Most Downloaded

Published in last 1 year| In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

Published in last 1 year
Please wait a minute...
For Selected: Toggle Thumbnails
Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels
Teame G KEBEDE, Emiru BIRHANE, Kiros-Meles AYIMUT, Yemane G EGZIABHER
Journal of Arid Land    2023, 15 (8): 975-988.   DOI: 10.1007/s40333-023-0022-7
Abstract73)   HTML7)    PDF(pc) (901KB)(466)       Save

Opuntia ficus-indica (L.) Miller is a CAM (crassulacean acid metabolism) plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO2 at nighttime, store a significant amount of water in cladodes, and reduce root growth. Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi (AMF) to adapt to drought stress. Water stress can limit plant growth and biomass production, which can be rehabilitated by AMF association through improved physiological performance. The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass, photosynthesis, and water use efficiency of the spiny and spineless O. ficus-indica. The experiment was conducted in a greenhouse with a full factorial experiment using O. ficus-indica type (spiny or spineless), AMF (presence or absence), and four soil water available (SWA) treatments through seven replications. Water treatments applied were 0%-25% SWA (T1), 25%-50% SWA (T2), 50%-75% SWA (T3), and 75%-100% SWA (T4). Drought stress reduced biomass and cladode growth, while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O. ficus-indica. AMF presence significantly increased biomass of both O. ficus-indica plant types through improved growth, photosynthetic water use efficiency, and photosynthesis. The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency. Net photosynthesis, photosynthetic water use efficiency, transpiration, and stomatal conductance rate significantly decreased with increased drought stress. Under drought stress, some planted mother cladodes with the absence of AMF have not established daughter cladodes, whereas AMF-inoculated mother cladodes fully established daughter cladodes. AMF root colonization significantly increased with the decrease of SWA. AMF caused an increase in biomass production, increased tolerance to drought stress, and improved photosynthesis and water use efficiency performance of O. ficus-indica. The potential of O. ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Environmental significance and hydrochemical characteristics of rivers in the western region of the Altay Mountains, China
LIU Shuangshuang, WANG Feiteng, XU Chunhai, WANG Lin, LI Huilin
Journal of Arid Land    2023, 15 (9): 1052-1066.   DOI: 10.1007/s40333-023-0106-4
Abstract56)   HTML16)    PDF(pc) (2120KB)(448)       Save

Analysis of environmental significance and hydrochemical characteristics of river water in mountainous regions is vital for ensuring water security. In this study, we collected a total of 164 water samples in the western region of the Altay Mountains, China, in 2021. We used principal component analysis and enrichment factor analysis to examine the chemical properties and spatiotemporal variations of major ions (including F-, Cl-, NO3-, SO42-, Li+, Na+, NH4+, K+, Mg2+, and Ca2+) present in river water, as well as to identify the factors influencing these variations. Additionally, we assessed the suitability of river water for drinking and irrigation purposes based on the total dissolved solids, soluble sodium percentage, sodium adsorption ratio, and total hardness. Results revealed that river water had an alkaline aquatic environment with a mean pH value of 8.00. The mean ion concentration was ranked as follows: Ca2+>SO42->Na+>NO3->Mg2+>K+>Cl->F->NH4+>Li+. Ca2+, SO42-, Na+, and NO3- occupied 83% of the total ion concentration. In addition, compared with other seasons, the spatial variation of the ion concentration in spring was obvious. An analysis of the sources of major ions revealed that these ions originated mainly from carbonate dissolution and silicate weathering. The recharge impact of precipitation and snowmelt merely influenced the concentration of Cl-, NO3-, SO42-, Ca2+, and Na+. Overall, river water was in pristine condition in terms of quality and was suitable for both irrigation and drinking. This study provides a scientific basis for sustainable management of water quality in rivers of the Altay Mountains.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau
KOU Zhaoyang, LI Chunyue, CHANG Shun, MIAO Yu, ZHANG Wenting, LI Qianxue, DANG Tinghui, WANG Yi
Journal of Arid Land    2023, 15 (8): 960-974.   DOI: 10.1007/s40333-023-0023-6
Abstract53)   HTML6)    PDF(pc) (756KB)(418)       Save

Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs. The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements, namely nitrogen (N) and phosphorus (P). Nevertheless, the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood. Therefore, we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment. Nine fertilization treatments with complete interactions of high, medium, and low N and P gradients were set up. Soil physical and chemical properties, along with the microbial community structure were measured in this study. Additionally, relevant ecological processes such as microbial biomass, respiration, N mineralization, and enzyme activity were quantified. To elucidate the relationships between these variables, we examined correlation-mediated processes using statistical techniques, including redundancy analysis (RDA) and structural equation modeling (SEM). The results showed that the addition of N alone had a detrimental effect on soil microbial biomass, mineralized N accumulation, and β-1,4-glucosidase activity. Conversely, the addition of P exhibited an opposing effect, leading to positive influences on these soil parameters. The interactive addition of N and P significantly changed the microbial community structure, increasing microbial activity (microbial biomass and soil respiration), but decreasing the accumulation of mineralized N. Among them, N24P12 treatment showed the greatest increase in the soil nutrient content and respiration. N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid (PLFA) content by 70.93%. N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes. Soil microbial biomass, respiration, and overall enzyme activity are driven by mineralized N. Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Dividing the transit wind speeds into intervals as a favorable methodology for analyzing the relationship between wind speed and the aerodynamic impedance of vegetation in semiarid grasslands
LI Ruishen, PEI Haifeng, ZHANG Shengwei, LI Fengming, LIN Xi, WANG Shuai, YANG Lin
Journal of Arid Land    2023, 15 (8): 887-900.   DOI: 10.1007/s40333-023-0102-8
Abstract51)   HTML589)    PDF(pc) (2378KB)(390)       Save

In grassland ecosystems, the aerodynamic roughness (Z0) and frictional wind speed (u*) contribute to the aerodynamic impedance of the grassland canopy. Thus, they are often used in the studies of wind erosion and evapotranspiration. However, the effect of wind speed and grazing measures on the aerodynamic impedance of the grassland canopy has received less analysis. In this study, we monitored wind speeds at multiple heights in grazed and grazing-prohibited grasslands for 1 month in 2021, determined the transit wind speed at 2.0 m height by comparing wind speed differences at the same height in both grasslands, and divided these transit wind speeds at intervals of 2.0 m/s to analyze the effect of the transit wind speed on the relationship among Z0, u*, and wind speed within the grassland canopy. The results showed that dividing the transit wind speeds into intervals has a positive effect on the logarithmic fit of the wind speed profile. After dividing the transit wind speeds into intervals, the wind speed at 0.1 m height (V0.1) gradually decreased with the increase of Z0, exhibiting three distinct stages: a sharp change zone, a steady change zone, and a flat zone; while the overall trend of u* increased first and then decreased with the increase of V0.1. Dividing the transit wind speeds into intervals improved the fitting relationship between Z0 and V0.1 and changed their fitting functions in grazed and grazing-prohibited grasslands. According to the computational fluid dynamic results, we found that the number of tall-stature plants has a more significant effect on windproof capacity than their height. The results of this study contribute to a better understanding of the relationship between wind speed and the aerodynamic impedance of vegetation in grassland environments.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Estimation and inter-comparison of infiltration models in the agricultural area of the Mitidja Plain, Algeria
Amina MAZIGHI, Hind MEDDI, Mohamed MEDDI, Ishak ABDI, Giovanni RAVAZZANI, Mouna FEKI
Journal of Arid Land    2023, 15 (12): 1474-1489.   DOI: 10.1007/s40333-023-0037-0
Abstract51)   HTML6)    PDF(pc) (2527KB)(359)       Save

Infiltration is an important part of the hydrological cycle, and it is one of the main abstractions accounted for in the rainfall-runoff modeling. The main purpose of this study is to compare the infiltration models that were used to assess the infiltration rate of the Mitidja Plain in Algeria. Field infiltration tests were conducted at 40 different sites using a double ring infiltrometer. Five statistical comparison criteria including root mean squared error (RMSE), normalized root mean squared error (NRMSE), coefficient of correlation (CC), Nash-Sutcliffe efficiency (NSE), and Kling-Gupta efficiency (KGE) were used to determine the best performing infiltration model and to confirm anomalies between predicted and observed values. Then we evaluated performance of five models (i.e., the Philip model, Kostiakov model, Modified Kostiakov model, Novel model, and Horton model) in simulating the infiltration process based on the adjusted performance parameters cited above. Results indicated that the Novel model had the best simulated water infiltration process in the Mitidja Plain in Algeria. However, the Philip model was the weakest to simulate the infiltration process. The conclusion of this study can be useful for estimating infiltration rate at various sites using a Novel model when measured infiltration data are not available and are useful for planning and managing water resources in the study area.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Long-term light grazing does not change soil organic carbon stability and stock in biocrust layer in the hilly regions of drylands
MA Xinxin, ZHAO Yunge, YANG Kai, MING Jiao, QIAO Yu, XU Mingxiang, PAN Xinghui
Journal of Arid Land    2023, 15 (8): 940-959.   DOI: 10.1007/s40333-023-0064-x
Abstract48)   HTML4)    PDF(pc) (2465KB)(346)       Save

Livestock grazing is the most extensive land use in global drylands and one of the most extensive stressors of biological soil crusts (biocrusts). Despite widespread concern about the importance of biocrusts for global carbon (C) cycling, little is known about whether and how long-term grazing alters soil organic carbon (SOC) stability and stock in the biocrust layer. To assess the responses of SOC stability and stock in the biocrust layer to grazing, from June to September 2020, we carried out a large scale field survey in the restored grasslands under long-term grazing with different grazing intensities (represented by the number of goat dung per square meter) and in the grasslands strictly excluded from grazing in four regions (Dingbian County, Shenmu City, Guyuan City and Ansai District) along precipitation gradient in the hilly Loess Plateau, China. In total, 51 representative grassland sites were identified as the study sampling sites in this study, including 11 sites in Guyuan City, 16 sites in Dingbian County, 15 sites in Shenmu City and 9 sites in Ansai District. Combined with extensive laboratory analysis and statistical analysis, at each sampling site, we obtained data on biocrust attributes (cover, community structure, biomass and thickness), soil physical-chemical properties (soil porosity and soil carbon-to-nitrogen ratio (C/N ratio)), and environmental factors (mean annual precipitation, mean annual temperature, altitude, plant cover, litter cover, soil particle-size distribution (the ratio of soil clay and silt content to sand content)), SOC stability index (SI) and SOC stock (SOCS) in the biocrust layer, to conduct this study. Our results revealed that grazing did not change total biocrust cover but markedly altered biocrust community structure by reducing plant cover, with a considerable increase in the relative cover of cyanobacteria (23.1%) while a decrease in the relative cover of mosses (42.2%). Soil porosity and soil C/N ratio in the biocrust layer under grazing decreased significantly by 4.1%-7.2% and 7.2%-13.3%, respectively, compared with those under grazing exclusion. The shifted biocrust community structure ultimately resulted in an average reduction of 15.5% in SOCS in the biocrust layer under grazing. However, compared with higher grazing (intensity of more than 10.00 goat dung/m2), light grazing (intensity of 0.00-10.00 goat dung/m2 or approximately 1.20-2.60 goat/(hm2·a)) had no adverse effect on SOCS. SOC stability in the biocrust layer remained unchanged under long-term grazing due to the offset between the positive effect of the decreased soil porosity and the negative effect of the decreased soil C/N ratio on the SOC resistance to decomposition. Mean annual precipitation and soil particle-size distribution also regulated SOC stability indirectly by influencing soil porosity through plant cover and biocrust community structure. These findings suggest that proper grazing might not increase the CO2 release potential or adversely affect SOCS in the biocrust layer. This research provides some guidance for proper grazing management in the sustainable utilization of grassland resources and C sequestration in biocrusts in the hilly regions of drylands.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Combination of artificial zeolite and microbial fertilizer to improve mining soils in an arid area of Inner Mongolia, China
LI Wenye, ZHANG Jianfeng, SONG Shuangshuang, LIANG Yao, SUN Baoping, WU Yi, MAO Xiao, LIN Yachao
Journal of Arid Land    2023, 15 (9): 1067-1083.   DOI: 10.1007/s40333-023-0028-1
Abstract190)   HTML6)    PDF(pc) (4252KB)(332)       Save

Restoration of mining soils is important to the vegetation and environment. This study aimed to explore the variations in soil nutrient contents, microbial abundance, and biomass under different gradients of substrate amendments in mining soils to select effective measures. Soil samples were collected from the Bayan Obo mining region in Inner Mongolia Autonomous Region, China. Contents of soil organic matter (SOM), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon/microbial biomass nitrogen (MBC/MBN) ratio, biomass, and bacteria, fungi, and actinomycetes abundance were assessed in Agropyron cristatum L. Gaertn., Elymus dahuricus Turcz., and Medicago sativa L. soils with artificial zeolite (AZ) and microbial fertilizer (MF) applied at T0 (0 g/kg), T1 (5 g/kg), T2 (10 g/kg), and T3 (20 g/kg). Redundancy analysis (RDA) and technique for order preference by similarity to ideal solution (TOPSIS) were used to identify the main factors controlling the variation of biomass. Results showed that chemical indices and microbial content of restored soils were far greater than those of control. The application of AZ significantly increases SOM, AN, and AP by 20.27%, 23.61%, and 40.43%, respectively. AZ significantly increased bacteria, fungi, and actinomycetes abundance by 0.63, 3.12, and 1.93 times of control, respectively. RDA indicated that AN, MBC/MBN ratio, and SOM were dominant predictors for biomass across samples with AZ application, explaining 87.6% of the biomass variance. SOM, MBC/MBN ratio, and AK were dominant predictors with MF application, explaining 82.9% of the biomass variance. TOPSIS indicated that T2 was the best dosage and the three plant species could all be used to repair mining soils. AZ and MF application at T2 concentration in the mining soils with M. sativa was found to be the most appropriate measure.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Distribution patterns of fire regime in the Pendjari Biosphere Reserve, West Africa
Omobayo G ZOFFOUN, Chabi A M S DJAGOUN, Etotépé A SOGBOHOSSOU
Journal of Arid Land    2023, 15 (10): 1160-1173.   DOI: 10.1007/s40333-023-0027-2
Abstract209)   HTML571)    PDF(pc) (3201KB)(326)       Save

Pendjari Biosphere Reserve (PBR), a primary component of the W-Arly-Pendjari transboundary biosphere reserve, represents the largest intact wild ecosystem and pristine biodiversity spot in West Africa. This savannah ecosystem has long been affected by fire, which is the main ecological driver for the annual rhythm of life in the reserve. Understanding the fire distribution patterns will help to improve its management plan in the region. This study explores the fire regime in the PRB during 2001-2021 in terms of burned area, seasonality, fire frequency, and mean fire return interval (MFRI) by analysing moderate resolution imaging spectroradiometer (MODIS) burned area product. Results indicated that the fire season in the PBR extends from October to May with a peak in early dry season (November-December). The last two fire seasons (2019-2020 and 2020-2021) recorded the highest areas burned in the PBR out of the twenty fire seasons studied. During the twenty years period, 8.2% of the reserve burned every 10-11 months and 11.5% burned annually. The largest part of the reserve burned every one to two years (63.1%), while 8.3% burned every two to four years, 5.8% burned every four to ten years, and 1.9% burned every ten to twenty years. Only 1.3% of the entire area did not fire during the whole study period. Fire returned to a particular site every 1.39 a and the annual percentage of area burned in the PBR was 71.9%. The MFRI (MFRI<2.00 a) was low in grasslands, shrub savannah, tree savannah, woodland savannah, and rock vegetation. Fire regime must be maintained to preserve the integrity of the PBR. In this context, we suggest applying early fire in tree and woodland savannahs to lower grass height, and late dry season fires every two to three years in shrub savannah to limit the expansion of shrubs and bushes. We propose a laissez-faire system in areas in woodland savannah where the fire frequency is sufficient to allow tree growth. Our findings highlight the utility of remote sensing in defining the geographical and temporal patterns of fire in the PBR and could help to manage this important fire prone area.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Review and prospect of soil compound erosion
YANG Wenqian, ZHANG Gangfeng, YANG Huimin, LIN Degen, SHI Peijun
Journal of Arid Land    2023, 15 (9): 1007-1022.   DOI: 10.1007/s40333-023-0107-3
Abstract88)   HTML609)    PDF(pc) (1035KB)(310)       Save

Soil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies. Soil compound erosion is the result of the alternation or interaction between two or more erosion forces. In recent years, fluctuations and extreme changes in climatic factors (air temperature, precipitation, wind speed, etc.) have led to an increase in the intensity and extent of compound erosion, which is increasingly considered in soil erosion research. First, depending on the involvement of gravity, compound erosion process can be divided into compound erosion with and without gravity. We systematically summarized the research on the mechanisms and processes of alternating or interacting soil erosion forces (wind, water, and freeze-thaw) considering different combinations, combed the characteristics of compound erosion in three typical regions, namely, high-elevation areas, high-latitude areas, and dry and wet transition regions, and reviewed soil compound erosion research methods, such as station observations, simulation experiments, prediction models, and artificial neural networks. The soil erosion model of wind, water, and freeze-thaw interaction is the most significant method for quantifying and predicting compound erosion. Furthermore, it is proposed that there are several issues such as unclear internal mechanisms, lack of comprehensive prediction models, and insufficient scale conversion methods in soil compound erosion research. It is also suggested that future soil compound erosion mechanism research should prioritize the coupling of compound erosion forces and climate change.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of degradation and species composition on soil seed density in the alpine grasslands, China
LI Chunming, MA Jiahui, LI Liangyu, HUANG Junlin, LU Jinhua, HUANG Mei, Allan DEGEN, SHANG Zhanhuan
Journal of Arid Land    2023, 15 (12): 1510-1528.   DOI: 10.1007/s40333-023-0036-1
Abstract48)   HTML9)    PDF(pc) (2096KB)(301)       Save

Grassland degradation can alter the structure and function of ecosystem and soil seed bank. Therefore, estimating the role of soil seed bank in vegetation regeneration of degraded grasslands is crucial. We selected grasslands with three levels of degradation, namely non-degraded (ND), mildly degraded (MD), and heavily degraded (HD) to analyze the effect of grassland degradation on soil seed bank, as well as the role of soil seed bank on vegetation regeneration of the alpine grasslands, China. Soil samples from each level were collected in May, before seedling emergence, in August, after completion of transient seed bank germination, and in December, after seed dispersal, to determine the seed density and species composition through germination experiment. Result showed that a total of 35 plant species was identified, including 15 species observed in both soil seed bank and above-ground vegetation. A total of 19, 15, and 14 species of soil seed bank were identified in December, May, and August, respectively. The most abundant species in soil seed bank were Compositae (5 species), followed by Poaceae (4 species), and Cyperaceae (3 species). Degradation level has no significant impact on species richness and Shannon- Wiener index of soil seed bank. In addition, sampling month and grassland degradation affected soil seed bank density, in which December>May>August, and ND>MD>HD, indicating that density of transient seed bank was greater than persistent seed bank. Soil seed bank density of surface layer (0-5 cm) accounting for 42%-72% of the total density, which was significantly higher than that of deep layer (5-10 cm). Similarity of species composition between vegetation and soil seed bank was low, and it increased with degradation level (ranged from 0.14 to 0.69). We concluded that grassland degradation affects soil seed bank density more than species diversity, and soil seed bank contributed slightly to vegetation regeneration of degraded alpine grassland. Therefore, it is unlikely that degraded alpine meadow can be restored solely through soil seed bank.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Integrating stable isotopes and factor analysis to delineate the groundwater provenance and pollution sources in the northwestern part of the Amman-Al Zarqa Basin, Jordan
Mutawakil OBEIDAT, Ahmad AL-AJLOUNI, Eman BANI-KHALED, Muheeb AWAWDEH, Muna ABU-DALO
Journal of Arid Land    2023, 15 (12): 1490-1509.   DOI: 10.1007/s40333-023-0112-6
Abstract48)   HTML6)    PDF(pc) (1347KB)(288)       Save

Globally, groundwater contamination by nitrate is one of the most widespread environmental problems, particularly in arid and semiarid areas, which are characterized by low amounts of rainfall and groundwater recharge. The stable isotope composition of groundwater (δ2H-H2O and δ18O-H2O) and dissolved nitrate (δ15N-NO3- and δ18O-NO3-) and factor analysis (FA) were applied to explore groundwater provenance, pollution, and chemistry evolution in the northwestern part of the Amman-Al Zarqa Basin, Jordan. In this study, we collected 23 samples from the Lower Ajloun aquifer in 2021, including 1 sample from a groundwater well and 22 samples from springs. These samples were tested for electrical conductivity, total dissolved solids, pH, temperature, dissolved oxygen, the concentration of major ions (Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO42-, and NO3-), and the stable isotope composition of groundwater and dissolved nitrate. The results revealed that groundwater in the study area is mainly Ca-Mg-HCO3 type and can be classified as fresh water, hard water, and very hard water. The range and average concentration of NO3- were 3.5-230.8 and 50.9 mg/L, respectively. Approximately 33% of the sampling points showed NO3- levels above the maximum allowable concentration of 50.0 mg/L set by the World Health Organization (WHO) guidelines for drinking water quality. The values of δ18O-H2O and δ2H-H2O showed that groundwater in the study area is part of the current water cycle, originating in the Mediterranean Sea, with significant evaporation, orographic, and amount effects. The values of the stable isotope composition of NO3- corresponded to δ15N-NO3- and δ18O-NO3- values produced by the nitrification process of manure or septic waste and soil NH4+. The FA performed on the hydrochemical parameters and isotope data resulted in three main factors, with Factor 1, Factor 2, and Factor 3, accounting for 50%, 21%, and 11% of the total variance, respectively. Factor 1 was considered human-induced factor, named "pollution factor", whereas Factor 2, named "conservative fingerprint factor", and Factor 3, named "hardness factor", were considered natural factors. This study will help local researchers manage groundwater sustainably in the study area and other similar arid and semiarid areas in the world.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia
Olfa TERWAYET BAYOULI, ZHANG Wanchang, Houssem TERWAYET BAYOULI
Journal of Arid Land    2023, 15 (11): 1269-1289.   DOI: 10.1007/s40333-023-0110-8
Abstract49)   HTML227)    PDF(pc) (2075KB)(288)       Save

Droughts and soil erosion are among the most prominent climatic driven hazards in drylands, leading to detrimental environmental impacts, such as degraded lands, deteriorated ecosystem services and biodiversity, and increased greenhouse gas emissions. In response to the current lack of studies combining drought conditions and soil erosion processes, in this study, we developed a comprehensive Geographic Information System (GIS)-based approach to assess soil erosion and droughts, thereby revealing the relationship between soil erosion and droughts under an arid climate. The vegetation condition index (VCI) and temperature condition index (TCI) derived respectively from the enhanced vegetation index (EVI) MOD13A2 and land surface temperature (LST) MOD11A2 products were combined to generate the vegetation health index (VHI). The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed, southeastern Tunisia. The revised universal soil loss equation (RUSLE) model was applied to quantitatively estimate soil erosion. The relationship between soil erosion and droughts was investigated through Pearson correlation. Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000-2016. The average soil erosion rate was determined to be 1.8 t/(hm2·a). The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts. The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion. The relationship between droughts and soil erosion had a positive correlation (r=0.3); however, the correlation was highly varied spatially across the watershed. Drought was linked to soil erosion in the Negueb watershed. The current study provides insight for natural disaster risk assessment, land managers, and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Nitrogen application levels based on critical nitrogen absorption regulate processing tomatoes productivity, nitrogen uptake, nitrate distributions, and root growth in Xinjiang, China
JING Bo, SHI Wenjuan, DIAO Ming
Journal of Arid Land    2023, 15 (10): 1231-1244.   DOI: 10.1007/s40333-023-0108-2
Abstract24)   HTML4)    PDF(pc) (1004KB)(288)       Save

The unreasonable nitrogen (N) supply and low productivity are the main factors restricting the sustainable development of processing tomatoes. In addition, the mechanism by which the N application strategy affects root growth and nitrate distributions in processing tomatoes remains unclear. In this study, we applied four N application levels to a field (including 0 (N0), 200 (N200), 300 (N300), and 400 (N400) kg/hm2) based on the critical N absorption ratio at each growth stage (planting stage to flowering stage: 22%; fruit setting stage: 24%; red ripening stage: 45%; and maturity stage: 9%). The results indicated that N300 treatment significantly improved the aboveground dry matter (DM), yield, N uptake, and nitrogen use efficiency (NUE), while N400 treatment increased nitrate nitrogen (NO3--N) residue in the 20-60 cm soil layer. Temporal variations of total root dry weight (TRDW) and total root length (TRL) showed a single-peak curve. Overall, N300 treatment improved the secondary root parameter of TRDW, while N400 treatment improved the secondary root parameter of TRL. The grey correlation coefficients indicated that root dry weight density (RDWD) in the surface soil (0-20 cm) had the strongest relationship with yield, whereas root length density (RLD) in the middle soil (20-40 cm) had a strong relationship with yield. The path model indicated that N uptake is a crucial factor affecting aboveground DM, TRDW, and yield. The above results indicate that N application levels based on critical N absorption improve the production of processing tomatoes by regulating N uptake and root distribution. Furthermore, the results of this study provide a theoretical basis for precise N management.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Contribution of groundwater to the formation of sand dunes in the Badain Jaran Desert, China
WANG Wang, CHEN Jiaqi, CHEN Jiansheng, WANG Tao, ZHAN Lucheng, ZHANG Yitong, MA Xiaohui
Journal of Arid Land    2023, 15 (11): 1340-1354.   DOI: 10.1007/s40333-023-0032-5
Abstract40)   HTML214)    PDF(pc) (2119KB)(285)       Save

The tallest sand dune worldwide is located in the Badain Jaran Desert (BJD), China, and has been standing for thousands of years. Previous studies have conducted limited physical exploration and excavation on the formation of sand dunes and have proposed three viewpoints, that is, bedrock control, wind dominance, and groundwater maintenance with no unified conclusion. Therefore, this study analyzed the underlying bedding structure of sand dunes in the BJD. Although the bedrock of sand dunes is uplifted and wind controls the shape of dunes, the main cause of dune formation is groundwater that maintains the deposition of calcareous sandstone and accumulation of aeolian sand. According to water transport model and vapor transports in the unsaturated zone of sand dunes, capillary water transport height is limited with film water constituting the main form of water in dunes. Chemical properties and temperature of groundwater showed that aquifers in different basins receive relatively independent recharge from deep sources in the crater. Result of dune formation mechanism is of considerable importance in understanding groundwater circulation and provides a new perspective on water management in arid desert areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of loading rate on root pullout performance of two plants in the eastern Loess Plateau, China
ZHANG Chaobo, LI Rong, JIANG Jing, YANG Qihong
Journal of Arid Land    2023, 15 (9): 1129-1142.   DOI: 10.1007/s40333-023-0026-3
Abstract45)   HTML3)    PDF(pc) (1363KB)(279)       Save

Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas. Studies have shown that it is affected by plant factors (species, ages, root geometry, etc.) and soil factors (soil types, soil moisture, soil bulk densities, etc.). However, the effects of loading rates on root pullout performance are not well studied. To explore the mechanical interactions under different loading rates, we conducted pullout tests on Medicago sativa L. and Hippophae rhamnoides L. roots under five loading rates, i.e., 5, 50, 100, 150, and 200 mm/min. In addition, tensile tests were conducted on the roots in diameters of 0.5-2.0 mm to compare the relationship between root tensile properties and root pullout properties. Results showed that two root failure modes, slippage and breakage, were observed during root pullout tests. All M. sativa roots were pulled out, while 72.2% of H. rhamnoides roots were broken. The maximum fracture diameter and fracture root length of H. rhamnoides were 1.22 mm and 7.44 cm under 100 mm/min loading rate, respectively. Root displacement values were 4.63% (±0.43%) and 8.91% (±0.52%) of the total root length for M. sativa and H. rhamnoides, respectively. The values of maximum pullout force were 14.6 (±0.7) and 17.7 (±1.8) N under 100 mm/min for M. sativa and H. rhamnoides, respectively. Values of the maximum pullout strength for M. sativa and H. rhamnoides were 38.38 (±5.48) MPa under 150 mm/min and 12.47 (±1.43) MPa under 100 mm/min, respectively. Root-soil friction coefficient under 100 mm/min was significantly larger than those under other loading rates for both the two species. Values of the maximum root pullout energy for M. sativa and H. rhamnoides were 87.83 (±21.55) mm·N under 100 mm/min and 173.53 (±38.53) mm·N under 200 mm/min, respectively. Root pullout force was significantly related to root diameter (P<0.01). Peak root pullout force was significantly affected by loading rates when the effect of root diameter was included (P<0.01), and vice versa. Except for the failure mode and peak pullout force, other pullout parameters, including root pullout strength, root displacement, root-soil friction coefficient, and root pullout energy were not significantly affected by loading rates (P>0.05). Root pullout strength was greater than root tensile strength for the two species. The results suggested that there was no need to deliberately control loading rate in root pullout tests in the semi-arid soil, and root pullout force and pullout strength could be better parameters for root reinforcement model compared with root tensile strength as root pullout force and pullout strength could more realistically reflect the working state of roots in the semi-arid soil.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Soil seed bank is affected by transferred soil thickness and properties in the reclaimed coal mine in the Qilian Mountains, China
YANG Jingyi, LUO Weicheng, ZHAO Wenzhi, LIU Jiliang, WANG Dejin, LI Guang
Journal of Arid Land    2023, 15 (12): 1529-1543.   DOI: 10.1007/s40333-023-0113-5
Abstract50)   HTML3)    PDF(pc) (2560KB)(265)       Save

Reclamation of lands abandoned after mining in mountain areas is critical to erosion control, safety from landslides, and ecological protection of mountain ecosystems. However, little is known about alpine coal mine reclamation using the soil seed bank as a potential source for revegetation. We collected samples of persistent soil seed bank for germination experiments from nine reclaimed sites with different soil cover thicknesses and from six control sites in the Qilian Mountains of China. Soil properties of each site were determined (including soil water content, soil available potassium, soil available phosphorus, soil total nitrogen, pH, soil organic matter, soil total phosphorus, and soil total potassium, and soil alkali-hydrolyzable nitrogen), and the relationships of the characteristics of the soil seed bank with soil cover thickness and soil properties were examined. The results showed that the density, number of species, and diversity of the topsoil seed bank were significantly correlated with soil cover thickness, and all increased with the increment of soil cover thickness. Soil cover thickness controlled the soil seed bank by influencing soil properties. With the increase in soil cover thickness, soil properties (e.g., soil organic matter, soil total nitrogen, etc.) content increased while soil pH decreased. The soil seed bank had the potential to restored the pre-mining habitat at reclaimed sites with approximately 20-cm soil cover thickness. Soil properties of reclaimed sites were lower than that of natural sites. The relationship between the soil seed bank and soil cover thickness determined in this study provides a foundation for improving reclamation measures used in coal mines, as well as for the management and monitoring of reclaimed areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Plant growth-promoting properties and anti-fungal activity of endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta in arid lands
ZHAO Mengqi, SU Huan, HUANG Yin, Rashidin ABDUGHENI, MA Jinbiao, GAO Jiangtao, GUO Fei, LI Li
Journal of Arid Land    2023, 15 (11): 1405-1420.   DOI: 10.1007/s40333-023-0071-y
Abstract28)   HTML5)    PDF(pc) (578KB)(262)       Save

Endophytes, as crucial components of plant microbial communities, significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts, promote plant growth, and degrade pathogenic fungal mycelia. In this study, an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species, Thymus altaicus and Salvia deserta, using a series of screening media. Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region, China, in July 2021. Additionally, the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi (Fusarium oxysporum, Fulvia fulva, Alternaria solani, and Valsa mali) were determined through the plate confrontation method. A total of 80 endophytic bacterial strains were isolated from Thymus altaicus, while a total of 60 endophytic bacterial strains were isolated from Salvia deserta. The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties. Specifically, the strains of Bacillus sp. TR002, Bacillus sp. TR005, Microbacterium sp. TSB5, and Rhodococcus sp. TR013 demonstrated strong cellulase-producing activity, siderophore-producing activity, phosphate solubilization activity, and nitrogen-fixing activity, respectively. Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta, 104 strains displayed anti-fungal activity against Fulvia fulva, Alternaria solani, Fusarium oxysporum, and Valsa mali. Furthermore, the strains of Bacillus sp. TR005, Bacillus sp. TS003, and Bacillus sp. TSB7 exhibited robust inhibition rates against all the four pathogenic fungi. In conclusion, the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties, making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Evaluation of restoration success in arid rangelands of Iran based on the variation of ecosystem services
Mohsen SHARAFATMANDRAD, Azam KHOSRAVI MASHIZI
Journal of Arid Land    2023, 15 (11): 1290-1314.   DOI: 10.1007/s40333-023-0073-9
Abstract29)   HTML200)    PDF(pc) (984KB)(259)       Save

The plantation of non-native species is one of the most expensive ecological restoration measures in arid and semi-arid areas, while its impacts on local communities are largely ignored. This study assessed the rate of change and the dynamic degree of the economic values of ecosystem services related to local conservation (water yield, stocking rate and aesthetic value) and preserving the future (carbon sequestration, soil protection, soil stability and habitat provision) to determine the restoration success of the plantation of non-native species Haloxylon ammodendron (C.A.Mey.) Bunge ex Fenzl (15- and 30-year-old) in parts of arid rangelands of Bardsir region, Kerman Province, Iran. We investigated the impacts of the two plantations on the seven ecosystem services and ecosystem structures (horizontal and vertical structures, vegetation composition and species diversity) based on field sampling and measurements at four sampling sites (i.e., control, degraded, and 15- and 30-year-old plantation sites) in spring and summer of 2022. The restoration success of the plantation of non-native species was then examined by assessing the rate of change and the dynamic degree of the total economic value of all ecosystem services as well as the rate of change and the dynamic degree of the economic values of ecosystem services for the two groups (local conservation and preserving the future). Although the plantation of non-native species H. ammodendron enormously improved the vertical and horizontal structures of ecosystems, it failed to increase species diversity and richness fully. Further, despite the plantation of non-native species H. ammodendron had significantly increased the economic values of all ecosystem services, it was only quite successful in restoring carbon sequestration. Path analysis showed that plantation age had a significant impact on restoration success directly and indirectly (through changing ecosystem structures and services). The dynamic degree of the economic values of ecosystem services related to local conservation and preserving the future at the 15- and 30-year-old plantation sites indicated that the two plantations successfully restored the ecosystem services related to preserving the future. The presented method can help managers select the best restoration practices and predict their ecological-social success, especially for the plantation of high-risk non-native species in arid and semi-arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Temporal and spatial responses of ecological resilience to climate change and human activities in the economic belt on the northern slope of the Tianshan Mountains, China
ZHANG Shubao, LEI Jun, TONG Yanjun, ZHANG Xiaolei, LU Danni, FAN Liqin, DUAN Zuliang
Journal of Arid Land    2023, 15 (10): 1245-1268.   DOI: 10.1007/s40333-023-0070-z
Abstract48)   HTML5)    PDF(pc) (5051KB)(248)       Save

In the Anthropocene era, human activities have become increasingly complex and diversified. The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities, especially in arid and semi-arid areas. In the study, we chose the economic belt on the northern slope of the Tianshan Mountains (EBNSTM) in Xinjiang Uygur Autonomous Region of China as a case study. By collecting geographic data and statistical data from 2010 and 2020, we constructed an ecological resilience assessment model based on the ecosystem habitat quality (EHQ), ecosystem landscape stability (ELS), and ecosystem service value (ESV). Further, we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis, and explored its responses to climate change and human activities using the geographically weighted regression (GWR) model. The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010-2020. The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of "high in the western region and low in the eastern region", and the spatial clustering trend was enhanced during the study period. Desert, Gobi and rapidly urbanized areas showed low level of ecological resilience, and oasis and mountain areas exhibited high level of ecological resilience. Climate factors had an important impact on ecological resilience. Specifically, average annual temperature and annual precipitation were the key climate factors that improved ecological resilience, while average annual evapotranspiration was the main factor that blocked ecological resilience. Among the human activity factors, the distance from the main road showed a negative correlation with ecological resilience. Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions, whereas in the areas with poorer ecological conditions, the correlations were positive. The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Parkland trees on smallholder farms ameliorate soil physical-chemical properties in the semi-arid area of Tigray, Ethiopia
Selam LJALEM, Emiru BIRHANE, Kassa TEKA, Daniel H BERHE
Journal of Arid Land    2024, 16 (1): 1-13.   DOI: 10.1007/s40333-024-0002-6
Abstract76)   HTML6)    PDF(pc) (583KB)(246)       Save

Proposed agroforestry options should begin with the species that farmers are most familiar with, which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions. The African birch (Anogeissus leiocarpa (DC.) Guill. & Perr.) and pink jacaranda (Stereospermum kunthianum Cham.) trees are the dominant species in the agroforestry parkland system in the drylands of Tigray, Ethiopia. Smallholder farmers highly value these trees for their multifunctional uses including timber, firewood, charcoal, medicine, etc. These trees also could improve soil fertility. However, the amount of soil physical and chemical properties enhanced by the two species must be determined to maintain the sustainable conservation of the species in the parklands and to scale up to similar agro- ecological systems. Hence, we selected twelve isolated trees, six from each species that had similar dendrometric characteristics and were growing in similar environmental conditions. We divided the canopy cover of each tree into three radial distances: mid-canopy, canopy edge, and canopy gap (control). At each distance, we took soil samples from three different depths. We collected 216 soil samples (half disturbed and the other half undisturbed) from each canopy position and soil depth. Bulk density (BD), soil moisture content (SMC), soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP), available potassium (AK), pH, electrical conductivity (EC), and cation exchange capacity (CEC) were analysed. Results revealed that soil physical and chemical properties significantly improved except for soil texture and EC under both species, CEC under A. leiocarpus, and soil pH under S. kunthianum, all the studied soils were improved under both species canopy as compared with canopy gap. SMC, TN, AP, and AK under canopy of these trees were respectively 24.1%, 11.1%, 55.0%, and 9.3% higher than those soils under control. The two parkland agroforestry species significantly enhanced soil fertility near the canopy of topsoil through improving soil physical and chemical properties. These two species were recommended in the drylands with similar agro-ecological systems.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Multiple assessments, source determination, and health risk apportionment of heavy metal(loid)s in the groundwater of the Shule River Basin in northwestern China
WEN Xiaohu, LI Leiming, WU Jun, LU Jian, SHENG Danrui
Journal of Arid Land    2023, 15 (11): 1355-1375.   DOI: 10.1007/s40333-023-0111-7
Abstract41)   HTML4)    PDF(pc) (1525KB)(240)       Save

Global ecosystems and public health have been greatly impacted by the accumulation of heavy metal(loid)s in water. Source-specific risk apportionment is needed to prevent and manage potential groundwater contamination with heavy metal(loid)s. The heavy metal(loid)s contamination status, water quality, ecological risk, and health risk apportionment of the Shule River Basin groundwater are poorly understood. Therefore, field sampling was performed to explore the water quality and risk of heavy metal(loid)s in the groundwater of the Shule River Basin in northwestern China. A total of 96 samples were collected from the study area to acquire data for water quality and heavy metal(loid)s risk. There was noticeable accumulation of ferrum in the groundwater of the Shule River Basin. The levels of pollution were considered to be moderately low, as evaluated by the degree of contamination, heavy metal evaluation index, heavy metal pollution index, and Nemerow pollution index. The ecological risks were also low. However, an assessment of the water quality index revealed that only 58.34% of the groundwater samples had good water quality. The absolute principal component scores-multiple linear regression model was more suited for this study area than the positive matrix factorization model. There were no obvious noncarcinogenic or carcinogenic concerns for all types of receptors according to the values of the total hazard index and total carcinogenic risk. The human activities and the initial geological environment factor (65.85%) was the major source of noncarcinogenic risk (residential children: 87.56%; residential adults: 87.52%; recreational children: 86.77%; and recreational adults: 85.42%), while the industrial activity factor (16.36%) was the major source of carcinogenic risk (residential receptors: 87.96%; and recreational receptors: 68.73%). These findings provide fundamental and crucial information for reducing the health issues caused by heavy metal(loid)s contamination of groundwater in arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Exploring groundwater quality in semi-arid areas of Algeria: Impacts on potable water supply and agricultural sustainability
Noua ALLAOUA, Hinda HAFID, Haroun CHENCHOUNI
Journal of Arid Land    2024, 16 (2): 147-167.   DOI: 10.1007/s40333-024-0004-4
Abstract47)   HTML6)    PDF(pc) (1827KB)(229)       Save

Groundwater quality assessment is important to assure safe and durable water use. In semi-arid areas of Algeria, groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands. Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi, Algeria, and were analyzed and compared with the World Health Organization (WHO) standards. Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards. Groundwater had a slightly alkaline water pH (7.00-7.79), electrical conductivity>1500 µS/cm, chloride>500 mg/L, calcium>250 mg/L, and magnesium>155 mg/L. Water quality index (WQI) results showed that 68% of the area had excellent water quality, 24% of the samples fell into good category, and only 8% were of poor quality and unsuitable for human consumption. Six wells in the area showed bacterial contamination. Total coliforms (453.9 (±180.3) CFU (colony-forming units)/100 mL), fecal coliforms (243.2 (±99.2) CFU/100 mL), and fecal streptococci (77.9 (±32.0) CFU/100 mL) loads were above the standard limits set by the WHO. These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Ecological problems and ecological restoration zoning of the Aral Sea
BAO Anming, YU Tao, XU Wenqiang, LEI Jiaqiang, JIAPAER Guli, CHEN Xi, Tojibaev KOMILJON, Shomurodov KHABIBULLO, Xabibullaev B SAGIDULLAEVICH, Idirisov KAMALATDIN
Journal of Arid Land    2024, 16 (3): 315-330.   DOI: 10.1007/s40333-024-0055-6
Abstract56)   HTML2)    PDF(pc) (1853KB)(229)       Save

The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Aral Sea have attracted widespread attention, and the alleviation of the Aral Sea ecological crisis has reached a consensus among the five Central Asian countries (Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan, and Turkmenistan). In the past decades, many ecological management measures have been implemented for the ecological restoration of the Aral Sea. However, due to the lack of regional planning and zoning, the results are not ideal. In this study, we mapped the ecological zoning of the Aral Sea from the perspective of ecological restoration based on soil type, soil salinity, surface water, groundwater table, Normalized Difference Vegetation Index (NDVI), land cover, and aerosol optical depth (AOD) data. Soil salinization and salt dust are the most prominent ecological problems in the Aral Sea. We divided the Aral Sea into 7 first-level ecological restoration subregions (North Aral Sea catchment area in the downstream of the Syr Darya River (Subregion I); artificial flood overflow area in the downstream of the Aral Sea (Subregion II); physical/chemical remediation area of the salt dust source area in the eastern part of the South Aral Sea (Subregion III); physical/chemical remediation area of severe salinization in the central part of the South Aral Sea (Subregion IV); existing water surface and potential restoration area of the South Aral Sea (Subregion V); Aral Sea vegetation natural recovery area (Subregion VI); and vegetation planting area with slight salinization in the South Aral Sea (Subregion VII)) and 14 second-level ecological restoration subregions according to the ecological zoning principles. Implementable measures are proposed for each ecological restoration subregion. For Subregion I and Subregion II with lower elevations, artificial flooding should be carried out to restore the surface of the Aral Sea. Subregion III and Subregion IV have severe salinization, making it difficult for vegetation to grow. In these subregions, it is recommended to cover and pave the areas with green biomatrix coverings and environmentally sustainable bonding materials. In Subregion V located in the central and western parts of the South Aral Sea, surface water recharge should be increased to ensure that this subregion can maintain normal water levels. In Subregion VI and Subregion VII where natural conditions are suitable for vegetation growth, measures such as afforestation and buffer zones should be implemented to protect vegetation. This study could provide a reference basis for future comprehensive ecological management and restoration of the Aral Sea.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Assessment of runoff changes in the sub-basin of the upper reaches of the Yangtze River basin, China based on multiple methods
WANG Xingbo, ZHANG Shuanghu, TIAN Yiman
Journal of Arid Land    2024, 16 (4): 461-482.   DOI: 10.1007/s40333-024-0010-6
Abstract72)   HTML12)    PDF(pc) (3663KB)(226)       Save

Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity. This study considered six sub-basins in the upper reaches of the Yangtze River basin, China, to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956-2020. Linear regression, Mann-Kendall test, and sliding t-test were used to study the trend of the hydrometeorological elements, while cumulative distance level and ordered clustering methods were applied to identify mutation points. The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods, i.e., the rainfall-runoff relationship method, slope variation method, and variable infiltration capacity (Budyko) hypothesis method. Then, the availability and stability of the three methods were compared. The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020, with an abrupt change in 1985. For attribution analysis, the runoff series could be divided into two phases, i.e., 1961-1985 (baseline period) and 1986-2020 (changing period); and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods, while the slope variation and Budyko hypothesis methods had highly consistent results. Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin. Moreover, human disturbance was the main factor that contributed to the runoff changes, accounting for 53.0%-82.0%; and the contribution of climate factors to the runoff change was 17.0%-47.0%, making it the secondary factor, in which precipitation was the most representative climate factor. These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Regulation effects of water and nitrogen on yield, water, and nitrogen use efficiency of wolfberry
GAO Yalin, QI Guangping, MA Yanlin, YIN Minhua, WANG Jinghai, WANG Chen, TIAN Rongrong, XIAO Feng, LU Qiang, WANG Jianjun
Journal of Arid Land    2024, 16 (1): 29-45.   DOI: 10.1007/s40333-024-0003-5
Abstract45)   HTML6)    PDF(pc) (1369KB)(213)       Save

Wolfberry (Lycium barbarum L.) is important for health care and ecological protection. However, it faces problems of low productivity and resource utilization during planting. Exploring reasonable models for water and nitrogen management is important for solving these problems. Based on field trials in 2021 and 2022, this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height, stem diameter, crown width, yield, and water (WUE) and nitrogen use efficiency (NUE). The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity (θf), and four water levels, i.e., adequate irrigation (W0, 75%-85% θf), mild water deficit (W1, 65%-75% θf), moderate water deficit (W2, 55%-65% θf), and severe water deficit (W3, 45%-55% θf) were used, and three nitrogen application levels, i.e., no nitrogen (N0, 0 kg/hm2), low nitrogen (N1, 150 kg/hm2), medium nitrogen (N2, 300 kg/hm2), and high nitrogen (N3, 450 kg/hm2) were implied. The results showed that irrigation and nitrogen application significantly affected plant height, stem diameter, and crown width of wolfberry at different growth stages (P<0.01), and their maximum values were observed in W1N2, W0N2, and W1N3 treatments. Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment. Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment. However, under other water treatments, the values first increased and then decreased with increasing nitrogen application. Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment. Irrigation water use efficiency (IWUE, 8.46 kg/(hm2·mm)), WUE (6.83 kg/(hm2·mm)), partial factor productivity of nitrogen (PFPN, 2.56 kg/kg), and NUE (14.29 kg/kg) reached their highest values in W2N2, W1N2, W1N2, and W1N1 treatments. Results of principal component analysis (PCA) showed that yield, WUE, and NUE were better in W1N2 treatment, making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province, China and similar planting areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Nutrient coordination mechanism of tiger nut induced by rhizosphere soil nutrient variation in an arid area, China
TAN Jin, WU Xiuqin, LI Yaning, SHI Jieyu, LI Xu
Journal of Arid Land    2023, 15 (10): 1216-1230.   DOI: 10.1007/s40333-023-0029-0
Abstract25)   HTML2)    PDF(pc) (6454KB)(206)       Save

Tiger nut is a bioenergy crop planted in arid areas of northern China to supply oil and adjust the planting structure. However, in the western region of Inner Mongolia Autonomous Region, China, less water resources have resulted in a scarcity of available farmland, which has posed a huge obstacle to planting tiger nut. Cultivation of tiger nut on marginal land can effectively solve this problem. To fully unlock the production potential of tiger nut on marginal land, it is crucial for managers to have comprehensive information on the adaptive mechanism and nutrient requirement of tiger nut in different growth periods. This study aims to explore these key information from the perspective of nutrient coordination strategy of tiger nut in different growth periods and their relationship with rhizosphere soil nutrients. Three fertilization treatments including no fertilization (N:P (nitrogen:phosphorous)=0:0), traditional fertilization (N:P=15:15), and additional N fertilizer (N:P=60:15)) were implemented on marginal land in the Dengkou County. Plant and soil samples were collected in three growth periods, including stolon tillering period, tuber expanding period, and tuber mature period. Under no fertilization, there was a significant correlation between N and P contents of tiger nut roots and tubers and the same nutrients in the rhizosphere soil (P<0.05). Carbon (C), N, and P contents of roots were significantly higher than those of leaves (P<0.05), and the C:N ratio of all organs was higher than those under other treatments before tuber maturity (P<0.05). Under traditional fertilization, there was a significant impact on the P content of tiger nut tubers (P<0.05). Under additional N fertilizer, the accumulation rate of N and P was faster in stolons than in tubers (P<0.05) with lower N:P ratio in stolons during the tuber expansion period (P<0.05), but higher N:P ratio in tubers (P<0.05). The limited availability of nutrients in the rhizosphere soil prompts tiger nut to increase the C:N ratio, improving N utilization efficiency, and maintaining N:P ratio in tubers. Elevated N levels in the rhizosphere soil decrease the C:N ratio of tiger nut organs and N:P ratio in stolons, promoting rapid stolon growth and shoot production. Supplementary P is necessary during tuber expansion, while a higher proportion of N in fertilizers is crucial for the aboveground biomass production of tiger nut.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal variations in ecological quality of Otindag Sandy Land based on a new modified remote sensing ecological index
ZHAO Xiaohan, HAN Dianchen, LU Qi, LI Yunpeng, ZHANG Fangmin
Journal of Arid Land    2023, 15 (8): 920-939.   DOI: 10.1007/s40333-023-0065-9
Abstract52)   HTML7)    PDF(pc) (3224KB)(202)       Save

Otindag Sandy Land in China is an important ecological barrier to Beijing; the changes in its ecological quality are major concerns for sustainable development and planning of this area. Based on principal component analysis and path analysis, we first generated a modified remote sensing ecological index (MRSEI) coupled with satellite and ground observational data during 2001-2020 that integrated four local indicators (greenness, wetness, and heatness that reflect vegetation status, water, and heat conditions, respectively, as well as soil erosion). Then, we assessed the ecological quality in Otindag Sandy Land during 2001-2020 based on the MRSEI at different time scales (i.e., the whole year, growing season, and non-growing season). MRSEI generally increased with an upward rate of 0.006/a during 2001-2020, with clear seasonal and spatial variations. Ecological quality was significantly improved in most regions of Otindag Sandy Land but degraded in the southern part. Regions with ecological degradation expanded to 18.64% of the total area in the non-growing season. The area with the worst grade of MRSEI shrunk by 15.83% of the total area from 2001 to 2020, while the area with the best grade of MRSEI increased by 9.77% of the total area. The temporal heterogeneity of ecological conditions indicated that the improvement process of ecological quality in the growing season may be interrupted or deteriorated in the following non-growing season. The implementation of ecological restoration measures in Otindag Sandy Land should not ignore the seasonal characteristics and spatial heterogeneity of local ecological quality. The results can explore the effectiveness of ecological restoration and provide scientific guides on sustainable development measures for drylands.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021
QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo
Journal of Arid Land    2023, 15 (9): 1037-1051.   DOI: 10.1007/s40333-023-0067-7
Abstract67)   HTML6)    PDF(pc) (3298KB)(201)       Save

Groundwater overexploitation is a serious problem in the Turpan Basin, Xinjiang Uygur Autonomous Region of China, causing groundwater level declines and ecological and environmental problems such as the desiccation of karez wells and the shrinkage of lakes. Based on historical groundwater data and field survey data from 1959 to 2021, we comprehensively studied the evolution of groundwater recharge and discharge terms in the Turpan Basin using the groundwater equilibrium method, mathematical statistics, and GIS spatial analysis. The reasons for groundwater overexploitation were also discussed. The results indicated that groundwater recharge increased from 14.58×108 m3 in 1959 to 15.69×108 m3 in 1980, then continued to decrease to 6.77×108 m3 in 2021. Groundwater discharge increased from 14.49×108 m3 in 1959 to 16.02×108 m3 in 1989, while continued to decrease to 9.97×108 m3 in 2021. Since 1980, groundwater recharge-discharge balance has been broken, the decrease rate of groundwater recharge exceeded that of groundwater discharge and groundwater recharge was always lower than groundwater discharge, showing in a negative equilibrium, which caused the continuous decrease in groundwater level in the Turpan Basin. From 1980 to 2002, groundwater overexploitation increased rapidly, peaking from 2003 to 2011 with an average overexploitation rate of 4.79×108 m3/a; then, it slowed slightly from 2012 to 2021, and the cumulative groundwater overexploitation was 99.21×108 m3 during 1980-2021. This research can provide a scientific foundation for the restoration and sustainable use of groundwater in the overexploited areas of the Turpan Basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin, China
LIN Yanmin, HU Zhirui, LI Wenhui, CHEN Haonan, WANG Fang, NAN Xiongxiong, YANG Xuelong, ZHANG Wenjun
Journal of Arid Land    2024, 16 (1): 110-130.   DOI: 10.1007/s40333-024-0052-9
Abstract36)   HTML6)    PDF(pc) (1541KB)(201)       Save

Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage (ECS), particularly in ecologically sensitive areas with arid and semi-arid climate. In this study, we calculated the ECS in the Ningxia Section of Yellow River Basin, China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model based on land use data. We further predicted the spatial distribution of ECS in 2050 under four land use scenarios: natural development scenario (NDS), ecological protection scenario (EPS), cultivated land protection scenario (CPS), and urban development scenario (UDS) using the patch-generating land use simulation (PLUS) model, and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector (Geodetector). Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×106 t in 2010, followed by a decreasing trend to 2050. The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area, and low values in the western and northern parts. Between 1985 and 2020, land use changes occurred mainly through the expansion of cultivated land, woodland, and construction land at the expense of unused land. The total ECS in 2050 under different land use scenarios (ranked as EPS>CPS>NDS>UDS) would be lower than that in 2020. Nighttime light was the largest contributor to the spatial differentiation of ECS, with soil type and annual mean temperature being the major natural driving factors. Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land, China
NAN Weige, DONG Zhibao, ZHOU Zhengchao, LI Qiang, CHEN Guoxiang
Journal of Arid Land    2024, 16 (1): 14-28.   DOI: 10.1007/s40333-024-0050-y
Abstract44)   HTML8)    PDF(pc) (1577KB)(191)       Save

Vegetation restoration through artificial plantation is an effective method to combat desertification, especially in arid and semi-arid areas. This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land, China. We collected soil samples from five depth layers (0-20, 20-40, 40-60, 60-80, and 80-100 cm) in the S. vulgaris plantation plots across four plantation ages (4, 7, 10, and 16 years) in November 2019, and assessed soil physical (soil bulk density, soil porosity, and soil particle size) and chemical (soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), cation-exchange capacity (CEC), salinity, pH, and C/N ratio) properties. The results indicated that the soil predominantly consisted of sand particles (94.27%-99.67%), with the remainder being silt and clay. As plantation age increased, silt and very fine sand contents progressively rose. After 16 years of planting, there was a marked reduction in the mean soil particle size. The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement. Significant positive correlations were observed for the clay, silt, and very fine sand (mean diameter of 0.000-0.100 mm) with SOC, AK, and pH. In contrast, fine sand and medium sand (mean diameter of 0.100-0.500 mm) showed significant negative correlations with these indicators. Our findings ascertain that the plantation of S. vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation, and needs 16 years to improve soil physical and chemical properties. Importantly, these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas. This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal characteristics and driving mechanisms of land use/land cover (LULC) changes in the Jinghe River Basin, China
WANG Yinping, JIANG Rengui, YANG Mingxiang, XIE Jiancang, ZHAO Yong, LI Fawen, LU Xixi
Journal of Arid Land    2024, 16 (1): 91-109.   DOI: 10.1007/s40333-024-0051-x
Abstract41)   HTML9)    PDF(pc) (2336KB)(185)       Save

Understanding the trajectories and driving mechanisms behind land use/land cover (LULC) changes is essential for effective watershed planning and management. This study quantified the net change, exchange, total change, and transfer rate of LULC in the Jinghe River Basin (JRB), China using LULC data from 2000 to 2020. Through trajectory analysis, knowledge maps, chord diagrams, and standard deviation ellipse method, we examined the spatiotemporal characteristics of LULC changes. We further established an index system encompassing natural factors (digital elevation model (DEM), slope, aspect, and curvature), socio-economic factors (gross domestic product (GDP) and population), and accessibility factors (distance from railways, distance from highways, distance from water, and distance from residents) to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector (Geodetector). The key findings indicate that from 2000 to 2020, the JRB experienced significant LULC changes, particularly for farmland, forest, and grassland. During the study period, LULC change trajectories were categorized into stable, early-stage, late-stage, repeated, and continuous change types. Besides the stable change type, the late-stage change type predominated the LULC change trajectories, comprising 83.31% of the total change area. The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010. The LULC changes exhibited a discrete spatial expansion trend during 2000-2020, predominantly extending from southeast to northwest of the JRB. Influential driving factors on LULC changes included slope, GDP, and distance from highways. The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020. This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model
CAO Yijie, MA Yonggang, BAO Anming, CHANG Cun, LIU Tie
Journal of Arid Land    2023, 15 (12): 1455-1473.   DOI: 10.1007/s40333-023-0074-8
Abstract72)   HTML11)    PDF(pc) (7283KB)(185)       Save

The Ili River Delta (IRD) is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia. In this study, we selected the IRD as a typical research area, and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020, and investigated the main driving factors (precipitation, potential evapotranspiration, land use/land cover change, and inflow from the Ili River) of the water conservation variation based on the linear regression, piecewise linear regression, and Pearson's correlation coefficient analyses. The results indicated that from 1975 to 2020, the water yield and water conservation in the IRD showed a decreasing trend, and the spatial distribution pattern was "high in the east and low in the west"; overall, the water conservation of all land use types decreased slightly. The water conservation volume of grassland was the most reduced, although the area of grassland increased owing to the increased inflow from the Ili River. At the same time, the increased inflow has led to the expansion of wetland areas, the improvement of vegetation growth, and the increase of regional evapotranspiration, thus resulting in an overall reduction in the water conservation. The water conservation depth and precipitation had similar spatial distribution patterns; the change in climate factors was the main reason for the decline in the water conservation function in the delta. The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash, promoted vegetation restoration, and had a positive effect on the water conservation; however, this positive effect cannot offset the negative effect of enhanced evapotranspiration. These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change
ZHAO Xuqin, LUO Min, MENG Fanhao, SA Chula, BAO Shanhu, BAO Yuhai
Journal of Arid Land    2024, 16 (1): 46-70.   DOI: 10.1007/s40333-024-0090-3
Abstract51)   HTML8)    PDF(pc) (5095KB)(184)       Save

Gross primary productivity (GPP) of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought. Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks, aiding efforts to mitigate the detrimental effects of climate change. In this study, we utilized the precipitation and temperature data from the Climatic Research Unit, the standardized precipitation evapotranspiration index (SPEI), the standardized precipitation index (SPI), and the simulated vegetation GPP using the eddy covariance-light use efficiency (EC-LUE) model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018. The main findings indicated that vegetation GPP decreased in 50.53% of the plateau, mainly in its northern and northeastern parts, while it increased in the remaining 49.47% area. Specifically, meadow steppe (78.92%) and deciduous forest (79.46%) witnessed a significant decrease in vegetation GPP, while alpine steppe (75.08%), cropland (76.27%), and sandy vegetation (87.88%) recovered well. Warming aridification areas accounted for 71.39% of the affected areas, while 28.53% of the areas underwent severe aridification, mainly located in the south and central regions. Notably, the warming aridification areas of desert steppe (92.68%) and sandy vegetation (90.24%) were significant. Climate warming was found to amplify the sensitivity of coniferous forest, deciduous forest, meadow steppe, and alpine steppe GPP to drought. Additionally, the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased. The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months. The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Characteristics of snow cover distribution along railway subgrade and the protective effect of snow fences
LEI Jia, CHENG Jianjun, GAO Li, MA Benteng, AN Yuanfeng, DONG Hongguang
Journal of Arid Land    2023, 15 (8): 901-919.   DOI: 10.1007/s40333-023-0105-5
Abstract51)   HTML548)    PDF(pc) (2863KB)(182)       Save

Railways built in cold, snowy, and lightly populated areas are subjected to wind and snow disasters. In this study, we selected a snow hazard prevention and control section of the Altay-Zhundong Railway in Xinjiang Uygur Autonomous Region of China as the research object. We investigated the deposited snowfall variation characteristics on the two sides and in the embankment pavement area of snow fences with different porosities, fence heights, and arrangement distances using single-factor tests and orthogonal tests based on global atmospheric reanalysis climate data, field survey data, and a multi-phase flow analysis model. The results showed significant differences in the characteristics of snow cover distribution and snow cover thickness between the embankment and the cutting in the absence of snow protection measures. The maximum snow cover thickness of the embankment pavement decreased by 12.6% relative to the cutting pavement. The snow cover thickness of the embankment exhibited an increasing trend from windward shoulder to leeward shoulder, whereas the snow cover thickness of the cutting presented a declining trend from windward shoulder to leeward toe. In the collaborative prevention and control of snow fences and embankments, the three factors can be ranked in terms of their sensitivity to deposited snowfall within the influence scope of snow fences as follows: fence height>arrangement distance>porosity. At the same time, fence height yielded a significant relationship for the influence scope of snow fences (P<0.05). The three factors can also be ranked in terms of their sensitivity to deposited snowfall on the pavement as follows: porosity>fence height>arrangement distance. For the embankment protection of the Altay-Zhundong Railway against wind and snow, snow fence with a porosity of 75%, a fence height of 4.8 m, and an arrangement distance from the embankment of 60 m produced the best snow control effect. By revealing the characteristics of snow cover distribution along railway subgrade and the protective effect of snow fences, this study provides valuable references for the engineering applications of railway construction in areas prone to wind and snow disasters.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Analyzing environmental flow supply in the semi-arid area through integrating drought analysis and optimal operation of reservoir
Mahdi SEDIGHKIA, Bithin DATTA
Journal of Arid Land    2023, 15 (12): 1439-1454.   DOI: 10.1007/s40333-023-0035-2
Abstract31)   HTML7)    PDF(pc) (1533KB)(177)       Save

This study proposes a novel form of environmental reservoir operation through integrating environmental flow supply, drought analysis, and evolutionary optimization. This study demonstrates that simultaneous supply of downstream environmental flow of reservoir as well as water demand is challenging in the semi-arid area especially in dry years. In this study, water supply and environmental flow supply were 40% and 30% in the droughts, respectively. Moreover, mean errors of supplying water demand as well as environmental flow in dry years were 6 and 9 m3/s, respectively. Hence, these results highlight that ecological stresses of the downstream aquatic habitats as well as water supply loss are considerably escalated in dry years, which implies even using environmental optimal operation is not able to protect downstream aquatic habitats properly in the severe droughts. Moreover, available storage in reservoir will be remarkably reduced (averagely more than 30×106 m3 compared with optimal storage equal to 70×106 m3), which implies strategic storage of reservoir might be threatened. Among used evolutionary algorithms, particle swarm optimization (PSO) was selected as the best algorithm for solving the novel proposed objective function. The significance of this study is to propose a novel objective function to optimize reservoir operation in which environmental flow supply is directly addressed and integrated with drought analysis. This novel form of optimization system can overcome uncertainties of the conventional objective function due to considering environmental flow in the objective function as well as drought analysis in the context of reservoir operation especially applicable in semi-arid areas. The results indicate that using either other water resources for water supply or reducing water demand is the only solution for managing downstream ecological impacts of the river ecosystem. In other words, the results highlighted that replanning of water resources in the study area is necessary. Replacing the conventional optimization system for reservoir operation in the semi-arid area with proposed optimization system is recommendable to minimize the negotiations between stakeholders and environmental managers.

Table and Figures | Reference | Related Articles | Metrics | Comments0
A review of science-policy interface for water governance in the Caspian Sea
Apoorva BAMAL, Sogol MORADIAN, Ali TORABI-HAGHIGHI, Agnieszka INDIANA-OLBERT
Journal of Arid Land    2023, 15 (10): 1143-1159.   DOI: 10.1007/s40333-023-0030-7
Abstract39)   HTML675)    PDF(pc) (620KB)(174)       Save

Science and policy have been interlinked for decades and perform essential nexus conditions in the governing aspects of environmental scenarios. This review paper examines the present challenges in the science-policy interface in terms of water governance in the Caspian Sea and identifies effective conditions that may be used in the current context to enhance the mechanism. The evaluation of the science-policy link in the water policy of the Caspian Sea reveals a gap between knowledge producer and governance system, impeding the translation of scientific information into action. Complicated and context-dependent solutions make it challenging to establish effective science-policy processes in the Caspian Sea water governance settings. Establishing a common governing authority, implementing water and resource management regulations, and protecting the natural environment through legal frameworks are crucial steps to address these concerns and ensure sustainable development. Collaboration among coastal states is essential in environmental, economic, and social aspects of regional development. However, the lack of a comprehensive approach, coherent activities, and effective utilization of national and regional power has hindered efforts to halt the environmental degradation of the Caspian Sea. Local governments need to recognize their responsibility to protect and utilize the Caspian Sea for present and future generations, considering both environmental and human security. The interlinkage of the Caspian Sea water governance with the Organization for Economic Co-operation and Development (OECD) water governance principles offers a framework for policymakers to assess gaps and make necessary amendments to existing mechanisms. Effective science-policy interaction, engagement of diverse stakeholders, institutionalizing agreements, and addressing collective action issues are critical for successful water governance.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Erratum to: Effects of dieback on the vegetative, chemical, and physiological status of mangrove forests, Iran
Vahid Farashi KAHNOUJ, Marzieh REZAI, Rasool MAHDAVI, Maryam MOSLEHI, Saeedeh ESKANDARI
Journal of Arid Land    2023, 15 (12): 1544-1544.   DOI: 10.1007/s40333-023-0038-z
Abstract53)   HTML1)    PDF(pc) (131KB)(172)       Save
Reference | Related Articles | Metrics | Comments0
Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau, China
SUN Lin, YU Zhouchang, TIAN Xingfang, ZHANG Ying, SHI Jiayi, FU Rong, LIANG Yujie, ZHANG Wei
Journal of Arid Land    2023, 15 (9): 1107-1128.   DOI: 10.1007/s40333-023-0025-4
Abstract65)   HTML6)    PDF(pc) (1962KB)(166)       Save

Leguminosae are an important part of terrestrial ecosystems and play a key role in promoting soil nutrient cycling and improving soil properties. However, plant composition and species diversity change rapidly during the process of succession, the effect of leguminosae on soil physical-chemical and biological properties is still unclear. This study investigated the changes in the composition of plant community, vegetation characteristics, soil physical-chemical properties, and soil biological properties on five former farmlands in China, which had been abandoned for 0, 5, 10, 18, and 30 a. Results showed that, with successional time, plant community developed from annual plants to perennial plants, the importance of Leguminosae and Asteraceae significantly increased and decreased, respectively, and the importance of grass increased and then decreased, having a maximum value after 5 a of abandonment. Plant diversity indices increased with successional time, and vegetation coverage and above- and below-ground biomass increased significantly with successional time after 5 a of abandonment. Compared with farmland, 30 a of abandonment significantly increased soil nutrient content, but total and available phosphorus decreased with successional time. Changes in plant community composition and vegetation characteristics not only change soil properties and improve soil physical-chemical properties, but also regulate soil biological activity, thus affecting soil nutrient cycling. Among these, Leguminosae have the greatest influence on soil properties, and their importance values and community composition are significantly correlated with soil properties. Therefore, this research provides more scientific guidance for selecting plant species to stabilize soil ecosystem of farmland to grassland in the Loess Plateau, China.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Land use and cover change and influencing factor analysis in the Shiyang River Basin, China
ZHAO Yaxuan, CAO Bo, SHA Linwei, CHENG Jinquan, ZHAO Xuanru, GUAN Weijin, PAN Baotian
Journal of Arid Land    2024, 16 (2): 246-265.   DOI: 10.1007/s40333-024-0071-6
Abstract37)   HTML4)    PDF(pc) (2242KB)(163)       Save

Land use and cover change (LUCC) is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface, with significant impacts on the environment and social economy. Rapid economic development and climate change have resulted in significant changes in land use and cover. The Shiyang River Basin, located in the eastern part of the Hexi Corridor in China, has undergone significant climate change and LUCC over the past few decades. In this study, we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991, 1995, 2000, 2005, 2010, 2015, and 2020 based on Landsat images. We validated the land use and cover data in 2015 from the random forest classification results (this study), the high-resolution dataset of annual global land cover from 2000 to 2015 (AGLC-2000-2015), the global 30 m land cover classification with a fine classification system (GLC_FCS30), and the first Landsat-derived annual China Land Cover Dataset (CLCD) against ground-truth classification results to evaluate the accuracy of the classification results in this study. Furthermore, we explored and compared the spatiotemporal patterns of LUCC in the upper, middle, and lower reaches of the Shiyang River Basin over the past 30 years, and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural (evapotranspiration, precipitation, temperature, and surface soil moisture) and anthropogenic (nighttime light, gross domestic product (GDP), and population) factors. The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015, GLC_FCS30, and CLCD datasets in both overall and partial validations. Moreover, the classification results in this study exhibited a high level of agreement with the ground truth features. From 1991 to 2020, the area of bare land exhibited a decreasing trend, with changes primarily occurring in the middle and lower reaches of the basin. The area of grassland initially decreased and then increased, with changes occurring mainly in the upper and middle reaches of the basin. In contrast, the area of cropland initially increased and then decreased, with changes occurring in the middle and lower reaches. The LUCC was influenced by both natural and anthropogenic factors. Climatic factors and population contributed significantly to LUCC, and the importance values of evapotranspiration, precipitation, temperature, and population were 22.12%, 32.41%, 21.89%, and 19.65%, respectively. Moreover, policy interventions also played an important role. Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years, with the ecological environment improving in the last 10 years. This suggests that governance efforts in the study area have had some effects, and the government can continue to move in this direction in the future. The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Landscape ecological risk assessment and its driving factors in the Weihe River basin, China
CHANG Sen, WEI Yaqi, DAI Zhenzhong, XU Wen, WANG Xing, DUAN Jiajia, ZOU Liang, ZHAO Guorong, REN Xiaoying, FENG Yongzhong
Journal of Arid Land    2024, 16 (5): 603-614.   DOI: 10.1007/s40333-024-0013-3
Abstract79)   HTML9)    PDF(pc) (1295KB)(163)       Save

Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development. Based on land use data of the Weihe River basin in 2000, 2010, and 2020, with the support of Aeronautical Reconnaissance Coverage Geographic Information System (ArcGIS), GeoDa, and other technologies, this study analyzed the spatial-temporal characteristics and driving factors of land use pattern and landscape ecological risk. Results showed that land use structure of the Weihe River basin has changed significantly, with the decrease of cropland and the increase of forest land and construction land. In the past 20 a, cropland has decreased by 7347.70 km2, and cropland was mainly converted into forest land, grassland, and construction land. The fragmentation and dispersion of ecological landscape pattern in the Weihe River basin were improved, and land use pattern became more concentrated. Meanwhile, landscape ecological risk of the Weihe River basin has been improved. Severe landscape ecological risk area decreased by 19,177.87 km2, high landscape ecological risk area decreased by 3904.35 km2, and moderate and low landscape ecological risk areas continued to increase. It is worth noting that landscape ecological risks in the upper reaches of the Weihe River basin are still relatively serious, especially in the contiguous areas of high ecological risk, such as Tianshui, Pingliang, Dingxi areas and some areas of Ningxia Hui Autonomous Region. Landscape ecological risk showed obvious spatial dependence, and high ecological risk area was concentrated. Among the driving factors, population density, precipitation, normalized difference vegetation index (NDVI), and their interactions are the most important factors affecting the landscape ecological risk of the Weihe River basin. The findings significantly contribute to our understanding of the ecological dynamics in the Weihe River basin, providing crucial insights for sustainable management in the region.

Table and Figures | Reference | Related Articles | Metrics | Comments0