Most Downloaded

Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 3 years
Please wait a minute...
For Selected: Toggle Thumbnails
Responses of plant community to the linkages in plant-soil C:N:P stoichiometry during secondary succession of abandoned farmlands, China
LIU Weichao, FU Shuyue, YAN Shengji, REN Chengjie, WU Shaojun, DENG Jian, LI Boyong, HAN Xinhui, YANG Gaihe
Journal of Arid Land    2020, 12 (2): 215-226.   DOI: 10.1007/s40333-020-0009-6
Abstract161)   HTML3)    PDF (385KB)(971)      

Succession is one of the central themes of ecology; however, the relationship between aboveground plant communities and underground soils during secondary succession remains unclear. In this study, we investigated the composition of plant community, plant-soil C:N:P stoichiometry and their relationships during secondary succession after the abandonment of farmlands for 0, 10, 20, 30, 40 and 50 a in China, 2016. Results showed that the composition of plant communities was most diverse in the farmlands after secondary succession for 20 and 50 a. Soil organic carbon and total nitrogen contents slightly decreased after secondary succession for 30 a, but both were significantly higher than those of control farmland (31.21%-139.10% and 24.24%-121.21%, respectively). Moreover, C:N ratios of soil and microbe greatly contributed to the changes in plant community composition during secondary succession of abandoned farmlands, explaining 35.70% of the total variation. Particularly, soil C:N ratio was significantly and positively related with the Shannon-Wiener index. This study provides the evidence of synchronous evolution between plant community and soil during secondary succession and C:N ratio is an important linkage between them.

Table and Figures | Reference | Related Articles | Metrics
Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: a case study in Fars Province, Iran
Sheida DEHGHAN, Nasrin SALEHNIA, Nasrin SAYARI, Bahram BAKHTIARI
Journal of Arid Land    2020, 12 (2): 318-330.   DOI: 10.1007/s40333-020-0095-5
Abstract712)   HTML17)    PDF (921KB)(843)      

Drought is one of the most significant environmental disasters, especially in arid and semi-arid regions. Drought indices as a tool for management practices seeking to deal with the drought phenomenon are widely used around the world. One of these indicators is the Palmer drought severity index (PDSI), which is used in many parts of the world to assess the drought situation and continuation. In this study, the drought state of Fars Province in Iran was evaluated by using the PDSI over 1995-2014 according to meteorological data from six weather stations in the province. A statistical downscaling model (SDSM) was used to apply the output results of the general circulation model in Fars Province. To implement data processing and prediction of climate data, a statistical period 1995-2014 was considered as the monitoring period, and a statistical period 2019-2048 was for the prediction period. The results revealed that there is a good agreement between the simulated precipitation (R2>0.63; R2, determination coefficient; MAE<0.52; MAE, mean absolute error; RMSE<0.56; RMSE, Root Mean Squared Error) and temperature (R2>0.95, MAE<1.74, and RMSE<1.78) with the observed data from the stations. The results of the drought monitoring model presented that dry periods would increase over the next three decades as compared to the historical data. The studies showed the highest drought in the meteorological stations Abadeh and Lar during the prediction period under two future scenarios representative concentration pathways (RCP4.5 and RCP8.5). According to the results of the validation periods and efficiency criteria, we suggest that the SDSM is a proper tool for predicting drought in arid and semi-arid regions.

Table and Figures | Reference | Related Articles | Metrics
Factors determining soil water heterogeneity on the Chinese Loess Plateau as based on an empirical mode decomposition method
GONG Yidan, XING Xuguang, WANG Weihua
Journal of Arid Land    2020, 12 (3): 462-472.   DOI: 10.1007/s40333-020-0068-8
Abstract128)   HTML4)    PDF (972KB)(842)      

Soil water is a critical resource, and as such is the focus of considerable physical research. Characterization of the distribution and spatial variability of soil water content (SWC) offers important agronomic and environmental information. Estimation of non-stationary and non-linear SWC distribution at different scales is a research challenge. Based on this context, we performed a case study on the Chinese Loess Plateau, with objectives of investigating spatial variability of SWC and soil properties (i.e., soil particle composition, organic matter and bulk density), and determining multi-scale correlations between SWC and soil properties. A total of 86 in situ sampling sites were selected and 516 soil samples (0-60 cm depth with an interval of 10 cm) were collected in May and June of 2019 along the Yangling-Wugong-Qianxian transect, with a length of 25.5 km, in a typical wheat-corn rotation region of the Chinese Loess Plateau. Classical statistics and empirical mode decomposition (EMD) method were applied to evaluate characteristics of the overall and scale-specific spatial variation of SWC, and to explore scale-specific correlations between SWC and soil properties. Results showed that the spatial variability of SWC along the Yangling-Wugong-Qianxian transect was medium to weak, with a variability coefficient range of 0.06-0.18, and it was gradually decreased as scale increased. We categorized the overall SWC for each soil layer under an intrinsic mode function (IMF) number based on the scale of occurrence, and found that the component IMF1 exhibited the largest contribution rates of 36.45%-56.70%. Additionally, by using EMD method, we categorized the general variation of SWC under different numbers of IMFs according to occurrence scale, and the results showed that the calculated scales among SWC for each soil layer increased in correspondence with higher IMF numbers. Approximately 78.00% of the total variance of SWC was extracted in IMF1 and IMF2. Generally, soil texture was the dominant control on SWC, and the influence of the three types of soil properties (soil particle composition, organic matter and bulk density) was more prominent at larger scales along the sampling transect. The influential factors of soil water spatial distribution can be identified and ranked on the basis of the decomposed signal from the current approach, thereby providing critical information for other researchers and natural resource managers.

Table and Figures | Reference | Related Articles | Metrics
Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin
WANG Jie, LIU Dongwei, MA Jiali, CHENG Yingnan, WANG Lixin
Journal of Arid Land    2021, 13 (1): 40-55.   DOI: 10.1007/s40333-021-0052-y
Abstract137)   HTML16)    PDF (945KB)(838)      

The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia. It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin. In this study, the arid remote sensing ecological index (ARSEI) for large-scale arid areas was developed, which coupled the information of the greenness index, the salinity index, the humidity index, the heat index, and the land degradation index of arid areas. The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019. The results show that the greenness index, the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin, while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment. The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement, followed by deterioration, and finally further improvement. The spatial variation of these changes was significant. From 2000 to 2019, grassland and wasteland (saline alkali land and sandy land) in the central and western parts of the basin had the worst ecological environment quality. The areas with poor ecological environment quality are mainly distributed in rivers, wetlands, and cultivated land around lakes. During the period from 2000 to 2019, except for the surrounding areas of the Aral Sea, the ecological environment quality in other areas of the Aral Sea Basin has been improved in general. The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were -0.593 and 0.524, respectively. Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin. However, human activities had a greater impact. The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas; it is very suitable for the study of the eco-environmental quality in arid areas.

Table and Figures | Reference | Related Articles | Metrics
Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China
HU Haiying, ZHU Lin, LI Huixia, XU Dongmei, XIE Yingzhong
Journal of Arid Land    2021, 13 (2): 109-122.   DOI: 10.1007/s40333-021-0051-z
Abstract146)   HTML25)    PDF (1483KB)(808)      

Frequent periods of drought conditions are known to limit plant performance, primary production, and ecosystem stability in arid and semi-arid desert steppe environments. Plants often avoid competition by shifting their water use seasonally, which affects the water-use patterns of dominant species as well as the composition and structure of plant communities. However, the water-use strategies of dominant herbaceous species, which grow under natural field conditions in the desert steppe region of Ningxia Hui Autonomous Region, China, are poorly known. Here, we explored the possible sources of water uptake and water-use efficiency (WUE) of three dominant herbaceous plant species (Stipa breviflora, Agropyron mongolicum, and Glycyrrhiza uralensis) in a native desert steppe in the semi-arid area of Ningxia through an analysis of multiple parameters, including (1) the stable isotopic oxygen and hydrogen (δ 18O and δ 2H) compositions of precipitation, soil water, and stem water, (2) the carbon isotope ( 13C) composition of leaves, and (3) the soil water contents, based on field sampling across varying water conditions from June to September, 2017. Frequent small precipitation events replenished shallow soil water, whereas large events only percolated down to the deep soil layers. Changes in soil water availability affected the water-use patterns of plants. Generally, during light precipitation periods, the deep root system of G. uralensis accessed deeper (>80 cm) soil water, whereas S. breviflora and A. mongolicum, which only have shallow roots, primarily absorbed water from the shallow and middle soil layers. As precipitation increased, all three plant species primarily obtained water from the shallow soil layers. Variation in soil water uptake between the dry and wet seasons enabled plants to make better use of existing satoil water. In addition, the δ 13C values of G. uralensis and S. breviflora were higher than those of A. mongolicum. The δ 13C values of the three plant species were significantly negatively correlated with soil water content. Therefore, G. uralensis and S. breviflora maintained a higher WUE through their conservative and water-saving strategies across the entire growing season. In contrast, A. mongolicum, with a relatively low WUE in the wet season but a high WUE in the dry season, exhibited a more flexible water-use strategy. The different water-use strategies of these dominant plant species demonstrated the mechanisms by which plant communities can respond to drought.

Table and Figures | Reference | Related Articles | Metrics
Assessment of drought hazard, vulnerability and risk in Iran using GIS techniques
Esmail HEYDARI ALAMDARLOO, Hassan KHOSRAVI, Sahar NASABPOUR, Ahmad GHOLAMI
Journal of Arid Land    2020, 12 (6): 984-1000.   DOI: 10.1007/s40333-020-0096-4
Abstract176)   HTML12)    PDF (2750KB)(768)      

The drought has enormous adverse effects on agriculture, water resources and environment, and causes damages around the world. Drought risk assessment and prioritization of drought management can help decision makers and planners to manage the adverse effects of drought. This paper aims to determine the risk of drought in Iran. At the first stage, standardized precipitation index (SPI) was calculated for the period 1981-2016. Then the probability map of different drought classes or drought hazard probability map were prepared. After that the indicator-based vulnerability assessment method was used to determine the drought vulnerability index. Five indices including climate, topography, waterway density, land use and groundwater resources were chosen as the most critical factors of drought in Iran and followed by the analytical hierarchy process questionnaire, the weights of each index were obtained based on expert opinions. Fuzzy membership maps of each index and sub-index were prepared using ArcGIS software. The drought vulnerability map of Iran was plotted using these weights and maps of each indicator. Finally, the drought risk map of Iran was provided by multiplying drought hazard and vulnerability maps. According to the 43-completed questionnaires by experts, climate index has the highest vulnerability to drought. Climate does not have an important role in drought hazard index, but it is the most crucial factor to classified drought vulnerability index. The results showed that central, northeast, southeast and west parts of Iran are at high risks of drought. There are regions with different risks in Iran due to unusual weather and climatic conditions. We realized that the climate and the groundwater situation is almost the same in the central, east and south parts of Iran, because the land use plays a crucial role in the drought vulnerability and risk in these areas. The drought risk decreases from the center of Iran to the southwest and northwest.

Table and Figures | Reference | Related Articles | Metrics
Investigation of crop evapotranspiration and irrigation water requirement in the lower Amu Darya River Basin, Central Asia
Durdiev KHAYDAR, CHEN Xi, HUANG Yue, Makhmudov ILKHOM, LIU Tie, Ochege FRIDAY, Abdullaev FARKHOD, Gafforov KHUSEN, Omarakunova GULKAIYR
Journal of Arid Land    2021, 13 (1): 23-39.   DOI: 10.1007/s40333-021-0054-9
Abstract96)   HTML11)    PDF (1742KB)(693)      

High water consumption and inefficient irrigation management in the agriculture sector of the middle and lower reaches of the Amu Darya River Basin (ADRB) have significantly influenced the gradual shrinking of the Aral Sea and its ecosystem. In this study, we investigated the crop water consumption in the growing seasons and the irrigation water requirement for different crop types in the lower ADRB during 2004-2017. We applied the FAO Penman-Monteith method to estimate reference evapotranspiration (ET0) based on daily climatic data collected from four meteorological stations. Crop evapotranspiration (ETc) of specific crop types was calculated by the crop coefficient. Then, we analyzed the net irrigation requirement (NIR) based on the effective precipitation with crop water requirements. The results indicated that the lowest monthly ET0 values in the lower ADRB were found in December (18.2 mm) and January (16.0 mm), and the highest monthly ET0 values were found in June and July, with similar values of 211.6 mm. The annual ETc reached to 887.2, 1002.1, and 492.0 mm for cotton, rice, and wheat, respectively. The average regional NIR ranged from 514.9 to 715.0 mm in the 10 Irrigation System Management Organizations (UISs) in the study area, while the total required irrigation volume for the whole region ranged from 4.2×109 to 11.6×109 m3 during 2004-2017. The percentages of NIR in SIW (surface irrigation water) ranged from 46.4% to 65.2% during the study period, with the exceptions of the drought years of 2008 and 2011, in which there was a significantly less runoff in the Amu Darya River. This study provides an overview for local water authorities to achieve optimal regional water allocation in the study area.

Table and Figures | Reference | Related Articles | Metrics
Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from saline soil of Uzbekistan and their plant beneficial traits
Vyacheslav SHURIGIN, Dilfuza EGAMBERDIEVA, LI Li, Kakhramon DAVRANOV, Hovik PANOSYAN, Nils-Kåre BIRKELAND, Stephan WIRTH, Sonoko D BELLINGRATH-KIMURA
Journal of Arid Land    2020, 12 (5): 730-740.   DOI: 10.1007/s40333-020-0019-4
Abstract171)   HTML8)    PDF (423KB)(658)      

Endophytic bacteria of halophytic plants play essential roles in salt stress tolerance. Therefore, an understanding of the true nature of plant-microbe interactions under extreme conditions is essential. The current study aimed to identify cultivable endophytic bacteria associated with the roots and shoots of Seidlitzia rosmarinus Ehrenb. ex Boiss. grown in the salt-affected soil in Uzbekistan and to evaluate their plant beneficial traits related to plant growth stimulation and stress tolerance. Bacteria were isolated from the roots and the shoots of S. rosmarinus using culture-dependent techniques and identified by the 16S rRNA gene. RFLP (Restriction Fragment Length Polymorphism) analysis was conducted to eliminate similar isolates. Results showed that the isolates from the roots of S. rosmarinus belonged to the genera Rothia, Kocuria, Pseudomonas, Staphylococcus, Paenibacillus and Brevibacterium. The bacterial isolates from the shoots of S. rosmarinus belonged to the genera Staphylococcus, Rothia, Stenotrophomonas, Brevibacterium, Halomonas, Planococcus, Planomicrobium and Pseudomonas, which differed from those of the roots. Notably, Staphylococcus, Rothia and Brevibacterium were detected in both roots and shoots, indicating possible migration of some species from roots to shoots. The root-associated bacteria showed higher levels of IAA (indole-3-acetic acid) synthesis compared with those isolated from the shoots, as well as the higher production of ACC (1-aminocyclopropane-1-carboxylate) deaminase. Our findings suggest that halophytic plants are valuable sources for the selection of microbes with a potential to improve plant fitness under saline soils.

Table and Figures | Reference | Related Articles | Metrics
Assessing the effects of vegetation and precipitation on soil erosion in the Three-River Headwaters Region of the Qinghai-Tibet Plateau, China
HE Qian, DAI Xiao'ai, CHEN Shiqi
Journal of Arid Land    2020, 12 (5): 865-886.   DOI: 10.1007/s40333-020-0075-9
Abstract176)   HTML4)    PDF (2546KB)(640)      

Soil erosion in the Three-River Headwaters Region (TRHR) of the Qinghai-Tibet Plateau in China has a significant impact on local economic development and ecological environment. Vegetation and precipitation are considered to be the main factors for the variation in soil erosion. However, it is a big challenge to analyze the impacts of precipitation and vegetation respectively as well as their combined effects on soil erosion from the pixel scale. To assess the influences of vegetation and precipitation on the variation of soil erosion from 2005 to 2015, we employed the Revised Universal Soil Loss Equation (RUSLE) model to evaluate soil erosion in the TRHR, and then developed a method using the Logarithmic Mean Divisia Index model (LMDI) which can exponentially decompose the influencing factors, to calculate the contribution values of the vegetation cover factor (C factor) and the rainfall erosivity factor (R factor) to the variation of soil erosion from the pixel scale. In general, soil erosion in the TRHR was alleviated from 2005 to 2015, of which about 54.95% of the area where soil erosion decreased was caused by the combined effects of the C factor and the R factor, and 41.31% was caused by the change in the R factor. There were relatively few areas with increased soil erosion modulus, of which 64.10% of the area where soil erosion increased was caused by the change in the C factor, and 23.88% was caused by the combined effects of the C factor and the R factor. Therefore, the combined effects of the C factor and the R factor were regarded as the main driving force for the decrease of soil erosion, while the C factor was the dominant factor for the increase of soil erosion. The area with decreased soil erosion caused by the C factor (12.10×103 km2) was larger than the area with increased soil erosion caused by the C factor (8.30×103 km2), which indicated that vegetation had a positive effect on soil erosion. This study generally put forward a new method for quantitative assessment of the impacts of the influencing factors on soil erosion, and also provided a scientific basis for the regional control of soil erosion.

Table and Figures | Reference | Related Articles | Metrics
Relationship of species diversity between overstory trees and understory herbs along the environmental gradients in the Tianshan Wild Fruit Forests, Northwest China
CHENG Junhui, SHI Xiaojun, FAN Pengrui, ZHOU Xiaobing, SHENG Jiandong, ZHANG Yuanming
Journal of Arid Land    2020, 12 (4): 618-629.   DOI: 10.1007/s40333-020-0055-0
Abstract123)   HTML7)    PDF (801KB)(633)      

In forest ecosystems, interactions between overstory trees and understory herbs play an important role in driving plant species diversity. However, reported links between overstory tree and understory herb species diversity have been inconsistent, due to variations in forest types and environmental conditions. Here, we measured species richness (SR) and diversity (Shannon-Wiener (H') and Simpson's (D) indices) of overstory trees and understory herbs in the protected Tianshan Wild Fruit Forest (TWFF), Northwest China, to explore their relationships along the latitudinal, longitudinal, elevational, and climatic (current climate and paleoclimate) gradients in 2018. We found that SR, and H' and D diversity indices of overstory trees and understory herbs exhibited a unimodal pattern with increasing latitude and elevation (P<0.05) and negative associations with longitude (P<0.01). Along the climatic gradients, there were U-shaped patterns in SR, and H' and D diversity indices between trees and herbs (P<0.05). SR, and H' and D diversity indices for overstory tree species were positively associated with those for understory herbs (P<0.01). These findings indicate that overstory trees and understory herbs should be protected concurrently in the TWFF to increase effectiveness of species diversity conservation programs.

Table and Figures | Reference | Related Articles | Metrics
Global Dryland Ecosystem Programme (G-DEP): Africa consultative meeting report
PENG Yu, FU Bojie, ZHANG Linxiu, YU Xiubo, FU Chao, Salif DIOP, Hubert HIRWA, Aliou GUISSE, LI Fadong
Journal of Arid Land    2020, 12 (3): 538-544.   DOI: 10.1007/s40333-020-0056-z
Abstract148)   HTML10)    PDF (218KB)(605)      

In order to enhance and restore the ecosystems of natural capital in African arid regions, the Global Dryland Ecosystem Programme (G-DEP) consultative meeting was hosted in Dakar, Senegal, from 23 to 25 September 2019. This paper details the first African meeting of the G-DEP. Consultative meeting reviewed preceding dryland ecosystems case studies, identified vulnerable arid and semi-arid regions, and proposed sustainable solutions to problems. It also identified the successes and failures of previous attempts to improve vulnerable ecosystems and ultimately formed an action plan to improve these attempts. Climate, ecosystems, and livelihoods for Sustainable Development Goals (SDGs), Great Green Wall Initiative (GGWI) for Sahara and Sahel, and China-Africa cooperation on science, technology, and innovation are three extra main sections concerned of the meeting. Separately, more specific topics as the complicated relationship between these natural processes and human activity, including pastoralism, soil restoration, and vegetation regenerate techniques, were fully discussed. Consultative meeting also identified the positive effects international collaboration can have on dryland regions, specifically in the capacity of sharing information, technology, and innovation on purpose to develop a joint proposal for long-term research programs in African arid and semi-arid areas. Moreover, meetings that review the progress made on ecosystem management for the sustainable livelihoods in Africa, identification of priority areas, and the development and implementation of ecosystem programs for proper research and collaboration in African arid and semi-arid zones, have been proposed as strategic recommendations to enhance the global partnership for sustainable development. Furthermore, as the outcomes of the workshop, there are three steps proposed to handle African dryland climate changes, several aspects suggested to solve current dilemmas of the GGWI, and a series of actions recommended for G-DEP related activities in Africa.

Reference | Related Articles | Metrics
Rehabilitation of degraded areas in northeastern Patagonia, Argentina: Effects of environmental conditions and plant functional traits on performance of native woody species
Juan M ZEBERIO, Carolina A PéREZ
Journal of Arid Land    2020, 12 (4): 653-665.   DOI: 10.1007/s40333-020-0021-x
Abstract73)   HTML4)    PDF (518KB)(599)      

Degradation processes affect a vast area of arid and semi-arid lands around the world and damage the environment and people′s health. Degradation processes are driven by human productive activities that cause direct and indirect effects on natural resources, such as species extinction at regional scale, reduction and elimination of vegetation cover, soil erosion, etc. In this context, ecological rehabilitation is an important tool to recover key aspects of the degraded ecosystem. Rehabilitation trials rely on the use of native plant species with characteristics that allow them to obtain high survival and growth rates. The aim of this work was to assess the survival and growth of native woody species in degraded areas of northeastern Patagonia and relate them to plant functional traits and environmental variables. We observed high early and late survival rates, and growth rates in Prosopis flexuosa DC. var. depressa F.A. Roig and Schinus johnstonii F.A. Barkley, and low values in Condalia microphylla Cav. and Geoffroea decorticans (Gillies ex Hook. & Arn.) Burkart. Early survival rates were positively associated with specific leaf area (SLA) and precipitation, but negatively associated with wood density, the maximum mean temperature of the warmest month and the minimum mean temperature of the coldest month. Late survival rates were positively associated with SLA and soil organic matter, but negatively associated with plant height and precipitation. The temperature had a positive effect on late survival rates once the plants overcame the critical period of the first summer after they were transplanted to the field. Prosopis flexuosa and S. johnstonii were the most successful species in our study. This could be due to their functional traits that allow these species to acclimatize to the local environment. Further research should focus on C. microphylla and G. decorticans to determine how they relate to productive conditions, acclimation to environmental stress, auto-ecology and potential use in ecological rehabilitation trials.

Table and Figures | Reference | Related Articles | Metrics
Application of a new wind driving force model in soil wind erosion area of northern China
ZOU Xueyong, LI Huiru, LIU Wei, WANG Jingpu, CHENG Hong, WU Xiaoxu, ZHANG Chunlai, KANG Liqiang
Journal of Arid Land    2020, 12 (3): 423-435.   DOI: 10.1007/s40333-020-0103-9
Abstract144)   HTML7)    PDF (1702KB)(580)      

The shear stress generated by the wind on the land surface is the driving force that results in the wind erosion of the soil. It is an independent factor influencing soil wind erosion. The factors related to wind erosivity, known as submodels, mainly include the weather factor (WF) in revised wind erosion equation (RWEQ), the erosion submodel (ES) in wind erosion prediction system (WEPS), as well as the drift potential (DP) in wind energy environmental assessment. However, the essential factors of WF and ES contain wind, soil characteristics and surface coverings, which therefore results in the interdependence between WF or ES and other factors (e.g., soil erodible factor) in soil erosion models. Considering that DP is a relative indicator of the wind energy environment and does not have the value of expressing wind to induce shear stress on the surface. Therefore, a new factor is needed to express accurately wind erosivity. Based on the theoretical basis that the soil loss by wind erosion (Q) is proportional to the shear stress of the wind on the soil surface, a new model of wind driving force (WDF) was established, which expresses the potential capacity of wind to drive soil mass in per unit area and a period of time. Through the calculations in the typical area, the WDF, WF and DP are compared and analyzed from the theoretical basis, construction goal, problem-solving ability and typical area application; the spatial distribution of soil wind erosion intensity was concurrently compared with the spatial distributions of the WDF, WF and DP values in the typical area. The results indicate that the WDF is better to reflect the potential capacity of wind erosivity than WF and DP, and that the WDF model is a good model with universal applicability and can be logically incorporated into the soil wind erosion models.

Table and Figures | Reference | Related Articles | Metrics
Ice thickness distribution and volume estimation of Burqin Glacier No. 18 in the Chinese Altay Mountains
JIN Shuang, LI Zhongqin, WANG Zemin, WANG Feiteng, XU Chunhai, AI Songtao
Journal of Arid Land    2020, 12 (6): 905-916.   DOI: 10.1007/s40333-020-0083-9
Abstract117)   HTML17)    PDF (2563KB)(566)      

Information on the thickness distribution and volume of glacier ice is highly important for glaciological applications; however, detailed measurements of the ice thickness of many glaciers in the Chinese Altay Mountains remain lacking. Burqin Glacier No. 18 is a northeast-orientated cirque glacier located on the southern side of the Altay Mountains. This study used PulseEKKO® PRO 100A enhancement ground-penetrating radar (GPR) to survey the ice thickness and volume of Burqin Glacier No. 18 in summer 2018. Together with GPR surveying, spatial distributed profiles of the GPR measurements were concurrently surveyed using the real-time kinematic (RTK) global navigation satellite system (GNSS, Unistrong E650). Besides, we used QuickBird, WorldView-2, and Landsat TM to delineate accurate boundary of the glacier for undertaking estimation of glacier ice volume. GPR measurements revealed that the basal topography of profile B1-B2 was flat, the basal topography of profile C1-C2 presented a V-type form, and the basal topography of profile D1-D2 had a typical U-type topographic feature because the bedrock near the central elevation of the glacier was relatively flat. The longitudinal profile A1-A2 showed a ladder-like distribution. Glacier ice was thin at the terminus and its thickness increased gradually from the elevation of approximately 2620 m a.s.l. along the main axis of the glacier tongue with an average value of 80 (±1) m. The average ice thickness of the glacier was determined as 27 (±2) m and its total ice volume was estimated at 0.031 (±0.002) km3. Interpretation of remote sensing images indicated that during 1989-2016, the glacier area reduced from 1.30 to 1.17 km2 (reduction of 0.37%/a) and the glacier terminus retreated at the rate of 8.48 m/a. The mean ice thickness of Burqin Glacier No. 18 was less than that of the majority of other observed glaciers in China, especially those in the Qilian Mountains and Central Chinese Tianshan Mountains; this is probably attributable to differences in glacier type and climatic setting.

Table and Figures | Reference | Related Articles | Metrics
Impacts of snow on seed germination are independent of seed traits and plant ecological characteristics in a temperate desert of Central Asia
Anlifeire ANNIWAER, SU Yangui, ZHOU Xiaobing, ZHANG Yuanming
Journal of Arid Land    2020, 12 (5): 775-790.   DOI: 10.1007/s40333-020-0059-9
Abstract160)   HTML4)    PDF (451KB)(554)      

Seed germination profoundly impacts plant community composition within the plant life cycle. Snow is an important source of water for seed germination in the temperate deserts of Central Asia. Understanding how seed germination responds to variations in snow cover in relation to seed traits and plant ecological characteristics can help predict plant community sustainability and stability in Central Asia under a scenario climate change. This study investigated the seed germination of 35 plant species common to the Gurbantunggut Desert in Central Asia under the three snow treatments: (1) snow addition; (2) ambient snow; and (3) snow removal. Two-way analysis of variance (ANOVA) tests were performed to assess interactions among the impacts of snow treatments, seed traits and plant ecological characteristics on seed germination. Phylogenetic generalized least-squares (PGLS) model was used to test the relationships between seed traits and seed germination. The results demonstrated that snow variations had no significant impacts on seed germination overall. Seed germination under the snow addition treatment was similar with that under the ambient snow treatment, irrespective of seed traits and plant ecological characteristics. Snow removal only had negative impacts on seed germination for certain groups of seed traits and plant ecological characteristics. Seed mass positively affected seed germination, showing a linear increase of arcsin square root-transformed seed germination with log-transformed seed mass. Seed shape also profoundly impacted seed germination, with a higher germination percentage for elongated and flat seeds. Seed germination differed under different plant life forms, with semi-shrub species showing a significantly higher germination percentage. Most importantly, although snow treatments, seed traits and plant ecological characteristics had no interactive effects on seed germination overall, some negative impacts from the snow removal treatment were detected when seeds were categorized on the basis of seed mass and shape. This result suggests that variations of snow cover may change plant community composition in this temperate desert due to their impacts on seed germination.

Table and Figures | Reference | Related Articles | Metrics
Physio-biochemical and nutrient constituents of peanut plants under bentazone herbicide for broad-leaved weed control and water regimes in dry land areas
Hani S SAUDY, Ibrahim M EL-METWALLY, Goma A ABD EL-SAMAD
Journal of Arid Land    2020, 12 (4): 630-639.   DOI: 10.1007/s40333-020-0020-y
Abstract105)   HTML7)    PDF (391KB)(554)      

The abundance of broad-leaved weeds in peanut fields represents the handicap in weed management programs, since limited specific herbicides can be recommended to control them. Moreover, the physio-biochemical constituents and nutritional status in peanut plants as affected by available herbicides, i.e., bentazone under water stress conditions are not well known. Therefore, field trials were conducted during the growing seasons in 2016 and 2017 to investigate the interactional impact of irrigation levels (I50, I75 and I100, representing irrigation by 50%, 75% and 100% of crop evapotranspiration, respectively) and weed control practices (bentazone, bentazone+hoeing once, hoeing twice and weedy check as control) on dominant broad-leaved weeds as well as peanut physiological and agronomic traits. Result indicated that the efficiency of weed control for each weeded treatment under I50 significantly equaled with its counterpart under I75 or I100. Bentazone+hoeing once diminished weed biomass by 89.3% and enhanced chlorophyll content of peanut plants by 51.2%. Bentazone relatively caused a reduction in carotenoides. Hoeing twice and bentazone+hoeing once under I100 in both growing seasons as well as hoeing twice under I75 in 2017 were the superior combinations for boosting pod yield of peanut plants. Treatment of bentazone+hoeing once and I75 recorded the lowest reduction in N utilization percentage and the highest increase in potassium utilization percentage of peanut plants. Eliminating weeds enhanced water use efficiency by 37.8%, 49.6% and 34.7% under I50, I75 and I100, respectively. In conclusion, peanut seems to be tolerant to bentazone at moderate water supply, thus it can be safely used in controlling the associated broad-leaved weeds.

Table and Figures | Reference | Related Articles | Metrics
Effects of different loading rates and types of biochar on passivations of Cu and Zn via swine manure composting
CHEN Yan, XU Yongping, QU Fangjing, HOU Fuqin, CHEN Hongli, LI Xiaoyu
Journal of Arid Land    2020, 12 (6): 1056-1070.   DOI: 10.1007/s40333-020-0026-5
Abstract61)   HTML4)    PDF (694KB)(550)      

Pollution of arable land caused by heavy metals in livestock and poultry manure has become a potential threaten to human health in China. Safe disposal of the contained toxic pollution with animal manure by co-composting with biochar is one of the alternative methods. Biochars from different sources (wheat straw, peanut shells and rice husks) amended with different loading rates were investigated for passivations of copper and zinc (Cu and Zn) in swine manure composting. Results showed that the passivation effects of the three types of biochar on Cu and Zn were enhanced with increasing biochar dose. Contents of Cu and Zn measured by diethylenetriaminepentaacetic acid (DTPA) and Community Bureau of Reference (CBR) showed that wheat straw biochar with the loading rates of 10%-13% (w/w) was superior to the other two types of biochar in this study. Compared with the control, sample from wheat straw biochar was more favorable for the bacterial growth of Proteobacteria, Firmicutes and Actinobacteria. In addition, pot experiment showed that organic fertilizer amended with wheat straw biochar could significantly improve the growth of Chinese pakchoi and enzyme activities (superoxide dismutase, peroxidase, polyphenol oxidase and catalase) as compared with the control. Cu and Zn contents of Chinese pakchoi in the organic fertilizer group containing wheat straw biochar reduced by 73.2% and 45.2%, 65.8% and 33.6%, respectively, compared with the group without loading biochar. There was no significant difference in the contents of vitamin C and reducing sugar between the groups of organic fertilizer amended with/without wheat straw biochar, however, there was significant difference compared with the heavy metal addition group. The application of organic fertilizer formed by adding biochar can effectively reduce the adverse effects of heavy metals on crops.

Table and Figures | Reference | Related Articles | Metrics
Near-surface wind environment in the Yarlung Zangbo River basin, southern Tibetan Plateau
YANG Junhuai, XIA Dunsheng, WANG Shuyuan, TIAN Weidong, MA Xingyue, CHEN Zixuan, GAO Fuyuan, LING Zhiyong, DONG Zhibao
Journal of Arid Land    2020, 12 (6): 917-936.   DOI: 10.1007/s40333-020-0104-8
Abstract125)   HTML11)    PDF (1774KB)(545)      

Aeolian processes have been studied extensively at low elevations, but have been relatively little studied at high elevations. Aeolian sediments are widely distributed in the Yarlung Zangbo River basin, southern Tibetan Plateau, which is characterized by low pressure and low temperature. Here, we comprehensively analyzed the wind regime using data since 1980 from 11 meteorological stations in the study area, and examined the interaction between the near-surface wind and aeolian environment. The wind environment exhibited significant spatial and temporal variation, and mean wind speed has generally decreased on both annual and seasonal bases since 1980, at an average of 0.181 m/(s·10a). This decrease resulted from the reduced contribution of maximum wind speed, and depended strongly on variations of the frequency of sand-driving winds. The drift potential and related parameters also showed obvious spatial and temporal variation, with similar driving forces for the wind environment. The strength of the wind regime affected the formation and development of the aeolian geomorphological pattern, but with variation caused by local topography and sediment sources. The drift potential and resultant drift direction were two key parameters, as they quantify the dynamic conditions and depositional orientation of the aeolian sediments. Wind affected the spatial variation in sediment grain size, but the source material and complex topographic effects on the near-surface wind were the underlying causes for the grain size distribution of aeolian sands. These results will support efforts to control aeolian desertification in the basin and improve our understanding of aeolian processes in high-elevation environments.

Table and Figures | Reference | Related Articles | Metrics
Spatial and temporal gradients in the rate of dust deposition and aerosol optical thickness in southwestern Iran
Mansour A FOROUSHANI, Christian OPP, Michael GROLL
Journal of Arid Land    2021, 13 (1): 1-22.   DOI: 10.1007/s40333-020-0079-5
Abstract134)   HTML13)    PDF (3411KB)(541)      

The southwestern Iran is one of the regions that are most prone to dust events. The objective of this study is the analysis of the spatial and temporal distributions of dust deposition rate as a key factor for finding the relative impact of the dust. First, the monthly mean aerosol optical thickness (AOT) from Moderate Resolution Imaging Spectroradiometer (MODIS) was analyzed and compared with the dust amount variations from ground deposition rate (GDR), and the results were further used to investigate the spatial and temporal distributions of dust events in southwestern Iran for the period between 2014 and 2015. Moving air mass trajectories, using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, were proven to be a discriminator of their local and regional origin. The results from GDR analysis produced a correlation coefficient between dust event history and deposition rates at dust magnitudes of >0.93 that is meaningful at the 95% confidence level. Furthermore, the deposition rates varied from 3 g/m2 per month in summer to 10 g/m2 per month in spring and gave insight into the transport direction of the dust. Within the same time series, AOT correspondences with MODIS on Terra in four aerosol thickness layers (clean, thin, thick, and strong thick) were shown in relation to each other. The deepest mixed layers were observed in spring and summer with a thickness of approximately 3500 m above ground level in the study area. Investigations of ground-based observations were correlated with the same variations for each aerosol thickness layer from MODIS images and they can be applied to discriminate layers of aeolian dust from layers of other aerosols. Together, dust distribution plots from AOT participated to enhance mass calculations and estimation deposition rates from the thick and strong thick aerosol thickness layers using the results from GDR. Despite all the advances of AOT, under certain circumstances, ground-based observations are better able to represent aerosol conditions over the study area, which were tested in southwestern Iran, even though the low number of observations is a commonly acknowledged drawback of GDR.

Table and Figures | Reference | Related Articles | Metrics
Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China
LI Xuemei, Slobodan P SIMONOVIC, LI Lanhai, ZHANG Xueting, QIN Qirui
Journal of Arid Land    2020, 12 (3): 374-396.   DOI: 10.1007/s40333-020-0065-y
Abstract199)   HTML7)    PDF (1311KB)(538)      

Short-term climate reconstruction, i.e., the reproduction of short-term (several decades) historical climatic time series based on the relationship between observed data and available longer-term reference data in a certain area, can extend the length of climatic time series and offset the shortage of observations. This can be used to assess regional climate change over a much longer time scale. Based on monthly grid climate data from a Coupled Model Inter-comparison Project phase 5 (CMIP5) dataset for the period of 1850-2000, the Climatic Research Unit (CRU) dataset for the period of 1901-2000 and the observed data from 53 meteorological stations located in the Tianshan Mountains region (TMR) of China during the period of 1961-2011, we calibrated and validated monthly average temperature (MAT) and monthly accumulated precipitation (MAP) in the TMR using the delta, physical scaling (SP) and artificial neural network (ANN) methods. Performance and uncertainty during the calibration (1971-1999) and verification (1961-1970) periods were assessed and compared using traditional performance indices and a revised set pair analysis (RSPA) method. The calibration and verification processes were subjected to various sources of uncertainty due to the influence of different reconstructed variables, different data sources, and/or different methods used. According to traditional performance indices, both the CRU and CMIP5 datasets resulted in satisfactory calibrated and verified MAT time series at 53 meteorological stations and MAP time series at 20 meteorological stations using the delta and SP methods for the period of 1961-1999. However, the results differed from those obtained by the RSPA method. This showed that the CRU dataset produced a low degree of uncertainty (positive connection degree) during the calibration and verification of MAT using the delta and SP methods compared to the CMIP5 dataset. Overall, the calibrated and verified MAP had a high degree of uncertainty (negative connection degree) regardless of the dataset or reconstruction method used. Therefore, the reconstructed time series of MAT for the period of 1850 (or 1901)-1960 based on the CRU and CMIP5 datasets using the delta and SP methods could be used for further study. The results of this study will be useful for short-term (several decades) regional climate reconstruction and longer-term (100 a or more) assessments of regional climate change.

Table and Figures | Reference | Related Articles | Metrics
Can climate change influence agricultural GTFP in arid and semi-arid regions of Northwest China?
FENG Jian, ZHAO Lingdi, ZHANG Yibo, SUN Lingxiao, YU Xiang, YU Yang
Journal of Arid Land    2020, 12 (5): 837-853.   DOI: 10.1007/s40333-020-0073-y
Abstract95)   HTML12)    PDF (572KB)(530)      

There are eight provinces and autonomous regions (Gansu Province, Ningxia Hui Autonomous Region, Xinjiang Uygur Autonomous Region, Inner Mongolia Autonomous Region, Tibet Autonomous Region, Qinghai Province, Shanxi Province, and Shaanxi Province) in Northwest China, most areas of which are located in arid and semi-arid regions (northwest of the 400 mm precipitation line), accounting for 58.74% of the country's land area and sustaining approximately 7.84×106 people. Because of drought conditions and fragile ecology, these regions cannot develop agriculture at the expense of the environment. Given the challenges of global warming, the green total factor productivity (GTFP), taking CO2 emissions as an undesirable output, is an effective index for measuring the sustainability of agricultural development. Agricultural GTFP can be influenced by both internal production factors (labor force, machinery, land, agricultural plastic film, diesel, pesticide, and fertilizer) and external climate factors (temperature, precipitation, and sunshine duration). In this study, we used the Super-slacks-based measure (Super-SBM) model to measure agricultural GTFP during the period 2000-2016 at the regional level. Our results show that the average agricultural GTFP of most provinces and autonomous regions in arid and semi-arid regions underwent a fluctuating increase during the study period (2000-2016), and the fluctuation was caused by the production factors (input and output factors). To improve agricultural GTFP, Shaanxi, Shanxi, and Gansu should reduce agricultural labor force input; Shaanxi, Inner Mongolia, Gansu, and Shanxi should decrease machinery input; Shaanxi, Inner Mongolia, Xinjiang, and Shanxi should reduce fertilizer input; Shaanxi, Xinjiang, Gansu, and Ningxia should reduce diesel input; Xinjiang and Gansu should decrease plastic film input; and Gansu, Shanxi, and Inner Mongolia should cut pesticide input. Desirable output agricultural earnings should be increased in Qinghai and Tibet, and undesirable output (CO2 emissions) should be reduced in Inner Mongolia, Xinjiang, Gansu, and Shaanxi. Agricultural GTFP is influenced not only by internal production factors but also by external climate factors. To determine the influence of climate factors on GTFP in these provinces and autonomous regions, we used a Geographical Detector (Geodetector) model to analyze the influence of climate factors (temperature, precipitation, and sunshine duration) and identify the relationships between different climate factors and GTFP. We found that temperature played a significant role in the spatial heterogeneity of GTFP among provinces and autonomous regions in arid and semi-arid regions. For Xinjiang, Inner Mongolia, and Tibet, a suitable average annual temperature would be in the range of 7°C-9°C; for Gansu, Shanxi, and Ningxia, it would be 11°C-13°C; and for Shaanxi, it would be 15°C-17°C. Stable climatic conditions and more efficient production are prerequisites for the development of sustainable agriculture. Hence, in the agricultural production process, reducing the redundancy of input factors is the best way to reduce CO2 emissions and to maintain temperatures, thereby improving the agricultural GTFP. The significance of this study is that it explores the impact of both internal production factors and external climatic factors on the development of sustainable agriculture in arid and semi-arid regions, identifying an effective way forward for the arid and semi-arid regions of Northwest China.

Table and Figures | Reference | Related Articles | Metrics
Freeze-thaw effects on erosion process in loess slope under simulated rainfall
SU Yuanyi, LI Peng, REN Zongping, XIAO Lie, ZHANG Hui
Journal of Arid Land    2020, 12 (6): 937-949.   DOI: 10.1007/s40333-020-0106-6
Abstract79)   HTML8)    PDF (633KB)(526)      

Seasonal freeze-thaw processes have led to severe soil erosion in the middle and high latitudes. The area affected by freeze-thaw erosion in China exceeds 13% of the national territory. So understanding the effect of freeze-thaw on erosion process is of great significance for soil and water conservation as well as for ecological engineering. In this study, we designed simulated rainfall experiments to investigate soil erosion processes under two soil conditions, unfrozen slope (UFS) and frozen slope (FS), and three rainfall intensities of 0.6, 0.9 and 1.2 mm/min. The results showed that the initial runoff time of FS occurred much earlier than that of the UFS. Under the same rainfall intensity, the runoff of FS is 1.17-1.26 times that of UFS; and the sediment yield of FS is 6.48-10.49 times that of UFS. With increasing rainfall time, rills were produced on the slope. After the appearance of the rills, the sediment yield on the FS accounts for 74%-86% of the total sediment yield. Rill erosion was the main reason for the increase in soil erosion rate on FS, and the reduction in water percolation resulting from frozen layers was one of the important factors leading to the advancement of rills on slope. A linear relationship existed between the cumulative runoff and the sediment yield of UFS and FS (R2>0.97, P<0.01). The average mean weight diameter (MWD) on the slope erosion particles was as follows: UFS0.9 (73.84 μm)>FS0.6 (72.30 μm)>UFS1.2 (72.23 μm)>substrate (71.23 μm)>FS1.2 (71.06 μm)>FS0.9 (70.72 μm). During the early stage of the rainfall, the MWD of the FS was relatively large. However, during the middle to late rainfall, the particle composition gradually approached that of the soil substrate. Under different rainfall intensities, the mean soil erodibility (MK) of the FS was 7.22 times that of the UFS. The ratio of the mean regression coefficient C2 (MC2) between FS and UFS was roughly correspondent with MK. Therefore, the parameter C2 can be used to evaluate soil erodibility after the appearance of the rills. This article explored the influence mechanism of freeze-thaw effects on loess soil erosion and provided a theoretical basis for further studies on soil erosion in the loess hilly regions.

Table and Figures | Reference | Related Articles | Metrics
Long-term variations in runoff of the Syr Darya River Basin under climate change and human activities
Sanim BISSENBAYEVA, Jilili ABUDUWAILI, Assel SAPAROVA, Toqeer AHMED
Journal of Arid Land    2021, 13 (1): 56-70.   DOI: 10.1007/s40333-021-0050-0
Abstract91)   HTML10)    PDF (1334KB)(523)      

In this study, we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930-2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff. The Syr Darya River, which is supplied by snow and glacier meltwater upstream, is an important freshwater source for Central Asia, as nearly half of the population is concentrated in this area. River runoff in this arid region is sensitive to climate change and human activities. Therefore, estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management. The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods, including the Pettitt change point test and Mann-Kendall trend tests. It was found that 8 out of 11 hydrological stations showed significant downward trends in river runoff. Change of river runoff variations occurred in the year around 1960. Moreover, during the study period (1930-2015), annual mean temperature, annual precipitation, and annual potential evapotranspiration in the river basin increased substantially. We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration. It was estimated that human activities accounted for over 82.6%-98.7% of the reduction in river runoff, mainly owing to water withdrawal for irrigation purpose. The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.

Table and Figures | Reference | Related Articles | Metrics
Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index
Ayad M F AL-QURAISHI, Heman A GAZNAYEE, Mattia CRESPI
Journal of Arid Land    2021, 13 (4): 413-430.   DOI: 10.1007/s40333-021-0062-9
Abstract367)   HTML31)    PDF (3359KB)(516)      

Drought was a severe recurring phenomenon in Iraq over the past two decades due to climate change despite the fact that Iraq has been one of the most water-rich countries in the Middle East in the past. The Iraqi Kurdistan Region (IKR) is located in the north of Iraq, which has also suffered from extreme drought. In this study, the drought severity status in Sulaimaniyah Province, one of four provinces of the IKR, was investigated for the years from 1998 to 2017. Thus, Landsat time series dataset, including 40 images, were downloaded and used in this study. The Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI) were utilized as spectral-based drought indices and the Standardized Precipitation Index (SPI) was employed as a meteorological-based drought index, to assess the drought severity and analyse the changes of vegetative cover and water bodies. The study area experienced precipitation deficiency and severe drought in 1999, 2000, 2008, 2009, and 2012. Study findings also revealed a drop in the vegetative cover by 33.3% in the year 2000. Furthermore, the most significant shrinkage in water bodies was observed in the Lake Darbandikhan (LDK), which lost 40.5% of its total surface area in 2009. The statistical analyses revealed that precipitation was significantly positively correlated with the SPI and the surface area of the LDK (correlation coefficients of 0.92 and 0.72, respectively). The relationship between SPI and NDVI-based vegetation cover was positive but not significant. Low precipitation did not always correspond to vegetative drought; the delay of the effect of precipitation on NDVI was one year.

Table and Figures | Reference | Related Articles | Metrics
Application of SALTMED and HYDRUS-1D models for simulations of soil water content and soil salinity in controlled groundwater depth
Masoud NOSHADI, Saghar FAHANDEJ-SAADI, Ali R SEPASKHAH
Journal of Arid Land    2020, 12 (3): 447-461.   DOI: 10.1007/s40333-020-0002-0
Abstract191)   HTML6)    PDF (757KB)(508)      

Salinization is a gradual process that should be monitored. Modelling is a suitable alternative technique that saves time and cost for the field monitoring. But the performance of the models should be evaluated using the measured data. Therefore, the aim of this study was to evaluate and compare the SALTMED and HYDRUS-1D models using the measured soil water content, soil salinity and wheat yield data under different levels of saline irrigation water and groundwater depth. The field experiment was conducted in 2013 and in this research three controlled groundwater depths, i.e., 60 (CD60), 80 (CD80) and 100 (CD100) cm and two salinity levels of irrigation water, i.e., 4 (EC4) and 8 (EC8) dS/m were used in a complete randomized design with three replications. Soil water content and soil salinity were measured in soil profile and compared with the predicted values by the SALTMED and HYDRUS-1D models. Calibrations of the SALTMED and HYDRUS-1D models were carried out using the measured data under EC4-CD100 treatment and the data of the other treatments were used for validation. The statistical parameters including normalized root mean square error (NRMSE) and degree of agreement (d) showed that the values for predicting soil water content and soil salinity were more accurate in the HYDRUS-1D model than in the SALTMED model. The NRMSE and d values of the HYDRUS-1D model were 9.6% and 0.64 for the predicted soil water content and 6.2% and 0.98 for the predicted soil salinity, respectively. These indices of the SALTMED model were 10.6% and 0.81 for the predicted soil water content and 11.0% and 0.97 for the predicted soil salinity, respectively. According to the NRMSE and d values for the predicted wheat yield (9.8% and 0.91, respectively) and dry matter (2.9% and 0.99, respectively), we concluded that the SALTMED model predicted the wheat yield and dry matter accurately.

Table and Figures | Reference | Related Articles | Metrics
Biomass and carbon stocks in three types of Persian oak ( Quercus brantii var. persica) of Zagros forests in a semi-arid area, Iran
Ali MAHDAVI, Soghra SAIDI, Yaghob IRANMANESH, Mostafa NADERI
Journal of Arid Land    2020, 12 (5): 766-774.   DOI: 10.1007/s40333-020-0027-4
Abstract92)   HTML5)    PDF (252KB)(501)      

Persian oak (Quercus brantii var. persica) is a dominant tree species of Zagros forests in a semi-arid area, western Iran. However, the capacity of biomass and carbon stocks of these forests is not well studied. We selected three types of oak, i.e., seed-originated oak, coppice oak and mixed (seed-originated and coppice) oak of Zagros forests in Dalab valley, Ilam Province, Iran to survey the capacity of biomass and carbon stocks in 2018. Thirty plots with an area of 1000 m2 were systematically and randomly assigned to each type of oak. Quantitative characteristics of trees, such as diameter at breast height (DBH), height, crown diameter and the number of sprouts in each plot were measured. Then, aboveground biomass (AGB), belowground biomass (BGB), aboveground carbon stock (AGCS) and belowground carbon stock (BGCS) of each tree in plots were calculated using allometric equations. The litterfall biomass (LFB) and litterfall carbon stock (LFCS) were measured in a quadrat with 1 m×1 m in each plot. One-way analysis of variance and Duncan's test were performed to detect the differences in biomass and carbon stocks among three types of oak. Results showed that AGB, BGB and BGCS were significantly different among three types of oak. The highest values of AGB, AGCS, BGB and BGCS in seed-originated oak were 76,043.25, 14,725.55, 36,737.79 and 7362.77 kg/hm2, respectively. Also, the highest values of LFB and LFCS in seed-originated oak were 3298.33 and 1520.48 kg/hm2, respectively, which were significantly higher than those of the other two types of oak. The results imply the significant role of seed-originated oak for the regeneration of Zagros forests. Further conservation strategy of seed-originated oak is an important step in the sustainable management of Zagros forests in Iran.

Table and Figures | Reference | Related Articles | Metrics
Evaluating agricultural water-use efficiency based on water footprint of crop values: a case study in Xinjiang of China
HAI Yang, LONG Aihua, ZHANG Pei, DENG Xiaoya, LI Junfeng, DENG Mingjiang
Journal of Arid Land    2020, 12 (4): 580-593.   DOI: 10.1007/s40333-020-0058-x
Abstract119)   HTML6)    PDF (665KB)(499)      

Efficient agricultural water use is crucial for food safety and water conservation on a global scale. To quantitatively investigate the agricultural water-use efficiency in regions exhibiting the complex agricultural structure, this study developed an indicator named water footprint of crop values (WFV) that is based on the water footprint of crop production. Defined as the water volume used to produce a unit price of crop (m3/CNY), the new indicator makes it feasible to directly compare the water footprint of different crops from an economic perspective, so as to comprehensively evaluate the water-use efficiency under the complex planting structure. On the basis of WFV, the study further proposed an indicator of structural water-use coefficient (SWUC), which is represented by the ratio of water-use efficiency for a given planting structure to the water efficiency for a reference crop and can quantitatively describe the impact of planting structure on agricultural water efficiency. Then, a case study was implemented in Xinjiang Uygur Autonomous Region of China. The temporal and spatial variations of WFV were assessed for the planting industries in 14 prefectures and cities of Xinjiang between 1991 and 2015. In addition, contribution rate analysis of WFV for different prefectures and cities was conducted to evaluate the variations of WFV caused by different influencing factors: agricultural input, climatic factors, and planting structure. Results from these analyses indicated first that the average WFV of planting industries in Xinjiang significantly decreased from 0.293 m3/CNY in 1991 to 0.153 m3/CNY in 2015, corresponding to an average annual change rate of -3.532%. WFV in 13 prefectures and cities (with the exception of Karamay) has declined significantly during the period of 1991-2015, indicating that agricultural water-use efficient has effectively improved. Second, the average SWUC in Xinjiang decreased from 1.17 to 1.08 m3/CNY in the 1990s, and then declined to 1.00 m3/CNY in 2011-2015. The value of SWUC was highly consistent with the relative value of WFV in most prefectures and cities, showing that planting structure is one of the primary factors affecting regional agricultural water-use efficiency. Third, the contribution rate of WFV variations from human factors including agricultural input and planting structure was much more significant than that from climatic factors. However, the distribution of agricultural input and the adjustment of planting structure significantly differed among prefectures and cities, suggesting regional imbalances of agricultural development. This study indicated the feasibility and effectiveness of controlling agricultural water use through increasing technical input and rational selection of crops in the face of impending climate change. Specifically, we concluded that, the rational application of chemical fertilizers, the development of the fruit industry, and the strict restriction of the cotton industry should be implemented to improve the agricultural water-use efficiency in Xinjiang.

Table and Figures | Reference | Related Articles | Metrics
Geochemical baseline determination and contamination of heavy metals in the urban topsoil of Fuxin City, China
ZHANG Hua, YU Miao, XU Hongjia, WEN Huan, FAN Haiyan, WANG Tianyi, LIU Jiangang
Journal of Arid Land    2020, 12 (6): 1001-1017.   DOI: 10.1007/s40333-020-0029-2
Abstract67)   HTML5)    PDF (1251KB)(491)      

Urban topsoil is the most frequent interface between human society and natural environment. The accumulation of heavy metals in the urban topsoil has a direct effect on residents' life and health. The geochemical baseline of heavy metals is an objective description of the general level of heavy metals in the urban topsoil. Meanwhile, the determination of geochemical baseline is necessary for regional environmental management, especially in coal cities prone to heavy metal pollution. Heavy metal pollution has become an environmental problem in Fuxin City, China for a long time. To establish the geochemical baseline of heavy metals in the topsoil of Fuxin City and to evaluate the ecological risk of the topsoil, we collected 75 topsoil samples (0-20 cm) and analyzed the concentrations of Cu, Ni, Zn, Pb, Cr, Cd, Hg and As through X-ray fluorescence spectrometry, atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. We determined the geochemical baseline of heavy metals in the topsoil of Fuxin City by using iteration removal, box-whisker plot, cumulative frequency curve and reference metal normalization; evaluated the contamination risk and ecological risk of the topsoil by using the baseline factor index, Nemerow index and Hakanson potential ecological risk index; and identified the source category of heavy metals in the topsoil by using a pedigree clustering heatmap. Results showed that the geochemical baseline values were 42.86, 89.34, 92.23, 60.55, 145.21, 0.09, 0.08 and 4.17 mg/kg for Cu, Ni, Zn, Pb, Cr, Cd, Hg and As, respectively. The results of Nemerow index and Hakanson potential ecological risk index indicated that the urban topsoil in the study area was slightly contaminated and suffering low potential ecological risk. The main contaminated areas dominated in the middle part and northeast part of the study area, especially in the western Haizhou Strip Mine. The result of baseline factor index indicated that Hg and Cd were the major pollution elements. Using a pedigree clustering heatmap, we divided the sources of these heavy metals into three types: type I for Ni and Cr, largely represented the enrichment of heavy metals from natural sources; type II for Cu, Pb, Zn, Cd and As, mainly represented the enrichment of heavy metals from anthropogenic sources; and type III for Hg, represented the form of both natural and anthropogenic inputs.

Table and Figures | Reference | Related Articles | Metrics
Evaluation of the efficiency of irrigation methods on the growth and survival of tree seedlings in an arid climate
Zahra JAFARI, SayedHamid MATINKHAH, Mohammad R MOSADDEGHI, Mostafa TARKESH
Journal of Arid Land    2020, 12 (3): 495-507.   DOI: 10.1007/s40333-020-0012-y
Abstract112)   HTML5)    PDF (529KB)(486)      

Scarce and scattered precipitation in arid regions is detrimental for newly planted seedlings. It is essential to provide required water storage for seedlings in restoration projects in the first year of their establishment. The subsurface irrigation can be much more effective than the surface irrigation because of the regulation of water availability and reduction in water evaporation. We studied the effect of surface and subsurface irrigation methods on the growth and survival of four common tree species including heaven tree (Ailanthus altissima (Mill.) Swingle), China berry (Melia azedarach L.), white mulberry (Morus alba L.), and black locust (Robinia pseudoacacia L.) by installing underground clay reservoirs with different permeabilities in Isfahan City, Iran. Different amounts of animal manure and wheat straw were mixed with clay fraction and cooked in a pottery kiln at 900°C to produce reservoirs with different permeabilities. The experimental treatments consisting of irrigation and tree species were considered with a factorial arrangement in a completely randomized design with three replications in 2016 and 2017. Leaf water potential of seedlings, which is indirectly related to drought resistance, was measured by a portable pressure chamber. The results showed that saplings height, basal diameter, number of leaves, chlorophyll content and stomatal conductance were significantly (P<0.05) higher in the subsurface irrigation with low permeability than in the surface irrigation, but the number of branches of the studied species were not significantly (P>0.05) affected by the irrigation methods and different permeabilities of clay reservoirs. The clay reservoirs with low and medium permeabilities constantly provide better conditions for plant growth, and water with lower pressure and longer time intervals to the plant roots as compared with the reservoirs with high permeability. Analysis of variance of the data showed that year and interaction between year and permeability of reservoir had significant effects (P<0.05) on all growth parameters, except for the chlorophyll content. In addition, the highest percentage of survival was 100% associated with the subsurface irrigation and the control treatment had the lowest survival percentages of 60%, 70%, 80% and 100% for M. alba, M. azedarach, A. altissima and R. pseudoacacia, respectively. Finally, the values of leaf water potential showed that R. pseudoacacia was the most drought resistant species.

Table and Figures | Reference | Related Articles | Metrics
Tree ring based drought variability in Northwest Tajikistan since 1895 AD
YANG Meilin, YU Yang, ZHANG Haiyan, WANG Qian, GAN Miao, YU Ruide
Journal of Arid Land    2020, 12 (3): 413-422.   DOI: 10.1007/s40333-020-0062-1
Abstract189)   HTML9)    PDF (624KB)(481)      

Determining the mechanisms controlling the changes of wet and dry conditions will improve our understanding of climate change over the past hundred years, which is of great significance to the study of climate and environmental changes in the arid regions of Central Asia. Forest trees are ecologically significant in the local environment, and therefore the tree ring analysis can provide a clear record of regional historical climate. This study analyzed the correlation between the tree ring width chronology of Juniperus turkestanica Komarov and the standardized precipitation evapotranspiration index (SPEI) in Northwest Tajikistan, based on 56 tree ring samples collected from Shahristan in the Pamir region. Climate data including precipitation, temperature and the SPEI were downloaded from the Climate Research Unit (CRU) TS 4.00. The COFECHA program was used for cross-dating, and the ARSTAN program was used to remove the growth trend of the tree itself and the influence of non-climatic factors on the growth of the trees. A significant correlation was found between the radial growth of J. turkestanica trees and the monthly mean SPEI of February-April. The monthly mean SPEI sequence of February-April during the period of 1895-2016 was reconstructed, and the reconstruction equation explained 42.5% of the variance. During the past 122 a (1895-2016), the study area has experienced three wetter periods (precipitation above average): 1901-1919, 1945-1983 and 1995-2010, and four drier periods (precipitation below average): 1895-1900, 1920-1944, 1984-1994 and 2011-2016. The spatial correlation analysis revealed that the monthly mean SPEI reconstruction sequence of February-April could be used to characterize the large-scale dry-wet variations in Northwest Tajikistan during the period of 1895-2016. This study could provide comparative data for validating the projections of climate models and scientific basis for managing water resources in Tajikistan in the context of climate change.

Table and Figures | Reference | Related Articles | Metrics
Impacts of wind erosion and seasonal changes on soil carbon dioxide emission in southwestern Iran
Nadia KAMALI, Hamid SIROOSI, Ahmad SADEGHIPOUR
Journal of Arid Land    2020, 12 (4): 690-700.   DOI: 10.1007/s40333-020-0018-5
Abstract76)   HTML5)    PDF (412KB)(481)      

Wind erosion is one of the main drivers of soil loss in the world, which affects 20 million hectare land of Iran. Besides the soil loss, wind erosion contributes to carbon dioxide emission from the soil into the atmosphere. The objective of this study is to evaluate monthly and seasonal changes in carbon dioxide emission in four classes i.e., low, moderate, severe and very severe soil erosion and the interactions between air temperature and wind erosion in relation to carbon dioxide emission in the Bordekhun region, Boushehr Province, southwestern Iran. Wind erosion intensities were evaluated using IRIFR (Iran Research Institute of Forests and Ranges) model, in which four classes of soil erosion were identified. Afterward, we measured carbon dioxide emission on a monthly basis and for a period of one year using alkali traps in each class of soil erosion. Data on emission levels and erosion classes were analyzed as a factorial experiment in a completely randomized design with twelve replications in each treatment. The highest rate of emission occurred in July (4.490 g CO2/(m2?d)) in severely eroded lands and the least in January (0.086 g CO2/(m2?d)) in low eroded lands. Therefore, it is resulted that increasing erosion intensity causes an increase in soil carbon dioxide emission rate at severe erosion intensity. Moreover, the maximum amount of carbon dioxide emission happened in summer and the minimum in winter. Soil carbon dioxide emission was just related to air temperature without any relationship with soil moisture content; since changes of soil moisture in the wet and dry seasons were not high enough to affect soil microorganisms and respiration in dry areas. In general, there are complex and multiple relationships between various factors associated with soil erosion and carbon dioxide emission. Global warming causes events that lead to more erosion, which in turn increases greenhouse gas emission, and rising greenhouse gases will cause more global warming. The result of this study demonstrated the synergistic effect of wind erosion and global climate warming towards carbon dioxide emission into the atmosphere.

Table and Figures | Reference | Related Articles | Metrics
Exploring tree diversity and stand structure of savanna woodlands in southeastern Sudan
Ahmed M M HASOBA, Ahmed A H SIDDIG, Yousif E YAGOUB
Journal of Arid Land    2020, 12 (4): 609-617.   DOI: 10.1007/s40333-020-0076-8
Abstract106)   HTML4)    PDF (675KB)(476)      

Savanna woodlands in Sudan host great biodiversity, provide a plethora of ecosystem goods and services to local communities, and sustain numerous ecological functions. Although the importance of the Acacia trees in these areas is well known, up-to-date information about these woodlands' diversity is limited and changes in their woody vegetation composition, density, diversity and relative frequency are not monitored over time. This study explored tree diversity and stand stage structure in Nuara Reserved Forest, a typical savanna woodland ecosystem in southeastern Sudan. A total of 638 circular sample plots (1000 m2 for each) were established using a systematic sampling grid method. The distance between plots was 200 m. In each plot, all living trees with diameter at breast height (DBH) ≥5.00 cm were identified and counted, and their DBH values were recorded. From these data, tree composition, diversity, density and stage structure were assessed. There were 12,259 individual trees representing four species (Acacia seyal, Balanites aegyptiaca, Acacia Senegal and Acacia mellifera) that belong to two families. The dominant species was Acacia seyal. Average tree density was 191 trees/hm2 and the Shannon-Weiner index for trees diversity was 0.204. Overall, young trees comprised 86.30% of the forest. The state of tree richness and density in the study area was low compared to other similar environments in the region and around the world. We recommended adoption of a proper management system that includes monitoring of woody vegetation diversity in this forest, and management actions to enhance tree diversity and sustain ecosystem services to local communities. In addition to care for the dominant Acacia seyal stands, more attention and conservation should be devoted to reestablishing Acacia senegal and Acacia mellifera trees because of their high ecological and economic values for local communities.

Table and Figures | Reference | Related Articles | Metrics
Ridge-furrow plastic mulching with a suitable planting density enhances rainwater productivity, grain yield and economic benefit of rainfed maize
ZHENG Jing, FAN Junliang, ZOU Yufeng, Henry Wai CHAU, ZHANG Fucang
Journal of Arid Land    2020, 12 (2): 181-198.   DOI: 10.1007/s40333-020-0001-1
Abstract256)   HTML13)    PDF (805KB)(476)      

Soil surface mulching and planting density regulation are widely used for effective utilization of limited rainwater resources and improvement of crop productivity in dryland farming. However, the combined effects of mulching type and planting density on maize growth and yield have been seldom studied, especially in different hydrological years. A field experiment was conducted to evaluate the effects of mulching type and planting density on the soil temperature, growth, grain yield (GY), water use efficiency (WUE) and economic benefit of rainfed maize in the drylands of northern China during 2015-2017. Precipitation fluctuated over the three years. There were four mulching types (NM, flat cultivation with non-mulching; SM, flat cultivation with straw mulching; RP, plastic-mulched ridge plus bare furrow; RPFS, plastic-mulched ridge plus straw-mulched furrow) and three planting densities (LD, low planting density, 45.0×103 plants/hm2; MD, medium planting density, 67.5×103 plants/hm2; HD, high planting density, 90.0×103 plants/hm2). Results showed that soil temperature was higher with RP and lower with SM compared with NM, but no significant difference was found between RPFS and NM. More soil water was retained by soil mulching at the early growth stage, but it significantly varied at the middle and late growth stages. Maize growth was significantly improved by soil mulching. With increasing planting density, stem diameter, net photosynthetic rate and chlorophyll content tended to decline, whereas a single-peak trend in biomass yield was observed. Mulching type and planting density did not have significant effect on evapotranspiration (ET), but GY and WUE were significantly affected. There were significant interacting effects of mulching type and planting density on biomass yield, GY, ET and WUE. Compared with NM, RPFS, RP and SM increased GY by 57.5%, 50.8% and 18.9%, and increased WUE by 66.6%, 54.3% and 18.1%, respectively. At MD, GY increased by 41.4% and 25.2%, and WUE increased by 38.6% and 22.4% compared with those of at LD and HD. The highest maize GY (7023.2 kg/hm2) was observed under MD+RPFS, but the value (6699.1 kg/hm2) was insignificant under MD+RP. Similar trends were observed for WUE under MD+RP and MD+RPFS, but no significant difference was observed between these two combinations. In terms of economic benefit, net income under MD+RP was the highest with a 9.8% increase compared with that of under MD+RPFS. Therefore, we concluded that RP cultivation pattern with a suitable planting density (67.5×103 plants/hm2) is promising for rainwater resources utilization and maize production in the drylands of northern China.

Table and Figures | Reference | Related Articles | Metrics
Untangling the influence of soil moisture on root pullout property of alfafa plant
ZHANG Chaobo, LIU Yating, LIU Pengchong, JIANG Jing, YANG Qihong
Journal of Arid Land    2020, 12 (4): 666-675.   DOI: 10.1007/s40333-020-0017-6
Abstract70)   HTML6)    PDF (607KB)(470)      

Root pullout property of plants was of key importance to the soil reinforcement and the improvement of slope stability. To investigate the influence of soil moisture on root pullout resistance and failure modes in soil reinforcement process, we conducted pullout tests on alfalfa (Medicago sativa L.) roots at five levels (40, 30, 20, 10 and 6 kPa) of soil matric suction, corresponding to respectively 7.84%, 9.66%, 13.02%, 19.35% and 27.06% gravimetric soil moisture contents. Results showed that the maximal root pullout force of M. sativa decreased in a power function with increasing soil moisture content from 7.84% to 27.06%. Root slippage rate increased and breakage rate decreased with increasing soil moisture content. At 9.66% soil moisture content, root slippage rate and breakage rate was 56.41% and 43.58%, respectively. The threshold value of soil moisture content was about 9.00% for alfalfa roots in the loess soil. The maximal pullout force of M. sativa increased with root diameter in a power function. The threshold value of root diameter was 1.15 mm, because root slipping force was greater than root breaking force when diameter >1.15 mm, while diameter ≤1.15 mm, root slipping force tended to be less than root breaking force. No significant difference in pullout forces was observed between slipping roots and breaking roots when they had similar diameters. More easily obtained root tensile force (strength) is suggested to be used in root reinforcement models under the condition that the effect of root diameter is excluded as the pullout force of breaking roots measured in pullout tests is similar to the root tensile force obtained by tensile tests.

Table and Figures | Reference | Related Articles | Metrics
Source identification of nitrate in the upper aquifer system of the Wadi Shueib catchment area in Jordan based on stable isotope composition
Mutawakil OBEIDAT, Muheeb AWAWDEH, Noor AL-KHARABSHEH, Ahmad AL-AJLOUNI
Journal of Arid Land    2021, 13 (4): 350-374.   DOI: 10.1007/s40333-021-0055-8
Abstract184)   HTML8)    PDF (1114KB)(463)      

Groundwater forms the main freshwater supply in arid and semi-arid areas, and contamination of this precious resource is complicated by the slow rate of recharge in these areas. Nitrate contamination of groundwater is a global water quality problem, as it entails threat to human health as well as aquatic ecosystems. Source identification of contamination is the cornerstone and a prerequisite for any effective management program of water quality. Stable isotope composition of the dissolved nitrate (δ15N-NO3- and δ 18O-NO3-) has been applied to identify NO3- sources and the main transformation processes in the upper aquifer system (A1/2, A4, and B2/A7 aquifers) in the Wadi Shueib catchment area, Jordan. Moreover, the stable isotope compositions of the groundwater (δ2H-H2O and δ18O-H2O) in conjunction with the groundwater hydrochemistry were integrated to investigate the origin and evolution of the groundwater. Results revealed that groundwater in the study area is fresh and hard-very hard water, and mainly a Ca-Mg-Cl type. NO3- concentration was in the range of 7.0-74.0 mg/L with an average of 37.0 mg/L. Most of the samples showed concentration higher than the natural background concentration of NO3- (5.0-10.0 mg/L). The δ 2H-H2O and δ18O-H2O values indicated that the groundwater is meteoric, and of Mediterranean origin, with a strong evaporation effect. The δ15N-NO3- values ranged between 6.0‰ and 11.3‰ with an average of 8.7‰, and the δ18O-NO3- values ranged between 1.6‰ and 5.9‰ with an average of 3.4‰. These values are in conformity with the stable isotope composition of nitrate derived the nitrification of wastewater/manure, and soil NH4. Nitrification and denitrification are the main transformation processes affecting nitrogen species. Statistical analysis revealed no significant differences in the δ2H-H2O and δ18O-H2O values, and δ15N-NO3- and δ 18O-NO3- values for the three aquifers (A1/2, A4, and B2/A7), indicating that the groundwater of these aquifers has the same origin, and a common source of pollution.

Table and Figures | Reference | Related Articles | Metrics
Market opportunities do not explain the ability of herders to meet livelihood objectives over winter on the Mongolian Plateau
BAI Haihua, YIN Yanting, Jane ADDISON, HOU Yulu, WANG Linhe, HOU Xiangyang
Journal of Arid Land    2020, 12 (3): 522-537.   DOI: 10.1007/s40333-020-0122-6
Abstract92)   HTML5)    PDF (790KB)(458)      

Drylands under pastoral land use are considered one of the most vulnerable social-ecological systems to global climate change, but the herders' abilities to adapt to the different extreme weather events have received little attention in the drylands. Herders on the Mongolian Plateau (MP; including Inner Mongolia Autonomous Region of China and Mongolia), have had a long history of adapting climatic variability and extreme weather events. However, it is unclear how changes such as increased levels of infrastructure and market integration affect the ability of herders to achieve the key livelihood objectives: the minimisation of the death and abortion rates of livestock in the winter. Here, we used remotely sensed and household survey data to map, model and explore the climate exposure and sensitivity of herders in the settled area (Inner Mongolia of China) and nomadic area (Mongolia) in the winter of 2012-2013. We aimed to quantify the multi-scaled characteristics of both climate exposure and sensitivity through the lens of key adaptive strategies utilized by herders. Our results showed that the higher levels of infrastructure and market integration, and the lower levels of remoteness on the MP did not increase the herders' ability to achieve the key livelihood objectives. Our results also suggested that exposure to the snow that is comparatively greater than the long-term average (cumulative exposure) may be more important in determining the social-ecological vulnerability than absolute exposure. We suggested that neither the risk management strategies available to these herders, nor the demographic variables, could compensate for the mode of production governing the pastoral systems. Our study could provide further evidence for the complex and scaled nature of climate exposure and sensitivity, and the results imply that any analysis of the relationship among exposure, sensitivity and vulnerability of pastoral households to climate change in the drylands will require a multi-scaled and interdisciplinary approach.

Table and Figures | Reference | Related Articles | Metrics
Spatial-temporal characteristics of drought detected from meteorological data with high resolution in Shaanxi Province, China
WANG Yudan, KONG Yunfeng, CHEN Hao, DING Yongjian
Journal of Arid Land    2020, 12 (4): 561-579.   DOI: 10.1007/s40333-020-0066-x
Abstract148)   HTML18)    PDF (2112KB)(458)      

The spatial pattern of meteorological factors cannot be accurately simulated by using observations from meteorological stations (OMS) that are distributed sparsely in complex terrain. It is expected that the spatial-temporal characteristics of drought in regions with complex terrain can be better represented by meteorological data with the high spatial-temporal resolution and accuracy. In this study, Standard Precipitation Evapotranspiration Index (SPEI) calculated with meteorological factors extracted from ITPCAS (China Meteorological Forcing Dataset produced by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences) was applied to identify the spatial-temporal characteristics of drought in Shaanxi Province of China, during the period of 1979-2016. Drought areas detected by SPEI calculated with data from ITPCAS (SPEI-ITPCAS) on the seasonal scale were validated by historical drought records from the Chinese Meteorological Disaster Canon-Shaanxi, and compared with drought areas detected by SPEI calculated with data from OMS (SPEI-OMS). Drought intensity, trend and temporal ranges for mutations of SPEI-ITPCAS were analyzed by using the cumulative drought intensity (CDI) index and the Mann-Kendall test. The results indicated that drought areas detected from SPEI-ITPCAS were closer to the historical drought records than those detected from SPEI-OMS. Severe and exceptional drought events with SPEI-ITPCAS lower than -1.0 occurred most frequently in summer, followed by spring. There was a general drying trend in spring and summer in Shaanxi Province and a significant wetting trend in autumn and winter in northern Shaanxi Province. On seasonal and annual scales, the regional and temporal ranges for mutations of SPEI-ITPCAS were different and most mutations occurred before the year 1990 in most regions of Shaanxi Province. The results reflect the response of different regions of Shaanxi Province to climate change, which will help to manage regional water resources.

Table and Figures | Reference | Related Articles | Metrics
Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran
Mahsa MIRDASHTVAN, Mohsen MOHSENI SARAVI
Journal of Arid Land    2020, 12 (6): 964-983.   DOI: 10.1007/s40333-020-0100-z
Abstract101)   HTML4)    PDF (696KB)(457)      

Trend and stationarity analysis of climatic variables are essential for understanding climate variability and provide useful information about the vulnerability and future changes, especially in arid and semi-arid regions. In this study, various climatic zones of Iran were investigated to assess the relationship between the trend and the stationarity of the climatic variables. The Mann-Kendall test was considered to identify the trend, while the trend free pre-whitening approach was applied for eliminating serial correlation from the time-series. Meanwhile, time series stationarity was tested by Dickey-Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests. The results indicated an increasing trend for mean air temperature series at most of the stations over various climatic zones, however, after eliminating the serial correlation factor, this increasing trend changes to an insignificant decreasing trend at a 95% confidence level. The seasonal mean air temperature trend suggested a significant increase in the majority of the stations. The mean air temperature increased more in northwest towards central parts of Iran that mostly located in arid and semi-arid climatic zones. Precipitation trend reveals an insignificant downward trend in most of the series over various climatic zones; furthermore, most of the stations follow a decreasing trend for seasonal precipitation. Furthermore, spatial patterns of trend and seasonality of precipitation and mean air temperature showed that the northwest parts of Iran and margin areas of the Caspian Sea are more vulnerable to the changing climate with respect to the precipitation shortfalls and warming. Stationarity analysis indicated that the stationarity of climatic series influences on their trend; so that, the series which have significant trends are not static. The findings of this investigation can help planners and policy-makers in various fields related to climatic issues, implementing better management and planning strategies to adapt to climate change and variability over Iran.

Table and Figures | Reference | Related Articles | Metrics
Germination strategies of annual and short-lived perennial species in the Arabian Desert
Arvind BHATT, David J GALLACHER, Paulo R M SOUZA-FILHO
Journal of Arid Land    2020, 12 (6): 1071-1082.   DOI: 10.1007/s40333-020-0023-8
Abstract135)   HTML3)    PDF (329KB)(453)      

Germination timing is highly regulated in short-lived plant species since it strongly influences recruitment success of vegetation. In deserts, the spatiotemporal distribution of plant-available water is highly episodic and unpredictable, making winter months more favorable for seed germination when other abiotic conditions co-occur. We hypothesized that changes in photoperiod and thermoperiod would impact germination more in seeds that had undergone in situ storage. We assessed 21 annual and short-lived perennial species in the Arabian Desert to find (1) if seeds were dormant at maturity, (2) if in situ seed storage increased germination percentage compared with no storage, (3) if photoperiod and thermoperiod germination requirements were influenced by in situ storage, and (4) if a phylogenetic association in seed germination could be observed. Seeds of each species collected in early 2017 were divided into two batches. One was tested for germination within one week (fresh seeds). The other was stored in situ at the maternal location (stored seeds) until October 2017 and tested for seed germination in the first week of November. Seed germination was conducted in incubators at two thermoperiods (15°C/20°C and 20°C/30°C; 12 h/12 h), and two photoperiods (12 and 0 h light per day). Results indicated that seed germination percentages of 13 species were significantly enhanced by in situ storage. A thermoperiod response was exhibited by stored, but not fresh seeds. Light exposure increased germination of fresh seeds but had only a minimal effect on stored seeds. Germination traits exhibited no phylogenetic correlation. This result indicated that selection pressure for germination strategy was stronger than that for taxonomic traits of these desert species.

Table and Figures | Reference | Related Articles | Metrics
Maternal salinity improves yield, size and stress tolerance of Suaeda fruticosa seeds
Syed Z SHAH, Aysha RASHEED, Bilquees GUL, Muhammad A KHAN, Brent L NIELSEN, Abdul HAMEED
Journal of Arid Land    2020, 12 (2): 283-293.   DOI: 10.1007/s40333-020-0054-1
Abstract207)   HTML4)    PDF (1014KB)(453)      

Shrubby seablite or lani (Suaeda fruticosa Forssk) is a perennial euhalophyte with succulent leaves, which could be planted on arid-saline lands for restoration and cultivated as a non-conventional edible or cash crop. Knowledge about the impacts of maternal saline environment on seed attributes of this important euhalophyte is lacking. This study investigated the effects of maternal salinity on yield, size and stress tolerance of S. fruticosa seeds. Seedlings of S. fruticosa were grown in a green net house under increasing maternal salinity levels (0, 300, 600 and 900 mM NaCl) until seed production. Total yield, size, stress tolerance and germination of the descended seeds under different maternal saline conditions were examined. Plants grown under saline conditions (300, 600 and 900 mM NaCl) produce a substantially higher quantity of seeds than plants grown under non-saline condition (0 mM NaCl). Low maternal salinity (300 mM NaCl) improves seed size. Seeds produced under all maternal salinity levels display a higher tolerance to low temperature (night/day thermoperiod of 10°C/20°C), whereas seeds produced under 300 mM NaCl maternal saline condition show a better tolerance to high temperature (night/day thermoperiod of 25°C/35°C) during germination. Seeds from all maternal saline conditions germinate better in the 12 h photoperiod (12 h light/12 h dark) than in the dark (24 h dark); however, seeds produced from low and moderate maternal saline conditions (300 and 600 mM NaCl) show a higher germination in the dark than those from control and high maternal saline conditions (0 and 900 mM NaCl). In general, maternal salinity is found to improve yield, size and stress tolerance of S. fruticosa seeds.

Table and Figures | Reference | Related Articles | Metrics