae were relatively more abundant under PC and PBC. Relative abundances of Pseudallescheria, Ochroconis, Fusarium, Sarocladium, Podospora, Apodus, Pyrenochaetopsis and Schizothecium under PC and PBC were higher, while relative abundances of Gliomastix, Aspergillusand Alternaria were lower under PC and PBC. As per the nonmetric multidimensional scaling (NMDS) analysis, application of organic compost significantly promoted soil N and P contents, shoot length, root vitality, chlorophyll ratio, total chlorophyll, abundance and diversity of rhizospheric soil microbial community in C. officinalis. A high pH value and lower soil N and P contents induced by biochar, altered C. officinalis rhizospheric soil microbial community composition, which might have restrained its phytoremediation efficiency. The results suggest that organic compost-assistedC. officinalis phytoremediation for crude-oil contaminated soil was highly effective in the Loess Plateau, China.

Table and Figures | Reference | Related Articles | Metrics
Glacier mass balance in High Mountain Asia inferred from a GRACE release-6 gravity solution for the period 2002-2016
XIANG Longwei, WANG Hansheng, JIANG Liming, SHEN Qiang, Holger STEFFEN, LI Zhen
Journal of Arid Land    2021, 13 (3): 224-238.   DOI: 10.1007/s40333-021-0094-0
Abstract144)   HTML16)    PDF (1977KB)(213)      

We provide estimates of glacier mass changes in the High Mountain Asia (HMA) area from April 2002 to August 2016 by employing a new version of gravity solutions of the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. We found a total mass loss trend of the HMA glaciers at a rate of -22.17 (±1.96) Gt/a. The largest mass loss rates of -7.02 (±0.94) and -6.73 (±0.78) Gt/a are found for the glaciers in Nyainqentanglha Mountains and Eastern Himalayas, respectively. Although most glaciers in the HMA area show a mass loss, we find a small glacier mass gain of 1.19 (±0.55) and 0.77 (±0.37) Gt/a in Karakoram Mountains and West Kunlun Mountains, respectively. There is also a nearly zero mass balance in Pamirs. Our estimates of glacier mass change trends confirm previous results from the analysis of altimetry data of the ICESat (Ice, Cloud and Land Elevation) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) DEM (Digital Elevation Model) satellites in most of the selected glacier areas. However, they largely differ to previous GRACE-based studies which we attribute to our different post-processing techniques of the newer GRACE data. In addition, we explicitly show regional mass change features for both the interannual glacier mass changes and the 14-a averaged seasonal glacier mass changes. These changes can be explained in parts by total net precipitation (net snowfall and net rainfall) and net snowfall, but mostly by total net radiation energy when compared to data from the ERA5-Land meteorological reanalysis. Moreover, nearly all the non-trend interannual mass changes and most seasonal mass changes can be explained by the total net radiation energy data. The mass loss trends could be partly related to a heat effect due to increased net rainfall in Tianshan Mountains, Qilian Mountains, Nyainqentanglha Mountains and Eastern Himalayas. Our new results for the glacier mass change in this study could help improve the understanding of glacier variation in the HMA area and contribute to the study of global change. They could also serve the utilization of water resources there and in neighboring areas.

Table and Figures | Reference | Related Articles | Metrics
Soil bacterial characteristics between surface and subsurface soils along a precipitation gradient in the Alxa Desert, China
TENG Zeyu, XIAO Shengchun, CHEN Xiaohong, HAN Chao
Journal of Arid Land    2021, 13 (3): 257-273.   DOI: 10.1007/s40333-021-0004-6
Abstract90)   HTML9)    PDF (1510KB)(210)      

Bacteria in desert soil have unique phylogeny and important ecological functions, and their responses to changes in precipitation need further attention. However, relevant studies have mainly focused on the surface soil, and studies on the responses of bacteria at different soil depths to variations in precipitation are rare. Thus, we used 16S rDNA high-throughput sequencing to investigate the changes in soil bacterial distribution along a mean annual precipitation gradient (50-150 mm) in the Alxa Desert, China, and compared the variation characteristics in the surface soil layer (0-10 cm) and subsurface soil layer (10-20 cm). Results showed that soil bacterial communities significantly changed along the precipitation gradient in both soil layers. However, the subsurface soil layer could support bacterial communities with higher diversity and closer internal relationships but more internal competition than the surface soil layer. Additionally, compared with the surface soil layer, variations in diversity and co-occurrence patterns in the subsurface soil layer were more in line with the changes in the mean annual precipitation, while bacterial community structure was less variable in the subsurface soil layer. Compared with the mean annual precipitation, soil moisture had little influence on the structure and diversity of soil bacterial community but had a high correlation with intercommunity connectivity. Therefore, soil moisture might play a complex role in mediating environmental conditions and soil bacterial community characteristics. Due to the different responses of surface and subsurface soil bacteria to the changes in precipitation, it is necessary to distinguish different soil layers when predicting the trends in desert soil bacterial conditions associated with precipitation, and prediction of subsurface soil bacteria may be more accurate.

Table and Figures | Reference | Related Articles | Metrics
A bibliometric analysis of carbon exchange in global drylands
LIU Zhaogang, CHEN Zhi, YU Guirui, ZHANG Tianyou, YANG Meng
Journal of Arid Land    2021, 13 (11): 1089-1102.   DOI: 10.1007/s40333-021-0112-3
Abstract72)   HTML20)    PDF (1122KB)(210)      

Drylands refer to regions with an aridity index lower than 0.65, and billions of people depend on services provided by the critically important ecosystems in these areas. How ecosystem carbon exchange in global drylands (CED) occurs and how climate change affects CED are critical to the global carbon cycle. Here, we performed a comprehensive bibliometric study on the fields of annual publications, marked journals, marked institutions, marked countries, popular keywords, and their temporal evolution to understand the temporal trends of CED research over the past 30 a (1991-2020). We found that the annual scientific publications on CED research increased significantly at an average growth rate of 7.93%. Agricultural Water Management ranked first among all journals and had the most citations. The ten most productive institutions were centered on drylands in America, China, and Australia that had the largest number and most citations of publications on CED research. "Climate change" and climate-related (such as "drought", "precipitation", "temperature", and "rainfall") research were found to be the most popular study areas. Keywords were classified into five clusters, indicating the five main research focuses on CED studies: hydrological cycle, effects of climate change, carbon and water balance, productivity, and carbon-nitrogen-phosphorous coupling cycles. The temporal evolution of keywords further showed that the areas of focus on CED studies were transformed from classical pedology and agricultural research to applied ecology and then to global change ecological research over the past 30 a. In future CED studies, basic themes (such as "water", "yield", and "salinity") and motor themes (such as "climate change", "sustainability", and "remote sensing") will be the focus of research on CED. In particular, multiple integrated methods to understand climate change and ecosystem sustainability are potential new research trends and hotspots.

Table and Figures | Reference | Related Articles | Metrics