Most Read

Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Reducing water and nitrogen inputs combined with plastic mulched ridge-furrow irrigation improves soil water and salt status in arid saline areas, China
LI Cheng, WANG Qingsong, LUO Shuai, QUAN Hao, WANG Naijiang, LUO Xiaoqi, ZHANG Tibin, DING Dianyuan, DONG Qin'ge, FENG Hao
Journal of Arid Land    2021, 13 (8): 761-776.   DOI: 10.1007/s40333-021-0015-3
Abstract371)   HTML931)    PDF(pc) (710KB)(410)       Save

Plastic mulched ridge-furrow irrigation is a useful method to improve crop productivity and decrease salt accumulation in arid saline areas. However, inappropriate irrigation and fertilizer practices may result in ecological and environmental problems. In order to improve the resource use efficiency in these areas, we investigated the effects of different irrigation amounts (400 (I1), 300 (I2) and 200 (I3) mm) and nitrogen application rates (300 (F1) and 150 (F2) kg N/hm2) on water consumption, salt variation and resource use efficiency of spring maize (Zea mays L.) in the Hetao Irrigation District (HID) of Northwest China in 2017 and 2018. Result showed that soil water contents were 0.2%-8.9% and 13.9%-18.1% lower for I2 and I3 than for I1, respectively, but that was slightly higher for F2 than for F1. Soil salt contents were 7.8%-23.5% and 48.5%-48.9% lower for I2 than for I1 and I3, but that was 1.6%-5.5% higher for F1 than for F2. Less salt leaching at the early growth stage (from sowing to six-leaf stage) and higher salt accumulation at the peak growth stage (from six-leaf to tasseling stage and from grain-filling to maturity stage) resulted in a higher soil salt content for I3 than for I1 and I2. Grain yields for I1 and I2 were significantly higher than that for I3 and irrigation water use efficiency for I2 was 14.7%-34.0% higher than that for I1. Compared with F1, F2 increased the partial factor productivity (PFP) of nitrogen fertilizer by more than 80%. PFP was not significantly different between I1F2 and I2F2, but significantly higher than those of other treatments. Considering the goal of saving water and nitrogen resources, and ensuring food security, we recommended the combination of I2F2 to ensure the sustainable development of agriculture in the HID and other similar arid saline areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019
ZHOU Siyuan, DUAN Yufeng, ZHANG Yuxiu, GUO Jinjin
Journal of Arid Land    2021, 13 (5): 534-547.   DOI: 10.1007/s40333-021-0007-3
Abstract328)   HTML14)    PDF(pc) (3342KB)(490)       Save

Coal mining has led to serious ecological damages in arid desert region of Northwest China. However, effects of climatic factor and mining activity on vegetation dynamics and plant diversity in this region remain unknown. Wuhai City located in the arid desert region of Northwest China is an industrial city and dominated by coal mining. Based on Landsat data and field investigation in Wuhai City, we analyzed the vegetation dynamics and the relationships with climate factors, coal mining activity and ecological restoration projects from 2000 to 2019. Results showed that vegetation in Wuhai City mostly consisted of desert plants, such as Caragana microphylla, Tetraena mongolica and Achnatherum splendens. And the vegetation fractional coverage (VFC) and greenness rate of change (GRC) showed that vegetation was slightly improved during the study period. Normalized difference vegetation index (NDVI) was positively correlated with annual mean precipitation, relative humidity and annual mean temperature, indicating that these climate factors might play important roles in the improved vegetation. Vegetation coverage and plant diversity around the coal mining area were reduced by coal mining, while the implementation of ecological restoration projects improved the vegetation coverage and plant diversity. Our results suggested that vegetation in the arid desert region was mainly affected by climate factors, and the implementation of ecological restoration projects could mitigate the impacts of coal mining on vegetation and ecological environment.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Adaptability of machine learning methods and hydrological models to discharge simulations in data-sparse glaciated watersheds
JI Huiping, CHEN Yaning, FANG Gonghuan, LI Zhi, DUAN Weili, ZHANG Qifei
Journal of Arid Land    2021, 13 (6): 549-567.   DOI: 10.1007/s40333-021-0066-5
Abstract307)   HTML664)    PDF(pc) (1487KB)(290)       Save

The accurate simulation and prediction of runoff in alpine glaciated watersheds is of increasing importance for the comprehensive management and utilization of water resources. In this study, long short-term memory (LSTM), a state-of-the-art artificial neural network algorithm, is applied to simulate the daily discharge of two data-sparse glaciated watersheds in the Tianshan Mountains in Central Asia. Two other classic machine learning methods, namely extreme gradient boosting (XGBoost) and support vector regression (SVR), along with a distributed hydrological model (Soil and Water Assessment Tool (SWAT) and an extended SWAT model (SWAT_Glacier) are also employed for comparison. This paper aims to provide an efficient and reliable method for simulating discharge in glaciated alpine regions that have insufficient observed meteorological data. The two typical basins in this study are the main tributaries (the Kumaric and Toxkan rivers) of the Aksu River in the south Tianshan Mountains, which are dominated by snow and glacier meltwater and precipitation. Our comparative analysis indicates that simulations from the LSTM shows the best agreement with the observations. The performance metrics Nash-Sutcliffe efficiency coefficient (NS) and correlation coefficient (R2) of LSTM are higher than 0.90 in both the training and testing periods in the Kumaric River Basin, and NS and R 2 are also higher than 0.70 in the Toxkan River Basin. Compared to classic machine learning algorithms, LSTM shows significant advantages over most evaluating indices. XGBoost also has high NS value in the training period, but is prone to overfitting the discharge. Compared with the widely used hydrological models, LSTM has advantages in predicting accuracy, despite having fewer data inputs. Moreover, LSTM only requires meteorological data rather than physical characteristics of underlying data. As an extension of SWAT, the SWAT_Glacier model shows good adaptability in discharge simulation, outperforming the original SWAT model, but at the cost of increasing the complexity of the model. Compared with the oftentimes complex semi-distributed physical hydrological models, the LSTM method not only eliminates the tedious calibration process of hydrological parameters, but also significantly reduces the calculation time and costs. Overall, LSTM shows immense promise in dealing with scarce meteorological data in glaciated catchments.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Synergistic effects of multiple driving factors on the runoff variations in the Yellow River Basin, China
WANG Junjie, SHI Bing, ZHAO Enjin, CHEN Xuguang, YANG Shaopeng
Journal of Arid Land    2021, 13 (8): 835-857.   DOI: 10.1007/s40333-021-0078-1
Abstract290)   HTML15)    PDF(pc) (8557KB)(475)       Save

River runoff plays an important role in watershed ecosystems and human survival, and it is controlled by multiple environmental factors. However, the synergistic effects of various large-scale circulation factors and meteorological factors on the runoff on different time-frequency scales have rarely been explored. In light of this, the underlying mechanism of the synergistic effects of the different environmental factors on the runoff variations was investigated in the Yellow River Basin of China during the period 1950-2019 using the bivariate wavelet coherence (WTC) and multiple wavelet coherence (MWC) methods. First, the continuous wavelet transform (CWT) method was used to analyze the multiscale characteristics of the runoff. The results of the CWT indicate that the runoff exhibited significant continuous or discontinuous annual and semiannual oscillations during the study period. Scattered inter-annual time scales were also observed for the runoff in the Yellow River Basin. The meteorological factors better explained the runoff variations on seasonal and annual time scales. The average wavelet coherence (AWC) and the percent area of the significant coherence (PASC) between the runoff and individual meteorological factors were 0.454 and 19.89%, respectively. The circulation factors mainly regulated the runoff on the inter-annual and decadal time scales with more complicated phase relationships due to their indirect effects on the runoff. The AWC and PASC between the runoff and individual circulation factors were 0.359 and 7.31%, respectively. The MWC analysis revealed that the synergistic effects of multiple factors should be taken into consideration to explain the multiscale characteristic variations of the runoff. The AWC or MWC ranges were 0.320-0.560, 0.617-0.755, and 0.819-0.884 for the combinations of one, two, and three circulation and meteorological factors, respectively. The PASC ranges were 3.53%-33.77%, 12.93%-36.90%, and 20.67%-39.34% for the combinations one, two, and three driving factors, respectively. The combinations of precipitation, evapotranspiration (or the number of rainy days), and the Arctic Oscillation performed well in explaining the variability in the runoff on all time scales, and the average MWC and PASC were 0.847 and 28.79%, respectively. These findings are of great significance for improving our understanding of hydro-climate interactions and water resources prediction in the Yellow River Basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
A study on historical location and evolution of Lop Nor in China with maps and DEM
ZHANG Tingting, SHAO Yun, GENG Yuyang, GONG Huaze, YANG Lan
Journal of Arid Land    2021, 13 (6): 639-652.   DOI: 10.1007/s40333-021-0099-9
Abstract289)   HTML16)    PDF(pc) (2943KB)(410)       Save

Lop Sea, located at the east end of the Tarim Basin, Northwest China, dried up permanently, which is the terminal lake of the Tarim River. Lop Sea was considered as the lake basin of Lop Nor since Quaternary. However, the possibility that Lop Nor was away from the Lop Sea in historical time is crucial to be discussed to interpret the proxy records in sediment profiles. To obtain a general view of the evolution of Lop Nor and Lop Sea in a historical period, several approaches were adopted in this paper. First, the Qianlong Thirteen-Row Atlas, an ancient imperial atlas of the Qing Dynasty, which was completed around 1760, indicated that the Tarim River formed a relatively large lake at its modern upstream region. Second, a Digital Elevation Model (DEM) with a 10-m spatial resolution and a relative precision of 0.42 m was derived from TanDEM-X/TerraSAR-X satellite image pairs using the interferometry method, which was verified using ICESat-GLAS laser footprints and a local DEM acquired by a drone. Finally, based on the spatial analysis of historical documents, expedition reports, sediment profiles and archaeological evidence, it can be deduced that the lacustrine deposition was discontinued in the Lop Sea. Six episodes in the evolutionary history of the drainage system in eastern Tarim Basin were summarized. The proved depositional condition variations could be used for future interpretation of proxy records in sediment. The high-accurate DEM provided a reference for the location of further fieldwork in the Lop Sea. The method proposed in this paper may be efficient for the research of inland lakes or rivers in global arid regions.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Potential responses of vegetation to atmospheric aerosols in arid and semi-arid regions of Asia
JIAO Linlin, WANG Xunming, CAI Diwen, HUA Ting
Journal of Arid Land    2021, 13 (5): 516-533.   DOI: 10.1007/s40333-021-0005-5
Abstract271)   HTML15)    PDF(pc) (3026KB)(397)       Save

Changes in atmospheric aerosols have profound effects on ecosystem productivity, vegetation growth and activity by directly and indirectly influencing climate and environment conditions. However, few studies have focused on the effects of atmospheric aerosols on vegetation growth and activity in the vulnerable arid and semi-arid regions, which are also the source areas of aerosols. Using the datasets of aerosol optical depth (AOD), normalized difference vegetation index (NDVI) and multiple climatic variables including photosynthetically active radiation (PAR), surface solar radiation (SSR), surface air temperature (TEM) and total precipitation (PRE), we analyzed the potential responses of vegetation activity to atmospheric aerosols and their associated climatic factors in arid and semi-arid regions of Asia from 2005 to 2015. Our results suggested that areas with decreasing growing-season NDVI were mainly observed in regions with relatively sparse vegetation coverage, while AOD tended to increase as NDVI decreased in these regions. Upon further analysis, we found that aerosols might exert a negative influence on vegetation activity by reducing SSR, PAR and TEM, as well as suppressing PRE in most arid and semi-arid regions of Asia. Moreover, the responses of atmospheric aerosols on vegetation activity varied among different growing stages. At the early growing stage, higher concentration of aerosol was accompanied with suppressed vegetation growth by enhancing cooling effects and reducing SSR and PAR. At the middle growing stage, aerosols tended to alter microphysical properties of clouds with suppressed PRE, thereby restricting vegetation growth. At the late growing stage, aerosols exerted significantly positive influences on vegetation activity by increasing SSR, PAR and TEM in regions with high anthropogenic aerosols. Overall, at different growing stages, aerosols could influence vegetation activity by changing different climatic factors including SSR, PAR, TEM and PRE in arid and semi-arid regions of Asia. This study not only clarifies the impacts of aerosols on vegetation activity in source areas, but also explains the roles of aerosols in climate.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Ecological environment quality evaluation of the Sahel region in Africa based on remote sensing ecological index
WU Shupu, GAO Xin, LEI Jiaqiang, ZHOU Na, GUO Zengkun, SHANG Baijun
Journal of Arid Land    2022, 14 (1): 14-33.   DOI: 10.1007/s40333-022-0057-1
Abstract270)   HTML134)    PDF(pc) (2139KB)(404)       Save

Long-term monitoring of the ecological environment changes is helpful for the protection of the ecological environment. Based on the ecological environment of the Sahel region in Africa, we established a remote sensing ecological index (RSEI) model for this region by combining dryness, moisture, greenness, and desertification indicators. Using the Moderate-resolution Imaging Spectroradiometer (MODIS) data in Google Earth Engine (GEE) platform, this study analyzed the ecological environment quality of the Sahel region during the period of 2001-2020. We used liner regression and fluctuation analysis methods to study the trend and fluctuation of RSEI, and utilized the stepwise regression approach to analyze the contribution of each indicator to the RSEI. Further, the correlation analysis was used to analyze the correlation between RSEI and precipitation, and Hurst index was applied to evaluate the change trend of RSEI in the future. The results show that RSEI of the Sahel region exhibited spatial heterogeneity. Specifically, it exhibited a decrease in gradient from south to north of the Sahel region. Moreover, RSEI in parts of the Sahel region presented non-zonal features. Different land-cover types demonstrated different RSEI values and changing trends. We found that RSEI and precipitation were positively correlated, suggesting that precipitation is the controlling factor of RSEI. The areas where RSEI values presented an increasing trend were slightly less than the areas where RSEI values presented a decreasing trend. In the Sahel region, the areas with the ecological environment characterized by continuous deterioration and continuous improvement accounted for 44.02% and 28.29% of the total study area, respectively, and the areas in which the ecological environment was changing from improvement to deterioration and from deterioration to improvement accounted for 12.42% and 15.26% of the whole area, respectively. In the face of the current ecological environment and future change trends of RSEI in the Sahel region, the research results provide a reference for the construction of the ''Green Great Wall'' (GGW) ecological environment project in Africa.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China
WANG Yuejian, GU Xinchen, YANG Guang, YAO Junqiang, LIAO Na
Journal of Arid Land    2021, 13 (6): 581-598.   DOI: 10.1007/s40333-021-0067-4
Abstract265)   HTML10)    PDF(pc) (1473KB)(417)       Save

Changing climatic conditions and extensive human activities have influenced the global water cycle. In recent years, significant changes in climate and land use have degraded the watershed ecosystem of the Ebinur Lake Basin in Xinjiang, Northwest China. In this paper, variations of runoff, temperature, precipitation, reference evapotranspiration, lake area, socio-economic water usage, groundwater level and water quality in the Ebinur Lake Basin from 1961 to 2015 were systematically analyzed by the Mann-Kendall test methods (M-K) mutation test, the cumulative levelling method, the climate-sensitive method and land-use change index. In addition, we evaluated the effects of human activities on land use change and water quality. The results reveal that there was a significant increase in temperature and precipitation from 1961 to 2015, despite a decrease in reference evapotranspiration. The Wenquan station was not significantly affected by human activities as it is situated at a higher altitude. Runoff at this station increased significantly with climate warming. In contrast, runoff at the Jinghe station was severely affected by numerous human activities. Runoff decreased without obvious fluctuations. The contributions of climate change to runoff variation at the Jinghe and Wenquan stations were 46.87% and 58.94%, respectively; and the contributions of human activities were 53.13% and 41.06%, respectively. Land-use patterns in the basin have changed significantly between 1990 and 2015: urban and rural constructed lands, saline-alkali land, bare land, cultivated land, and forest land have expanded, while areas under grassland, lake, ice/snow and river/channel have declined. Human activities have dramatically intensified land degradation and desertification. From 1961 to 2015, both the inflow into the Ebinur Lake and the area of the lake have declined year by year; groundwater levels have dropped significantly, and the water quality has deteriorated during the study period. In the oasis irrigation area below the runoff pass, human activities mainly influenced the utilization mode and quantity of water resources. Changes in the hydrology and quantity of water resources were driven primarily by the continuous expansion of cultivated land and oasis, as well as the growth of population and the construction of hydraulic engineering projects. After 2015, the effects of some ecological protection projects were observed. However, there was no obvious sign of ecological improvement in the basin, and some environmental problems continue to persist. On this basis, this study recommends that the expansion of oasis should be limited according to the carrying capacity of the local water bodies. Moreover, in order to ensure the ecological security of the basin, it is necessary to determine the optimal oasis area for sustainable development and improve the efficiency of water resources exploitation and utilization.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Modeling and analyzing supply-demand relationships of water resources in Xinjiang from a perspective of ecosystem services
LI Feng, LI Yaoming, ZHOU Xuewen, YIN Zun, LIU Tie, XIN Qinchuan
Journal of Arid Land    2022, 14 (2): 115-138.   DOI: 10.1007/s40333-022-0059-z
Abstract259)   HTML139)    PDF(pc) (4841KB)(402)       Save

Water shortage is one bottleneck that limits economic and social developments in arid and semi-arid areas. As the impacts of climate change and human disturbance intensify across time, uncertainties in both water resource supplies and demands increase in arid and semi-arid areas. Taking a typical arid region in China, Xinjiang Uygur Autonomous Region, as an example, water yield depth (WYD) and water utilization depth (WUD) from 2002 to 2018 were simulated using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and socioeconomic data. The supply-demand relationships of water resources were analyzed using the ecosystem service indices including water supply-demand difference (WSDD) and water supply rate (WSR). The internal factors in changes of WYD and WUD were explored using the controlled variable method. The results show that the supply- demand relationships of water resources in Xinjiang were in a slight deficit, but the deficit was alleviated due to increased precipitation and decreased WUD of irrigation. WYD generally experienced an increasing trend, and significant increase mainly occurred in the oasis areas surrounding both the Junggar Basin and Tarim Basin. WUD had a downward trend with a decline of 20.70%, especially in oasis areas. Water resources in most areas of Xinjiang were fully utilized and the utilization efficiency of water resources increased. The water yield module in the InVEST model was calibrated and validated using gauging station data in Xinjiang, and the result shows that the use of satellite-based water storage data helped to decrease the bias error of the InVEST model by 0.69×108 m3. This study analyzed water resource supplies and demands from a perspective of ecosystem services, which expanded the scope of the application of ecosystem services and increased the research perspective of water resource evaluation. The results could provide guidance for water resource management such as spatial allocation and structural optimization of water resources in arid and semi-arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal
Nirmal M DAHAL, XIONG Donghong, Nilhari NEUPANE, Belayneh YIGEZ, ZHANG Baojun, YUAN Yong, Saroj KOIRALA, LIU Lin, FANG Yiping
Journal of Arid Land    2021, 13 (5): 433-454.   DOI: 10.1007/s40333-021-0065-6
Abstract258)   HTML683)    PDF(pc) (1086KB)(358)       Save

Drought is an inevitable condition with negative impacts in the agricultural and climatic sectors, especially in developing countries. This study attempts to examine the spatial and temporal characteristics of drought and its trends in the Koshi River Basin (KRB) in Nepal, using the standardized precipitation evapotranspiration index (SPEI) over the period from 1987 to 2017. The Mann-Kendall test was used to explore the trends of the SPEI values. The study illustrated the increasing annual and seasonal drought trends in the KRB over the study period. Spatially, the hill region of the KRB showed substantial increasing drought trends at the annual and seasonal scales, especially in summer and winter. The mountain region also showed a significant increasing drought trend in winter. The drought characteristic analysis indicated that the maximum duration, intensity, and severity of drought events were observed in the KRB after 2000. The Terai region presented the highest drought frequency and intensity, while the hill region presented the longest maximum drought duration. Moreover, the spatial extent of drought showed a significant increasing trend in the hill region at the monthly (drought station proportion of 7.6%/10a in August), seasonal (drought station proportion of 7.2%/10a in summer), and annual (drought station proportion of 6.7%/10a) scales. The findings of this study can assist local governments, planners, and project implementers in understanding drought and developing appropriate mitigation strategies to cope with its impacts.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities
YU Yang, CHEN Xi, Ireneusz MALIK, Malgorzata WISTUBA, CAO Yiguo, HOU Dongde, TA Zhijie, HE Jing, ZHANG Lingyun, YU Ruide, ZHANG Haiyan, SUN Lingxiao
Journal of Arid Land    2021, 13 (9): 881-890.   DOI: 10.1007/s40333-021-0084-3
Abstract255)   HTML785)    PDF(pc) (472KB)(815)       Save

Central Asia is located in the hinterland of Eurasia, comprising Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan; over 93.00% of the total area is dryland. Temperature rise and human activities have severe impacts on the fragile ecosystems. Since the 1970s, nearly half the great lakes in Central Asia have shrunk and rivers are drying rapidly owing to climate changes and human activities. Water shortage and ecological crisis have attracted extensive international attention. In general, ecosystem services in Central Asia are declining, particularly with respect to biodiversity, water, and soil conservation. Furthermore, the annual average temperature and annual precipitation in Central Asia increased by 0.30°C/decade and 6.9 mm/decade in recent decades, respectively. Temperature rise significantly affected glacier retreat in the Tianshan Mountains and Pamir Mountains, which may intensify water shortage in the 21st century. The increase in precipitation cannot counterbalance the aggravation of water shortage caused by the temperature rise and human activities in Central Asia. The population of Central Asia is growing gradually, and its economy is increasing steadily. Moreover, the agricultural land has not been expended in the last two decades. Thus, water and ecological crises, such as the Aral Sea shrinkage in the 21st century, cannot be attributed to agriculture extension any longer. Unbalanced regional development and water interception/transfer have led to the irrational exploitation of water resources in some watersheds, inducing downstream water shortage and ecological degradation. In addition, accelerated industrialization and urbanization have intensified this process. Therefore, all Central Asian countries must urgently reach a consensus and adopt common measures for water and ecological protection.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Mathematical and statistical modeling of morphometric and planar parameters of barchans in Pashoeyeh Erg in the west of Lut Desert, Iran
Hossein GHAZANFARPOUR, Mohsen POURKHOSRAVANI, Sayed H MOUSAVI, Ali MEHRABI
Journal of Arid Land    2021, 13 (8): 801-813.   DOI: 10.1007/s40333-021-0102-5
Abstract253)   HTML11)    PDF(pc) (444KB)(421)       Save

Barchan dunes are among the most common accumulative phenomena made by wind erosion, which are usually formed in regions where the prevailing wind direction is almost constant throughout the year and there is not enough sand to completely cover the land surface. Barchans are among the most common windy landscapes in Pashoueyeh Erg in the west of Lut Desert, Iran. This study aims to elaborate on morphological properties of barchans in this region using mathematical and statistical models. The results of these methods are very important in investigating barchan shapes and identifying their behavior. Barchan shapes were mathematically modeled by simulating them in the coordinate system through nonlinear parabolic equations, so that two separate equations were calculated for barchan windward and slip-face parabolas. The type and intensity of relationships between barchan morphology and mathematical parameters were determined by the statistical modeling. The results indicated that the existing relationships followed the power correlation with the maximum coefficient of determination and minimum error of estimate. Combining the above two methods is a powerful basis for stimulating barchans in virtual and laboratory environments. The most important result of this study is to convert the mathematical and statistical models of barchan morphology to each other. Focal length is one of the most important parameters of barchan parabolas, suggesting different states of barchans in comparison with each other. As the barchan's focal length decreases, its opening becomes narrower, and the divergence of the barchan's horns reduces. Barchans with longer focal length have greater width, dimensions, and volume. In general, identifying and estimating the morphometric and planar parameters of barchans is effective in how they move, how much they move, and how they behave in the environment. These cases play an important role in the management of desert areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Diversity of cultivable endophytic bacteria associated with halophytes in Xinjiang of China and their plant beneficial traits
LI Li, GAO Lei, LIU Yonghong, FANG Baozhu, HUANG Yin, Osama A A MOHAMAD, Dilfuza EGAMBERDIEVA, LI Wenjun, MA Jinbiao
Journal of Arid Land    2021, 13 (8): 790-800.   DOI: 10.1007/s40333-021-0016-2
Abstract239)   HTML14)    PDF(pc) (550KB)(570)       Save

Endophytic bacteria from halophytes have a wide range of application prospects in various fields, such as plant growth-promoting, biocontrol activity and stress resistance. The current study aimed to identify cultivable endophytic bacteria associated with halophytes grown in the salt-affected soil in Xinjiang Uygur Autonomous Region, China and to evaluate their plant beneficial traits and enzyme-producing activity. Endophytic bacteria were isolated from Reaumuria soongorica (PalL Maxim.), Artemisia carvifolia (Buch.-Ham. ex Roxb. Hort. Beng.), Peganum harmala L. and Suaeda dendroides (C. A. Mey. Moq.) by using the cultural-dependent method. Then we classified these bacteria based on the difference between their sequences of 16S rRNA (16S ribosomal RNA) gene. Results showed that the isolated bacteria from R. soongorica belonged to the genera Brucella, Bacillus and Variovorax. The bacteria from A. carvifolia belonged to the genera Micromonospora and Brucella. The bacteria from P. harmala belonged to the genera Paramesorhizobium, Bacillus and Peribacillus. The bacteria from S. dendroides belonged to the genus Bacillus. Notably, the genus Bacillus was detected in the three above plants, indicating that Bacillus is a common taxon of endophytic bacteria in halophytes. And, our results found that about 37.50% of the tested strains showed strong protease-producing activity, 6.25% of the tested strains showed strong cellulase-producing activity and 12.50% of the tested strains showed moderate lipase-producing activity. Besides, all isolated strains were positive for IAA (3-Indoleacetic acid) production, 31.25% of isolated strains exhibited a moderate phosphate solubilization activity and 50.00% of isolated strains exhibited a weak siderophore production activity. Our findings suggest that halophytes are valuable resources for identifying microbes with the ability to increase host plant growth and health in salt-affected soils.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Hydrochemical characteristics and evolution of groundwater in the dried-up river oasis of the Tarim Basin, Central Asia
WANG Wanrui, CHEN Yaning, WANG Weihua, XIA Zhenhua, LI Xiaoyang, Patient M KAYUMBA
Journal of Arid Land    2021, 13 (10): 977-994.   DOI: 10.1007/s40333-021-0086-1
Abstract236)   HTML527)    PDF(pc) (2574KB)(296)       Save

Intense human activities in arid areas have great impacts on groundwater hydrochemical cycling by causing groundwater salinization. The spatiotemporal distributions of groundwater hydrochemistry are crucial for studying groundwater salt migration, and also vital to understand hydrological and hydrogeochemical processes of groundwater in arid inland oasis areas. However, due to constraints posed by the paucity of observation data and intense human activities, these processes are not well known in the dried-up river oases of arid areas. Here, we examined spatiotemporal variations and evolution of groundwater hydrochemistry using data from 199 water samples collected in the Wei-Ku Oasis, a typical arid inland oasis in Tarim Basin of Central Asia. As findings, groundwater hydrochemistry showed a spatiotemporal dynamic, while its spatial distribution was complex. TDS and δ18O of river water in the upstream increased from west to east, whereas ion concentrations of shallow groundwater increased from northwest to southeast. Higher TDS was detected in spring for shallow groundwater and in summer for middle groundwater. Pronounced spatiotemporal heterogeneity demonstrated the impacts of geogenic, climatic, and anthropogenic conditions. For that, hydrochemical evolution of phreatic groundwater was primarily controlled by rock dominance and evaporation-crystallization process. Agricultural irrigation and drainage, land cover change, and groundwater extraction reshaped the spatiotemporal patterns of groundwater hydrochemistry. Groundwater overexploitation altered the leaking direction between the aquifers, causing the interaction between saltwater and freshwater and the deterioration of groundwater environment. These findings could provide an insight into groundwater salt migration under human activities, and hence be significant in groundwater quality management in arid inland oasis areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of restoration modes on the spatial distribution of soil physical properties after land consolidation: a multifractal analysis
KE Zengming, LIU Xiaoli, MA Lihui, TU Wen, FENG Zhe, JIAO Feng, WANG Zhanli
Journal of Arid Land    2021, 13 (12): 1201-1214.   DOI: 10.1007/s40333-021-0027-z
Abstract235)   HTML539)    PDF(pc) (1834KB)(331)       Save

Soil physical properties (SPP) are considered to be important indices that reflect soil structure, hydrological conditions and soil quality. It is of substantial interest to study the spatial distribution of SPP owing to the high spatial variability caused by land consolidation under various land restoration modes in excavated farmland in the loess hilly area of China. In our study, three land restoration modes were selected including natural restoration land (NR), alfalfa land (AL) and maize land (ML). Soil texture composition, including the contents of clay, silt and sand, field capacity (FC), saturated conductivity (Ks) and bulk density (BD) were determined using a multifractal analysis. SPP were found to possess variable characteristics, although land consolidation destroyed the soil structure and decreased the spatial autocorrelation. Furthermore, SPP varied with land restoration and could be illustrated by the multifractal parameters of D1, ∆D, ∆α and ∆f in different modes of land restoration. Owing to multiple compaction from large machinery in the surface soil, soil particles were fine-grained and increased the spatial variability in soil texture composition under all the land restoration modes. Plough numbers and vegetative root characteristics had the most significant impacts on the improvement in SPP, which resulted in the best spatial distribution characteristics of SPP found in ML compared with those in AL and NR. In addition, compared with ML, ∆α values of NR and AL were 4.9- and 3.0-fold that of FC, respectively, and ∆α values of NR and AL were 2.3- and 1.5-fold higher than those of Ks, respectively. These results indicate that SPP can be rapidly improved by increasing plough numbers and planting vegetation types after land consolidation. Thus, we conclude that ML is an optimal land restoration mode that results in favorable conditions to rapidly improve SPP.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Gross nitrogen transformations and N2O emission sources in sandy loam and silt loam soils
LANG Man, LI Ping, WEI Wei
Journal of Arid Land    2021, 13 (5): 487-499.   DOI: 10.1007/s40333-021-0098-x
Abstract235)   HTML7)    PDF(pc) (401KB)(230)       Save

The soil type is a key factor influencing N (nitrogen) cycling in soil; however, gross N transformations and N2O emission sources are still poorly understood. In this study, a laboratory 15N tracing experiment was carried out at 60% WHC (water holding capacity) and 25oC to evaluate the gross N transformation rates and N2O emission pathways in sandy loam and silt loam soils in a semi-arid region of Heilongjiang Province, China. The results showed that the gross rates of N mineralization, immobilization, and nitrification were 3.60, 1.90, and 5.63 mg N/(kg·d) in silt loam soil, respectively, which were 3.62, 4.26, and 3.13 times those in sandy loam soil, respectively. The ratios of the gross nitrification rate to the ammonium immobilization rate (n/ia) in sandy loam soil and silt loam soil were all higher than 1.00, whereas the n/ia in sandy loam soil (4.36) was significantly higher than that in silt loam soil (3.08). This result indicated that the ability of sandy loam soil to release and conserve the available N was relatively poor in comparison with silt loam soil, and the relatively strong nitrification rate compared to the immobilization rate may lead to N loss through NO3- leaching. Under aerobic conditions, both nitrification and denitrification made contributions to N2O emissions. Nitrification was the dominant pathway leading to N2O production in soils and was responsible for 82.0% of the total emitted N2O in sandy loam soil, which was significantly higher than that in silt loam soil (71.7%). However, the average contribution of denitrification to total N2O production in sandy loam soil was 17.9%, which was significantly lower than that in silt loam soil (28.3%). These results are valuable for developing reasonable fertilization management and proposing effective greenhouse gas mitigation strategies in different soil types in semiarid regions.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Quantification of groundwater recharge and evapotranspiration along a semi-arid wetland transect using diurnal water table fluctuations
JIA Wuhui, YIN Lihe, ZHANG Maosheng, ZHANG Xinxin, ZHANG Jun, TANG Xiaoping, DONG Jiaqiu
Journal of Arid Land    2021, 13 (5): 455-469.   DOI: 10.1007/s40333-021-0100-7
Abstract234)   HTML367)    PDF(pc) (1571KB)(328)       Save

Groundwater is a vital water resource in arid and semi-arid areas. Diurnal groundwater table fluctuations are widely used to quantify rainfall recharge and groundwater evapotranspiration (ETg). To assess groundwater resources for sustainable use, we estimated groundwater recharge and ETg using the diurnal water table fluctuations at three sites along a section with different depths to water table (DWT) within a wetland of the Mukai Lake in the Ordos Plateau, Northwest China. The water table level was monitored at an hourly resolution using a Keller DCX-22A data logger that measured both the total pressure and barometric pressure, so that the effect of barometric pressure could be removed. At this study site, a rapid water table response to rainfall was observed in two shallow wells (i.e., Obs1 and Obs2), at which diurnal water table fluctuations were also observed over the study period during rainless days, indicating that the main factors influencing water table variation are rainfall and ETg. However, at the deep-water table site (Obs3), the groundwater level only reacted to the heaviest rainfalls and showed no diurnal variations. Groundwater recharge and ETg were quantified for the entire hydrological year (June 2017-June 2018) using the water table fluctuation method and the Loheide method, respectively, with depth-dependent specific yields. The results show that the total annual groundwater recharge was approximately 207 mm, accounting for 52% of rainfall at Obs1, while groundwater recharge was approximately 250 and 21 mm at Obs2 and Obs3, accounting for 63% and 5% of rainfall, respectively. In addition, the rates of groundwater recharge were mainly determined by rainfall intensity and DWT. The daily mean ETg at Obs1 and Obs2 over the study period was 4.3 and 2.5 mm, respectively, and the main determining factors were DWT and net radiation.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Monitoring fire regimes and assessing their driving factors in Central Asia
YIN Hanmin, Jiapaer GULI, JIANG Liangliang, YU Tao, Jeanine UMUHOZA, LI Xu
Journal of Arid Land    2021, 13 (5): 500-515.   DOI: 10.1007/s40333-021-0008-2
Abstract233)   HTML7)    PDF(pc) (11465KB)(242)       Save

Relatively little is known about fire regimes in grassland and cropland in Central Asia. In this study, eleven variables of fire regimes were measured from 2001 to 2019 by utilizing the burned area and active fire product, which was obtained and processed from the GEE (Google Earth Engine) platform, to describe the incidence, inter-annual variability, peak month and size of fire in four land cover types (forest, grassland, cropland and bare land). Then all variables were clustered to define clusters of fire regimes with unique fire attributes using the K-means algorithm. Results showed that Kazakhstan (KAZ) was the most affected by fire in Central Asia. Fire regimes in cropland in KAZ had the frequent, large and intense characters, which covered large burned areas and had a long duration. Fires in grassland mainly occurred in central KAZ and had the small scale and high-intensity characters with different quarterly frequencies. Fires in forest were mainly distributed in northern KAZ and eastern KAZ. Although fires in grassland underwent a shift from more to less frequent from 2001 to 2019 in Central Asia, vigilance is needed because most fires in grassland occur suddenly and cause harm to humans and livestock.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effect of stones on the sand saltation threshold during natural sand and dust storms in a stony desert in Tsogt-Ovoo in the Gobi Desert, Mongolia
Batjargal BUYANTOGTOKH, Yasunori KUROSAKI, Atsushi TSUNEKAWA, Mitsuru TSUBO, Batdelger GANTSETSEG, Amarsaikhan DAVAADORJ, Masahide ISHIZUKA, Tsuyoshi T SEKIYAMA, Taichu Y TANAKA, Takashi MAKI
Journal of Arid Land    2021, 13 (7): 653-673.   DOI: 10.1007/s40333-021-0072-7
Abstract229)   HTML671)    PDF(pc) (2716KB)(363)       Save

Non-erodible elements such as stones and vegetation are key to controlling wind erosion and dust emission in drylands. Stony deserts are widely distributed in the Gobi Desert, but the effect of stones on wind erosion and dust emission have not been well studied, except under artificial conditions. In this study, we evaluated the effect of stones on wind erosion and dust emission by measuring the sand saltation threshold in a stony desert in Tsogt-Ovoo in the Gobi Desert, Mongolia, under natural surface conditions during sand and dust storms. We quantified the amount of stones by measuring the roughness density, and determined the threshold friction velocity for sand saltation by measuring wind speed and sand saltation count. Our results showed that the threshold friction velocity increased with the roughness density of stones. In the northern part of the study area, where neither a surface crust nor vegetation was observed, the roughness density of stones was 0.000 in a topographic depression (TD), 0.050 on a northern slope (N.SL), and 0.160 on the northern mountain (N.MT). The mean threshold friction velocity values were 0.23, 0.41, and 0.57 m/s at the TD, N.SL, and N.MT sites, respectively. In the southern part of the study area, the roughness density values of stones were 0.000 and 0.070-0.320 at the TD and southern slope sites, respectively, and the mean threshold friction velocities were 0.23 and 0.45-0.71 m/s, respectively. We further compared the observed threshold friction velocities with simulated threshold friction velocities using Raupach's theoretical roughness correction and the measured roughness density values, and found that Raupach's roughness correction worked very well in the simulation of threshold friction velocity in the stony desert. This means that the results of our stone measurement can be applied to a numerical dust model.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Promoting the production of salinized cotton field by optimizing water and nitrogen use efficiency under drip irrigation
LIN En, LIU Hongguang, LI Xinxin, LI Ling, Sumera ANWAR
Journal of Arid Land    2021, 13 (7): 699-716.   DOI: 10.1007/s40333-021-0012-6
Abstract229)   HTML6)    PDF(pc) (1662KB)(379)       Save

Cotton is the main economically important crop in Xinjiang, China, but soil salinization and shortage of water and nutrients have restricted its production. A field experiment was carried out in the salinity-affected arid area of Northwest China from 2018 to 2019 to explore the effects of nitrogen and water regulation on physiological growth, yield, water and nitrogen use efficiencies, and economic benefit of cotton. The salinity levels were 7.7 (SL) and 12.5 dS/m (SM). Drip irrigation was used with low, medium and adequate irrigation levels representing 60%, 80% and 100% of cotton crop water demand, respectively, and three nitrogen applications, i.e., 206, 275 and 343 kg/hm2, accounting for 75%, 100% and 125% of local N application, respectively were used. The multi-objective optimization based on spatial analysis showed that, at SL salinity, water use efficiency (WUE), nitrogen use efficiency (NUE), economic benefit and yield simultaneously reached more than 85% of their maxima at 379.18-398.32 mm irrigation and 256.69-308.87 kg/hm2. At SM salinity, WUE, yield and economic benefit simultaneously reached more than 85% of their maxima when irrigation was 351.24-376.30 mm and nitrogen application was 230.18-289.89 kg/hm2. NUE, yield and economic benefit simultaneously reached their maxima at 428.01-337.72 mm irrigation, and nitrogen application range was 222.14-293.93 kg/hm2. The plants at SL salinity had 21.58%-46.59% higher WUE rates, 14.91%-34.35% higher NUE rates and 20.71%-35.34% higher yields than those at SM salinity. The results are of great importance for the nutrient and water management in cotton field in the arid saline area.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China
BAI Jie, LI Junli, BAO Anmin, CHANG Cun
Journal of Arid Land    2021, 13 (8): 814-834.   DOI: 10.1007/s40333-021-0079-0
Abstract228)   HTML13)    PDF(pc) (4053KB)(536)       Save

As the largest inland river basin of China, the Tarim River Basin (TRB), known for its various natural resources and fragile environment, has an increased risk of ecological crisis due to the intensive exploitation and utilization of water and land resources. Since the Ecological Water Diversion Project (EWDP), which was implemented in 2001 to save endangered desert vegetation, there has been growing evidence of ecological improvement in local regions, but few studies have performed a comprehensive ecological vulnerability assessment of the whole TRB. This study established an evaluation framework integrating the analytic hierarchy process (AHP) and entropy method to estimate the ecological vulnerability of the TRB covering climatic, ecological, and socioeconomic indicators during 2000-2017. Based on the geographical detector model, the importance of ten driving factors on the spatial-temporal variations of ecological vulnerability was explored. The results showed that the ecosystem of the TRB was fragile, with more than half of the area (57.27%) dominated by very heavy and heavy grades of ecological vulnerability, and 28.40% of the area had potential and light grades of ecological vulnerability. The light grade of ecological vulnerability was distributed in the northern regions (Aksu River and Weigan River catchments) and western regions (Kashgar River and Yarkant River catchments), while the heavy grade was located in the southern regions (Kunlun Mountains and Qarqan River catchments) and the Mainstream catchment. The ecosystems in the western and northern regions were less vulnerable than those in the southern and eastern regions. From 2000 to 2017, the overall improvement in ecological vulnerability in the whole TRB showed that the areas with great ecological improvement increased by 46.11%, while the areas with ecological degradation decreased by 9.64%. The vegetation cover and potential evapotranspiration (PET) were the obvious driving factors, explaining 57.56% and 21.55% of the changes in ecological vulnerability across the TRB, respectively. In terms of ecological vulnerability grade changes, obvious spatial differences were observed in the upper, middle, and lower reaches of the TRB due to the different vegetation and hydrothermal conditions. The alpine source region of the TRB showed obvious ecological improvement due to increased precipitation and temperature, but the alpine meadow of the Kaidu River catchment in the Middle Tianshan Mountains experienced degradation associated with overgrazing and local drought. The improved agricultural management technologies had positive effects on farmland ecological improvement, while the desert vegetation in oasis-desert ecotones showed a decreasing trend as a result of cropland reclamation and intensive drought. The desert riparian vegetation in the lower reaches of the Tarim River was greatly improved due to the implementation of the EWDP, which has been active for tens of years. These results provide comprehensive knowledge about ecological processes and mechanisms in the whole TRB and help to develop environmental restoration measures based on different ecological vulnerability grades in each sub-catchment.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Soil quality assessment in different dammed-valley farmlands in the hilly-gully mountain areas of the northern Loess Plateau, China
CHEN Shumin, JIN Zhao, ZHANG Jing, YANG Siqi
Journal of Arid Land    2021, 13 (8): 777-789.   DOI: 10.1007/s40333-021-0014-4
Abstract227)   HTML756)    PDF(pc) (1224KB)(493)       Save

There are numerous valley farmlands on the Chinese Loess Plateau (CLP), where suffers from low soil quality and high risk of soil salinization due to the shallow groundwater table and poor drainage system. Currently, research on the evolution processes and mechanisms of soil quality and salinization in these dammed-valley farmlands on the CLP is still inadequately understood. In this study, three kinds of dammed-valley farmlands in the hilly-gully areas of the northern CLP were selected, and the status of soil quality and the impact factors of soil salinization were examined. The dammed-valley farmlands include the new farmland created by the project of Gully Land Consolidation, the 60-a farmland created by sedimentation from check dam, and the 400-a farmland created by sedimentation from an ancient landslide-dammed lake. Results showed that (1) the newly created farmland had the lowest soil quality in terms of soil bulk density, porosity, soil organic carbon and total nitrogen among the three kinds of dammed-valley farmlands; (2) soil salinization occurred in the middle and upper reaches of the new and 60-a valley farmlands, whereas no soil salinization was found in the 400-a valley farmland; and (3) soil salinization and low soil nutrient were determined to be the two important factors that impacted the soil quality of the valley farmlands in the hilly-gully mountain areas of the CLP. We conclude that the dammed-valley farmlands on the CLP have a high risk of soil salinization due to the shallow groundwater table, alkalinity of the loessial soil and local landform feature, thus resulting in the low soil quality of the valley farmlands. Therefore, strengthening drainage and decreasing groundwater table are extremely important to improve the soil quality of the valley farmlands and guarantee the sustainable development of the valley agriculture on the CLP.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Tree-ring δ15N of Qinghai spruce in the central Qilian Mountains of China: Is pre-treatment of wood samples necessary?
WANG Ziyi, LIU Xiaohong, WANG Keyi, ZENG Xiaomin, ZHANG Yu, GE Wensen, KANG Huhu, LU Qiangqiang
Journal of Arid Land    2022, 14 (6): 673-690.   DOI: 10.1007/s40333-022-0065-1
Abstract225)   HTML5)    PDF(pc) (1200KB)(142)       Save

A knowledge of the tree-ring stable nitrogen isotope ratio (δ15N) can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability, cycling and sources of nitrogen (N). However, the radial mobility of N blurs the interannual variations in the long-term N records. Previous studies of the chemical extraction of tree rings before analysis had produced inconsistent results and it is still unclear whether it is necessary to pre-treat wood samples from specific tree species to remove soluble N compounds before determining the δ15N values. We compared the effects of pre-treatment with organic solvents and hot ultrapure water on the N concentration and δ15N of tree rings from endemic Qinghai spruce (Picea crassifolia) growing in the interior of the central Qilian Mountains, China, during the last 60 a. We assessed the effects of different preparation protocols on the removal of the labile N compounds and investigated the need to pre-treat wood samples before determining the δ15N values of tree rings. Increasing trends of the tree-ring N concentration were consistently observed in both the extracted and unextracted wood samples. The total N removed by extraction with organic solvents was about 17.60%, with a significantly higher amount in the sapwood section (P<0.01). The δ15N values of tree rings decreased consistently from 1960 to 2019 in both the extracted and unextracted wood samples. Extraction with organic solvents increased the δ15N values markedly by about 5.2‰ and reduced the variations in the δ15N series. However, extraction with hot ultrapure water had little effect, with only a slight decrease in the δ15N values of about 0.5‰. Our results showed that the radial pattern in the inter-ring movement of N in Qinghai spruce was not minimized by extraction with either organic solvents or hot ultrapure water. It is unnecessary to conduct hot ultrapure water extraction for the wood samples from Qinghai spruce because of its negligible effect on the removal of the labile N. The δ15N variation trend of tree rings in the unextracted wood samples was not influenced by the heartwood-sapwood transition zone. We suggest that the δ15N values of the unextracted wood samples of the climate-sensitive Qinghai spruce could be used to explore the ecophysiological dynamics while focusing on the long-term variations.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Erratum to: Snowpack shifts cyanobacterial community in biological soil crusts
ZHANG Bingchang, ZHANG Yongqing, ZHOU Xiaobing, LI Xiangzhen, ZHANG Yuanming
Journal of Arid Land    2021, 13 (5): 548-548.   DOI: 10.1007/s40333-021-0073-6
Abstract219)   HTML10)    PDF(pc) (103KB)(409)       Save
Reference | Related Articles | Metrics | Comments0
Ecosystem service values of gardens in the Yellow River Basin, China
GE Qianqian, XU Wenjie, FU Meichen, HAN Yingxin, AN Guoqiang, XU Yuetong
Journal of Arid Land    2022, 14 (3): 284-296.   DOI: 10.1007/s40333-022-0061-5
Abstract212)   HTML39)    PDF(pc) (802KB)(557)       Save

Studies on the ecosystem service value (ESV) of gardens are critical for informing evidence- based land management practices based on an understanding of the local ecosystem. By analyzing equivalent value factors (EVFs), this paper evaluated the values of 11 ecosystem services of gardens in the Yellow River Basin of China in 2019. High-precision land use survey data were used to improve the accuracy of the land use classification, garden areas, and spatial distribution of the ESVs of gardens. The results showed that garden ecosystem generally had high ESVs, especially in terms of the ESV of food production, which is worthy of further research and application to the practice of land use planning and management. Specifically, the value of one standard EVF of ecosystem services in 2019 was 3587.04 CNY/(hm2•a), and the ESV of food production of gardens was much higher than that of croplands. Garden ecosystem provided an ESV of 1348.66×108 CNY/a in the Yellow River Basin. The areas with the most concentrated ESVs of gardens were located in four regions: downstream in the Shandong-Henan zone along the Yellow River, mid-stream in the Shanxi-Shaanxi zone along the Yellow River, the Weihe River Basin, and upstream in the Qinghai-Gansu-Ningxia-Inner Mongolia zone along the Yellow River. The spatial correlation of the ESVs in the basin was significant (global spatial autocorrelation index Moran's I=0.464), which implied that the characteristics of high ESVs adjacent to high ESVs and low ESVs adjacent to low ESVs are prominent. In the Yellow River Basin, the contribution of the ESVs of gardens to the local environment and economy varied across regions. We also put forward some suggestions for promoting the construction of ecological civilization in the Yellow River Basin. The findings of this study provide important contributions to the research of ecosystem service evaluation in the Yellow River Basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of climate change and land use/cover change on the volume of the Qinghai Lake in China
WANG Hongwei, QI Yuan, LIAN Xihong, ZHANG Jinlong, YANG Rui, ZHANG Meiting
Journal of Arid Land    2022, 14 (3): 245-261.   DOI: 10.1007/s40333-022-0062-4
Abstract209)   HTML179)    PDF(pc) (1407KB)(588)       Save

Qinghai Lake is the largest saline lake in China. The change in the lake volume is an indicator of the variation in water resources and their response to climate change on the Qinghai-Tibetan Plateau (QTP) in China. The present study quantitatively evaluated the effects of climate change and land use/cover change (LUCC) on the lake volume of the Qinghai Lake in China from 1958 to 2018, which is crucial for water resources management in the Qinghai Lake Basin. To explore the effects of climate change and LUCC on the Qinghai Lake volume, we analyzed the lake level observation data and multi-period land use/land cover (LULC) data by using an improved lake volume estimation method and Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model. Our results showed that the lake level decreased at the rate of 0.08 m/a from 1958 to 2004 and increased at the rate of 0.16 m/a from 2004 to 2018. The lake volume decreased by 105.40×108 m3 from 1958 to 2004, with the rate of 2.24×108 m3/a, whereas it increased by 74.02×108 m3 from 2004 to 2018, with the rate of 4.66×108 m3/a. Further, the climate of the Qinghai Lake Basin changed from warm-dry to warm-humid. From 1958 to 2018, the increase in precipitation and the decrease in evaporation controlled the change of the lake volume, which were the main climatic factors affecting the lake volume change. From 1977 to 2018, the measured water yield showed an "increase-decrease-increase" fluctuation in the Qinghai Lake Basin. The effects of climate change and LUCC on the measured water yield were obviously different. From 1977 to 2018, the contribution rate of LUCC was -0.76% and that of climate change was 100.76%; the corresponding rates were 8.57% and 91.43% from 1977 to 2004, respectively, and -4.25% and 104.25% from 2004 to 2018, respectively. Quantitative analysis of the effects and contribution rates of climate change and LUCC on the Qinghai Lake volume revealed the scientific significance of climate change and LUCC, as well as their individual and combined effects in the Qinghai Lake Basin and on the QTP. This study can contribute to the water resources management and regional sustainable development of the Qinghai Lake Basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China
WU Jun, DENG Guoning, ZHOU Dongmei, ZHU Xiaoyan, MA Jing, CEN Guozhang, JIN Yinli, ZHANG Jun
Journal of Arid Land    2021, 13 (7): 674-687.   DOI: 10.1007/s40333-021-0074-5
Abstract206)   HTML571)    PDF(pc) (1186KB)(426)       Save

Water resources are a crucial factor that determines the health of ecosystems and socio-economic development; however, they are under threat due to climate change and human activities. The quantitative assessment of water resources using the concept of blue water and green water can improve regional water resources management. In this study, spatiotemporal distributions of blue water and green water were simulated and analyzed under scenarios of climate change and land-use changes using the Soil and Water Assessment Tool (SWAT) in Ningxia Hui Autonomous Region, Northwest China, between 2009 and 2014. Green water, a leading component of water resources, accounted for more than 69.00% of the total water resources in Ningxia. Blue water and green water showed a single peak trend on the monthly and annual scales during the study period. On the spatial scale, the southern region of Ningxia showed higher blue water and green water resources than the northern region. The spatiotemporal distribution features of blue water, green water, and green water flow had strong correlations with precipitation. Furthermore, the simulation identified the climate change in Ningxia to be more influential on blue water and green water than land-use changes. This study provides a specific scientific foundation to manage water resources in Ningxia when encountered with climate change together with human activities.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Geochronology, geochemistry, and Sr-Nd isotopes of Early Carboniferous magmatism in southern West Junggar, northwestern China: Implications for Junggar oceanic plate subduction
LIU Pengde, LIU Xijun, XIAO Wenjiao, ZHANG Zhiguo, SONG Yujia, XIAO Yao, LIU Lei, HU Rongguo, WANG Baohua
Journal of Arid Land    2021, 13 (11): 1163-1182.   DOI: 10.1007/s40333-021-0069-2
Abstract202)   HTML0)    PDF(pc) (2358KB)(409)       Save

West Junggar is a key area for understanding intra-oceanic plate subduction and the final closure of the Junggar Ocean. Knowledge of the Carboniferous tectonic evolution of the Junggar Ocean region is required for understanding the tectonic framework and accretionary processes in West Junggar, Central Asian Orogenic Belt. A series of Early Carboniferous volcanic and intrusive rocks, namely, basaltic andesite, andesite, dacite, and diorite, occur in the Mayile area of southern West Junggar, northwestern China. Our new LA-ICPMS zircon U-Pb geochronological data reveal that diorite intruded at 334 (±1) Ma, and that basaltic andesite was erupted at 334 (±4) Ma. These intrusive and volcanic rocks are calc-alkaline, display moderate MgO (1.62%-4.18%) contents and Mg# values (40-59), and low Cr (14.5×10-6-47.2×10-6) and Ni (7.5×10-6-34.6×10-6) contents, and are characterized by enrichment in light rare-earth elements and large-ion lithophile elements and depletion in heavy rare-earth elements and high-field-strength elements, meaning that they belong to typical subduction-zone island-arc magma. The samples show low initial 87Sr/86Sr ratios (range of 0.703649-0.705008), positive εNd(t) values (range of 4.8-6.2 and mean of 5.4), and young TDM Nd model ages ranging from 1016 to 616 Ma, indicating a magmatic origin from depleted mantle involving partial melting of 10%-25% garnet and spinel lherzolite. Combining our results with those of previous studies, we suggest that these rocks were formed as a result of northwestward subduction of the Junggar oceanic plate, which caused partial melting of sub-arc mantle. We conclude that intra-oceanic arc magmatism was extensive in West Junggar during the Early Carboniferous.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Climate change impacts on the streamflow of Zarrineh River, Iran
Farhad YAZDANDOOST, Sogol MORADIAN
Journal of Arid Land    2021, 13 (9): 891-904.   DOI: 10.1007/s40333-021-0091-4
Abstract201)   HTML369)    PDF(pc) (1733KB)(759)       Save

Zarrineh River is located in the northwest of Iran, providing more than 40% of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth. Lake Urmia is a highly endangered ecosystem on the brink of desiccation. This paper studied the impacts of climate change on the streamflow of Zarrineh River. The streamflow was simulated and projected for the period 1992-2050 through seven CMIP5 (coupled model intercomparison project phase 5) data series (namely, BCC-CSM1-1, BNU-ESM, CSIRO-Mk3-6-0, GFDL-ESM2G, IPSL-CM5A-LR, MIROC-ESM and MIROC-ESM-CHEM) under RCP2.6 (RCP, representative concentration pathways) and RCP8.5. The model data series were statistically downscaled and bias corrected using an artificial neural network (ANN) technique and a Gamma based quantile mapping bias correction method. The best model (CSIRO-Mk3-6-0) was chosen by the TOPSIS (technique for order of preference by similarity to ideal solution) method from seven CMIP5 models based on statistical indices. For simulation of streamflow, a rainfall-runoff model, the hydrologiska byrans vattenavdelning (HBV-Light) model, was utilized. Results on hydro-climatological changes in Zarrineh River basin showed that the mean daily precipitation is expected to decrease from 0.94 and 0.96 mm in 2015 to 0.65 and 0.68 mm in 2050 under RCP2.6 and RCP8.5, respectively. In the case of temperature, the numbers change from 12.33°C and 12.37°C in 2015 to 14.28°C and 14.32°C in 2050. Corresponding to these climate scenarios, this study projected a decrease of the annual streamflow of Zarrineh River by half from 2015 to 2050 as the results of climatic changes will lead to a decrease in the annual streamflow of Zarrineh River from 59.49 m3/s in 2015 to 22.61 and 23.19 m3/s in 2050. The finding is of important meaning for water resources planning purposes, management programs and strategies of the Lake's endangered ecosystem.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Plant cover as an estimator of above-ground biomass in semi-arid woody vegetation in Northeast Patagonia, Argentina
Laura B RODRIGUEZ, Silvia S TORRES ROBLES, Marcelo F ARTURI, Juan M ZEBERIO, Andrés C H GRAND, Néstor I GASPARRI
Journal of Arid Land    2021, 13 (9): 918-933.   DOI: 10.1007/s40333-021-0083-4
Abstract200)   HTML8)    PDF(pc) (1377KB)(423)       Save

The quantification of carbon storage in vegetation biomass is a crucial factor in the estimation and mitigation of CO2 emissions. Globally, arid and semi-arid regions are considered an important carbon sink. However, they have received limited attention and, therefore, it should be a priority to develop tools to quantify biomass at the local and regional scales. Individual plant variables, such as stem diameter and crown area, were reported to be good predictors of individual plant weight. Stand-level variables, such as plant cover and mean height, are also easy-to-measure estimators of above-ground biomass (AGB) in dry regions. In this study, we estimated the AGB in semi-arid woody vegetation in Northeast Patagonia, Argentina. We evaluated whether the AGB at the stand level can be estimated based on plant cover and to what extent the estimation accuracy can be improved by the inclusion of other field-measured structure variables. We also evaluated whether remote sensing technologies can be used to reliably estimate and map the regional mean biomass. For this purpose, we analyzed the relationships between field-measured woody vegetation structure variables and AGB as well as LANDSAT TM-derived variables. We obtained a model-based ratio estimate of regional mean AGB and its standard error. Total plant cover allowed us to obtain a reliable estimation of local AGB, and no better fit was attained by the inclusion of other structure variables. The stand-level plant cover ranged between 18.7% and 95.2% and AGB between about 2.0 and 70.8 Mg/hm2. AGB based on total plant cover was well estimated from LANDSAT TM bands 2 and 3, which facilitated a model-based ratio estimate of the regional mean AGB (approximately 12.0 Mg/hm2) and its sampling error (about 30.0%). The mean AGB of woody vegetation can greatly contribute to carbon storage in semi-arid lands. Thus, plant cover estimation by remote sensing images could be used to obtain regional estimates and map biomass, as well as to assess and monitor the impact of land-use change on the carbon balance, for arid and semi-arid regions.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang
YAO Kaixuan, Abudureheman HALIKE, CHEN Limei, WEI Qianqian
Journal of Arid Land    2022, 14 (3): 262-283.   DOI: 10.1007/s40333-022-0011-2
Abstract200)   HTML140)    PDF(pc) (4002KB)(791)       Save

The rapid economic development that the Hotan Oasis in Xinjiang Uygur Autonomous Region, China has undergone in recent years may face some challenges in its ecological environment. Therefore, an analysis of the spatiotemporal changes in ecological environment of the Hotan Oasis is important for its sustainable development. First, we constructed an improved remote sensing-based ecological index (RSEI) in 1990, 1995, 2000, 2005, 2010, 2015 and 2020 on the Google Earth Engine (GEE) platform and implemented change detection for their spatial distribution. Second, we performed a spatial autocorrelation analysis on RSEI distribution map and used land-use and land-cover change (LUCC) data to analyze the reasons of RSEI changes. Finally, we investigated the applicability of improved RSEI to arid area. The results showed that mean of RSEI rose from 0.41 to 0.50, showing a slight upward trend. During the 30-a period, 2.66% of the regions improved significantly, 10.74% improved moderately and 32.21% improved slightly, respectively. The global Moran's I were 0.891, 0.889, 0.847 and 0.777 for 1990, 2000, 2010 and 2020, respectively, and the local indicators of spatial autocorrelation (LISA) distribution map showed that the high-high cluster was mainly distributed in the central part of the Hotan Oasis, and the low-low cluster was mainly distributed in the outer edge of the oasis. RSEI at the periphery of the oasis changes from low to high with time, with the fragmentation of RSEI distribution within the oasis increasing. Its distribution and changes are predominantly driven by anthropologic factors, including the expansion of artificial oasis into the desert, the replacement of desert ecosystems by farmland ecosystems, and the increase in the distribution of impervious surfaces. The improved RSEI can reflect the eco-environmental quality effectively of the oasis in arid area with relatively high applicability. The high efficiency exhibited with this approach makes it convenient for rapid, high frequency and macroscopic monitoring of eco-environmental quality in study area.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Assessing the response of dryland barley yield to climate variability in semi-arid regions, Iran
Mohammad KHEIRI, Jafar KAMBOUZIA, Reza DEIHIMFARD, Saghi M MOGHADDAM, Seyran ANVARI
Journal of Arid Land    2021, 13 (9): 905-917.   DOI: 10.1007/s40333-021-0017-1
Abstract199)   HTML8)    PDF(pc) (733KB)(385)       Save

Precipitation and temperature are the most abiotic factors that greatly impact the yield of crop, particularly in dryland. Barley, as the main cereal is predominantly cultivated in dryland and the livelihood of smallholders depends on the production of this crop, particularly in arid and semi-arid regions. This study aimed to investigate the response of the grain yield of dryland barley to temperature and precipitation variations at annual, seasonal and monthly scales in seven counties of East and West Azerbaijan provinces in northwestern Iran during 1991-2010. Humidity index (HI) was calculated and its relationship with dryland barley yield was evaluated at annual and monthly scales. The results showed that the minimum, maximum and mean temperatures increased by 0.19°C/a, 0.11°C/a and 0.10°C/a, respectively, while annual precipitation decreased by 0.80 mm/a during 1991-2010. Climate in study area has become drier by 0.22/a in annual HI during the study period. Negative effects of increasing temperature on the grain yield of dryland barley were more severe than the positive effects of increasing precipitation. Besides, weather variations in April and May were related more to the grain yield of dryland barley than those in other months. The grain yield of dryland barley was more drastically affected by the variation of annual minimum temperature comparing with other weather variables. Furthermore, our findings illustrated that the grain yield of dryland barley increased by 0.01 t/hm2 for each unit increase in annual HI during 1991-2010. Finally, any increase in the monthly HI led to crop yield improvement in the study area, particularly in the drier counties, i.e., Myaneh, Tabriz and Khoy in Iran.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Response of hydrological drought to meteorological drought in the eastern Mediterranean Basin of Turkey
Türkan BAYER ALTIN, Bekir N ALTIN
Journal of Arid Land    2021, 13 (5): 470-486.   DOI: 10.1007/s40333-021-0064-7
Abstract197)   HTML9)    PDF(pc) (7707KB)(124)       Save

The hydrographic eastern Mediterranean Basin of Turkey is a drought sensitive area. The basin is an important agricultural area and it is necessary to determine the extent of extreme regional climatic changes as they occur in this basin. Pearson's correlation coefficient was used to show the correlation between standardized precipitation index (SPI) and standardized streamflow index (SSI) values on different time scales. Data from five meteorological stations and seven stream gauging stations in four sub-basins of the eastern Mediterranean Basin were analyzed over the period from 1967 to 2017. The correlation between SSI and SPI indicated that in response to meteorological drought, hydrological drought experiences a one-year delay then occurs in the following year. This is more evident at all stations from the mid-1990s. The main factor causing hydrological drought is prolonged low precipitation or the presence of a particularly dry year. Results showed that over a long period (12 months), hydrological drought is longer and more severe in the upper part than the lower part of the sub-basins. According to SPI-12 values, an uninterrupted drought period is observed from 2002-2003 to 2008-2009. Results indicated that among the drought events, moderate drought is the most common on all timescales in all sub-basins during the past 51 years. Long-term dry periods with moderate and severe droughts are observed for up to 10 years or more since the late 1990s, especially in the upper part of the sub-basins. As precipitation increases in late autumn and early winter, the stream flow also increases and thus the highest and most positive correlation values (0.26-0.54) are found in January. Correlation values (ranging between -0.11 and -0.01) are weaker and negative in summer and autumn due to low rainfall. This is more evident at all stations in September. The relation between hydrological and meteorological droughts is more evident, with the correlation values above 0.50 on longer timescales (12- and 24-months). The results presented in this study allow an understanding of the characteristics of drought events and are instructive for overcoming drought. This will facilitate the development of strategies for the appropriate management of water resources in the eastern Mediterranean Basin, which has a high agricultural potential.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Study of the intensity and driving factors of land use/cover change in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River region, Qinghai-Tibet Plateau of China
LUO Jing, XIN Liangjie, LIU Fenggui, CHEN Qiong, ZHOU Qiang, ZHANG Yili
Journal of Arid Land    2022, 14 (4): 411-425.   DOI: 10.1007/s40333-022-0093-x
Abstract196)   HTML5)    PDF(pc) (1559KB)(335)       Save

Land use/land cover (LULC) is an important part of exploring the interaction between natural environment and human activities and achieving regional sustainable development. Based on the data of LULC types (cropland, forest land, grassland, built-up land, and unused land) from 1990 to 2015, we analysed the intensity and driving factors of land use/cover change (LUCC) in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River (YNL) region, Qinghai-Tibet Plateau of China, using intensity analysis method, cross-linking table method, and spatial econometric model. The results showed that LUCC in the YNL region was nonstationary from 1990 to 2015, showing a change pattern with "fast-slow-fast" and "U-shaped". Built-up land showed a steady increase pattern, while cropland showed a steady decrease pattern. The gain of built-up land mainly came from the loss of cropland. The transition pattern of LUCC in the YNL region was relatively single and stable during 1990-2015. The transition pattern from cropland and forest land to built-up land was a systematic change process of tendency and the transition pattern from grassland and unused land to cropland was a systematic change process of avoidance. The transition process of LUCC was the result of the combined effect of natural environment and social economic development in the YNL region. This study reveals the impact of ecological environment problems caused by human activities on the land resource system and provides scientific support for the study of ecological environment change and sustainable development of the Qinghai-Tibet Plateau.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Exploration of playa surface crusts in Qehan Lake, China through field investigation and wind tunnel experiments
LIU Dongwei, HAN Lijing, KOU Zihan, GAO Xinyu, WANG Jingjing
Journal of Arid Land    2023, 15 (5): 491-507.   DOI: 10.1007/s40333-023-0055-y
Abstract194)   HTML176)    PDF(pc) (1358KB)(95)       Save

Globally, many lakes are drying up, leaving exposed lakebeds where wind erosion releases dust and sand rich in salt and harmful heavy metals into the atmosphere. Therefore, understanding the characteristics and spatial distribution of playa surface crusts is important to recognize the manifestation of salt dust storms. The objective of this study was to explore the playa surface crust types as well as their spatial distribution and evolution of Qehan Lake in Inner Mongolia Autonomous Region, China to understand the salt dust release potential of different types of playa surface crusts. Various crust characteristics were investigated by field sampling in Qehan Lake, and playa surface crusts were further divided into five types: vegetated areas, salt crusts, clay flats, curly crusts, and margins. It should be noted that curly crusts were distributed in clay flats and covered only a small area in Qehan Lake. The spatial distribution characteristics of playa surface crust types were obtained by supervised classification of remote sensing images, and the salt dust release potential of crusts was explored by the wind tunnel experiments. The field investigation of Qehan Lake revealed that playa surface crust types had a circum-lake band distribution from the inside to the outside of this lake, which were successively vegetated areas, clay flats, salt crusts, and margins. The spatial distribution patterns of playa surface crust types were mainly controlled by the hydrodynamics of the playa, soil texture, and groundwater. There was a significant negative correlation between crust thickness and electrical conductivity. The results of the wind tunnel experiments showed that the initial threshold of friction wind velocity for the salt dust release was higher in clay flats (0.7-0.8 m/s) than in salt crusts (0.5-0.6 m/s). Moreover, the particle leap impact processes occurring under natural conditions may reduce this threshold value. Salinity was the main factor controlling the difference in the initial threshold of friction wind velocity for the salt dust release of clay flats and salt crusts. This study provides a scientific reference for understanding how salt dust is released from a lakebed, which may be used for ecological restoration of dry salt lakes.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Neoproterozoic I-type granites in the Central Tianshan Block (NW China): geochronology, geochemistry, and tectonic implications
SONG Yujia, LIU Xijun, XIAO Wenjiao, ZHANG Zhiguo, LIU Pengde, XIAO Yao, LI Rui, WANG Baohua, LIU Lei, HU Rongguo
Journal of Arid Land    2022, 14 (1): 82-101.   DOI: 10.1007/s40333-021-0071-8
Abstract193)   HTML0)    PDF(pc) (2387KB)(183)       Save

The Central Tianshan Block is one of numerous microcontinental blocks within the Central Asian Orogenic Belt (CAOB) that overlies Precambrian basement rocks. Constraining the evolution of these ancient basement rocks is central to understanding the accretionary and collisional tectonics of the CAOB, and their place within the Rodinia supercontinent. However, to date, the timing and tectonic settings in which the basement rocks in the Central Tianshan Block formed are poorly constrained, with only sparse geochemical and geochronological data from granitic rocks within the northern segment of the block. Here, we present a systematic study combining U-Pb geochronology, whole-rock geochemistry, and the Sr-Nd isotopic compositions of newly-identified granitic gneisses from the Bingdaban area of Central Tianshan Block. The analyzed samples yield a weighted mean Neoproterozoic 206Pb/238U ages of 975-911 Ma. These weakly-peraluminous granitic rocks show a common geochemical I-type granite affinity. The granitic gneisses are calc-alkaline and enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), but they are depleted in high field strength elements (HFSEs); these characteristics are similar to those of typical subduction-related magmatism. All samples show initial (87Sr/86Sr)(t) ratios between 0.705136 and 0.706745. Values for ƐNd(t) in the granitic gneisses are in the range from -5.7 to -1.2, which correspond to Nd model ages of 2.0-1.7 Ga, indicating a role for Mesoproterozoic to Paleoproterozoic rocks in the generation of the granitic protoliths. The documented geochemical features indicate that the protoliths for the gneisses have a similar petrogenesis and magmatic source, which may reflect partial melting of thickened crust with the addition of small amounts of mantle-derived material. The Central Tianshan Block probably constitute part of an exterior orogen that developed along the margin of the Rodinian supercontinent during the Early Neoproterozoic and underwent a transition from subduction to syn-collision compression at 975-911 Ma.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Size- and leaf age-dependent effects on the photosynthetic and physiological responses of Artemisia ordosica to drought stress
WANG Chunyuan, YU Minghan, DING Guodong, GAO Guanglei, ZHANG Linlin, HE Yingying, LIU Wei
Journal of Arid Land    2021, 13 (7): 744-758.   DOI: 10.1007/s40333-021-0013-5
Abstract185)   HTML8)    PDF(pc) (743KB)(338)       Save

Drought is one of the most significant natural disasters in the arid and semi-arid areas of China. Populations or plant organs often differ in their responses to drought and other adversities at different growth stages. At present, little is known about the size- and leaf age-dependent differences in the mechanisms of shrub-related drought resistance in the deserts of China. Here, we evaluated the photosynthetic and physiological responses of Artemisia ordosica Krasch. to drought stress using a field experiment in Mu Us Sandy Land, Ningxia Hui Autonomous Region, China in 2018. Rainfall was manipulated by installing outdoor shelters, with four rainfall treatments applied to 12 plots (5 m×5 m). There were four rainfall levels, including a control and rainfall reductions of 30%, 50% and 70%, each with three replications. Taking individual crown size as the dividing basis, we measured the responses of A. ordosica photosynthetic and physiological responses to drought at different growth stages, i.e., large-sized (>0.5 m2) and small-sized (≤0.5 m2) plants. The leaves of A. ordosica were divided into old leaves and young leaves for separate measurement. Results showed that: (1) under drought stress, the transfer efficiency of light energy captured by antenna pigments to the photosystem II (PSII) reaction center decreased, and the heat dissipation capacity increased simultaneously. To resist the photosynthetic system damage caused by drought, A. ordosica enhanced its free radical scavenging capacity by activating its antioxidant enzyme system; and (2) growth stage and leaf age had effects on the reaction of the photosynthetic system to drought. Small A. ordosica plants could not withstand severe drought stress (70% rainfall reduction), whereas large A. ordosica individuals could absorb deep soil water to ensure their survival in severe drought stressed condition. Under 30% and 50% rainfall reduction conditions, young leaves had a greater ability to resist drought than old leaves, whereas the latter were more resistant to severe drought stress. The response of A. ordosica photosynthetic system reflected the trade-off at different growth stages and leaf ages of photosynthetic production under different degrees of drought. This study provides a more comprehensive and systematic perspective for understanding the drought resistance mechanisms of desert plants.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Isotope implications of groundwater recharge, residence time and hydrogeochemical evolution of the Longdong Loess Basin, Northwest China
LING Xinying, MA Jinzhu, CHEN Peiyuan, LIU Changjie, Juske HORITA
Journal of Arid Land    2022, 14 (1): 34-55.   DOI: 10.1007/s40333-022-0051-7
Abstract182)   HTML5)    PDF(pc) (1908KB)(351)       Save

Groundwater plays a dominant role in the eco-environmental protection of arid and semi-arid regions. Understanding the sources and mechanisms of groundwater recharge, the interactions between groundwater and surface water and the hydrogeochemical evolution and transport processes of groundwater in the Longdong Loess Basin, Northwest China, is of importance for water resources management in this ecologically sensitive area. In this study, 71 groundwater samples (mainly distributed at the Dongzhi Tableland and along the Malian River) and 8 surface water samples from the Malian River were collected, and analysis of the aquifer system and hydrological conditions, together with hydrogeochemical and isotopic techniques were used to investigate groundwater sources, residence time and their associated recharge processes. Results show that the middle and lower reaches of the Malian River receive water mainly from groundwater discharge on both sides of valley, while the source of the Malian River mainly comes from local precipitation. Groundwater of the Dongzhi Tableland is of a HCO3-Ca-Na type with low salinity. The reverse hydrogeochemical simulation suggests that the dissolution of carbonate minerals and cation exchange between Ca2+, Mg2+ and Na+ are the main water-rock interactions in the groundwater system of the Dongzhi Tableland. The δ 18O (from -11.70‰ to -8.52‰) and δ2H (from -86.15‰ to -65.75‰) values of groundwater are lower than the annual weighted average value of precipitation but closer to summer-autumn precipitation and soil water in the unsaturated zone, suggesting that possible recharge comes from the summer-autumn monsoonal heavy precipitation in the recent past (≤220 a). The corrected14C ages of groundwater range from 3,000 to 25,000 a old, indicating that groundwater was mainly from precipitation during the humid and cold Late Pleistocene and Holocene periods. Groundwater flows deeper from the groundwater table and from the center to the east, south and west of the Dongzhi Tableland with estimated migration rate of 1.29-1.43 m/a. The oldest groundwater in the Quaternary Loess Aquifer in the Dongzhi Tableland is approximately 32,000 a old with poor renewability. Based on the δ 18O temperature indicator of groundwater, we speculate that temperature of the Last Glacial Maximum in the Longdong Loess Basin was 2.4°C-6.0°C colder than the present. The results could provide us the valuable information on groundwater recharge and evolution under thick loess layer, which would be significative for the scientific water resources management in semi-arid regions.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of mixed-based biochar on water infiltration and evaporation in aeolian sand soil
ZOU Yiping, ZHANG Shuyue, SHI Ziyue, ZHOU Huixin, ZHENG Haowei, HU Jiahui, MEI Jing, BAI Lu, JIA Jianli
Journal of Arid Land    2022, 14 (4): 374-389.   DOI: 10.1007/s40333-022-0060-6
Abstract180)   HTML940)    PDF(pc) (854KB)(304)       Save

Aeolian sandy soil in mining areas exhibits intense evaporation and poor water retention capacity. This study was designed to find a suitable biochar application method to improve soil water infiltration and minimize soil water evaporation for aeolian sand soil. Using the indoor soil column method, we studied the effects of three application patterns (A (0-20 cm was a mixed sample of mixed-based biochar and soil), B (0-10 cm was a mixed sample of mixed-based biochar and soil and 10-20 cm was soil), and C (0-10 cm was soil and 10-20 cm was a mixed sample of mixed-based biochar and soil)), four application amounts (0% (control, CK), 1%, 2%, and 4% of mixed-based biochar in dry soil), and two particle sizes (0.05-0.25 mm (S1) and <0.05 mm (S2)) of mixed-based biochar on water infiltration and evaporation of aeolian sandy soil. We separately used five infiltration models (the Philip, Kostiakov, Horton, USDA-NRCS (United States Department of Agriculture-Natural Resources Conservation Service), and Kostiakov-Lewis models) to fit cumulative infiltration and time. Compared with CK, the application of mixed-based biochar significantly reduced cumulative soil water infiltration. Under application patterns A, B, and C, the higher the application amount and the finer the particle size were, the lower the migration speed of the wetting front. With the same application amount, cumulative soil water infiltration under application pattern A was the lowest. Taking infiltration for 10 min as an example, the reductions of cumulative soil water infiltration under the treatments of A2%(S2), A4%(S1), A4%(S2), A1%(S1), C2%(S1), and B1%(S1) were higher than 30%, which met the requirements of loess soil hydraulic parameters suitable for plant growth. The five infiltration models well fitted the effects of the treatments of application pattern C and S1 particle size (R2>0.980), but the R2 values of the Horton model exceeded 0.990 for all treatments (except for the treatment B2%(S2)). Compared with CK, all other treatments reduced cumulative soil water infiltration, except for B4%(S2). With the same application amount, cumulative soil water evaporation difference between application patterns A and B was small. Treatments of application pattern C and S1 particle size caused a larger reduction in cumulative soil water evaporation. The reductions in cumulative soil water evaporation under the treatments of C4%(S1), C4%(S2), C2%(S1), and C2%(S2) were over 15.00%. Therefore, applying 2% of mixed-based biochar with S1 particle size to the underlying layer (10-20 cm) could improve soil water infiltration while minimizing soil water evaporation. Moreover, application pattern was the main factor affecting soil water infiltration and evaporation. Further, there were interactions among the three influencing factors in the infiltration process (application amount×particle size with the most important interaction), while there were no interactions among them in the evaporation process. The results of this study could contribute to the rational application of mixed-based biochar in aeolian sandy soil and the resource utilization of urban and agricultural wastes in mining areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Erratum to: Dieback intensity but not functional and taxonomic diversity indices predict forest productivity in different management conditions: Evidence from a semi-arid oak forest ecosystem
Mona KARAMI, Mehdi HEYDARI, Ali SHEYKHOLESLAMI, Majid ESHAGH NIMVARI, Reza OMIDIPOUR, YUAN Zuoqiang, Bernard PREVOSTO
Journal of Arid Land    2022, 14 (3): 357-357.   DOI: 10.1007/s40333-022-0009-9
Abstract176)   HTML1)    PDF(pc) (105KB)(340)       Save
Reference | Related Articles | Metrics | Comments0