Most Read

Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Exploration of playa surface crusts in Qehan Lake, China through field investigation and wind tunnel experiments
LIU Dongwei, HAN Lijing, KOU Zihan, GAO Xinyu, WANG Jingjing
Journal of Arid Land    2023, 15 (5): 491-507.   DOI: 10.1007/s40333-023-0055-y
Abstract884)   HTML179)    PDF(pc) (1358KB)(140)       Save

Globally, many lakes are drying up, leaving exposed lakebeds where wind erosion releases dust and sand rich in salt and harmful heavy metals into the atmosphere. Therefore, understanding the characteristics and spatial distribution of playa surface crusts is important to recognize the manifestation of salt dust storms. The objective of this study was to explore the playa surface crust types as well as their spatial distribution and evolution of Qehan Lake in Inner Mongolia Autonomous Region, China to understand the salt dust release potential of different types of playa surface crusts. Various crust characteristics were investigated by field sampling in Qehan Lake, and playa surface crusts were further divided into five types: vegetated areas, salt crusts, clay flats, curly crusts, and margins. It should be noted that curly crusts were distributed in clay flats and covered only a small area in Qehan Lake. The spatial distribution characteristics of playa surface crust types were obtained by supervised classification of remote sensing images, and the salt dust release potential of crusts was explored by the wind tunnel experiments. The field investigation of Qehan Lake revealed that playa surface crust types had a circum-lake band distribution from the inside to the outside of this lake, which were successively vegetated areas, clay flats, salt crusts, and margins. The spatial distribution patterns of playa surface crust types were mainly controlled by the hydrodynamics of the playa, soil texture, and groundwater. There was a significant negative correlation between crust thickness and electrical conductivity. The results of the wind tunnel experiments showed that the initial threshold of friction wind velocity for the salt dust release was higher in clay flats (0.7-0.8 m/s) than in salt crusts (0.5-0.6 m/s). Moreover, the particle leap impact processes occurring under natural conditions may reduce this threshold value. Salinity was the main factor controlling the difference in the initial threshold of friction wind velocity for the salt dust release of clay flats and salt crusts. This study provides a scientific reference for understanding how salt dust is released from a lakebed, which may be used for ecological restoration of dry salt lakes.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria
Fateme RIGI, Morteza SABERI, Mahdieh EBRAHIMI
Journal of Arid Land    2023, 15 (6): 740-755.   DOI: 10.1007/s40333-023-0015-6
Abstract488)   HTML9)    PDF(pc) (1088KB)(733)       Save

Numerous ecological factors influence a plant's ability to live and grow, in which dryness is a substantial constraint on plant growth in arid and semi-arid areas. In response to a specific environmental stress, plants can use the most effective bacteria to support and facilitate their growth and development. Today, plant growth promoting rhizobacteria (PGPR) is widely used to reduce drought stress on plant growth. In this study, the effects of drought on Festuca ovina L. germination, growth, and nutrient absorption were investigated using PGPR in a factorial test with a completely random design under four water regimes. Soil water content was kept at 100% FC (field capacity), 70% FC (FC), 50% FC, and 30% FC. The treatments were inoculated with Azotobacter vinelandii, Pantoea agglomerans+Pseudomonas putida, and a mixture of bio-fertilizers. Results showed that the effects of drought stress were significantly reduced (P<0.05) when A. vinelandii and P. agglomerans+P. putida were used separately, however, the combined treatment of bio-fertilizers had a greater influence on seed germination than the single application. P. agglomerans+P. putida under 30% FC condition resulted in higher increases in stem, root length, and plant dry biomass. The highest uptake of nutrients was observed for the combined treatment of bio-fertilizers under 30% FC condition. Therefore, the use of A. vinelandii and P. agglomerans+P. putida, applied separately or combined, increased tolerance to drought stress in F. ovina by increased germination indices, dry weight, stem length, and root length. Because of the beneficial effects of PGPR on the growth characteristics of plants under drought conditions and the reduction of negative effects of drought stress, inoculating F. ovina seeds with Azotobacter and Pseudomonas is recommended to improve their growth and development characteristics under drought conditions. PGPR, as an affordable and environmentally friendly method, can improve the production of forage in water-stress rangelands.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Investigating the causes of Lake Urmia shrinkage: climate change or anthropogenic factors?
Mehri SHAMS GHAHFAROKHI, Sogol MORADIAN
Journal of Arid Land    2023, 15 (4): 424-438.   DOI: 10.1007/s40333-023-0054-z
Abstract484)   HTML7)    PDF(pc) (840KB)(378)       Save

In the current scenario, Lake Urmia, one of the vastest hyper saline lakes on the Earth, has been affected by serious environmental degradation. Using different satellite images and observational data, this study investigated the changes in the lake for the period 1970-2020 based on the effects of climate change and several human-induced processes on Lake Urmia, such as population growth, excessive dam construction, low irrigation water use efficiency, poor water resources management, increased sediment flow into the lake, and lack of political and legal frameworks. The results indicated that between 1970 and 1997, the process of change in Lake Urmia was slow; however; the shrinkage was faster between 1998 and 2018, with about 30.00% of the lake area disappearing. As per the findings, anthropogenic factors had a much greater impact on Lake Urmia than climate change and prolonged drought; the mismanagement of water consumption in the agricultural sector and surface and underground water withdrawals in the basin have resulted in a sharp decrease in the lake's surface. These challenges have serious implications for water resources management in Lake Urmia Basin. Therefore, we provided a comprehensive overview of anthropogenic factors on the changes in Lake Urmia along with existing opportunities for better water resources management in Lake Urmia Basin. This study serves as a guideline framework for climate scientists and hydrologists in order to assess the effects of different factors on lake water resources and for decision-makers to formulate strategies and plans according to the management task.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Morphological and physiological responses to drought stress of carob trees in Mediterranean ecosystems
Khouloud ZAGOUB, Khouloud KRICHEN, Mohamed CHAIEB, Lobna F MNIF
Journal of Arid Land    2023, 15 (5): 562-577.   DOI: 10.1007/s40333-023-0011-x
Abstract480)   HTML4)    PDF(pc) (901KB)(578)       Save

The greatest failure rate of reforestation programs is basically related to water deficit, especially at the seedling stage. Therefore, the main objective of this work is to investigate the responses of three accessions of carob trees (Ceratonia siliqua L.) with 2-year-old from different climate regions to drought generated by four water treatments: Tc (250 mm), T1 (180 mm), T2 (100 mm), and T3 (50 mm). The first accession (A1) comes from the protected national park of Ichkeul in northern Tunisia. This zone belongs to the bioclimatic sub-humid stage. The second accession (A2) comes from Melloulech, located in the center-east of Tunisia, belonging to the bioclimatic semi-arid stage. The third accession (A3) comes from the mountain of Matmata, located in the south of Tunisia, belonging to the bioclimatic hyper-arid stage. The experiment was undertaken in a greenhouse. Gaz exchange indices (net photosynthesis (A), stomatal conductance (gs), transpiration rate (E), and internal CO2 concentration (Ci)) were determined. Predawn (Ψpd) and midday (Ψmd) leaf water potentials, relative soil water content (SWC), and morphological parameters (plant height (H), number of leaves (NL), number of leaflets (Nl), and number of branches (NB)) were estimated. The results showed that significant differences (P<0.001) were found between physiological and morphological parameters of each accession. The highest growth potential was recorded for Tc treatment in both accessions A1 and A2. Significant decreases in gs, E, Ci, and SWC were recorded with the increases in water stress applied from treatment T1 to T3. Positive and significant correlations were found between SWC and Ψpd for all studied accessions. Ψpd and Ψmd decreased as water stress increased, ranging from -0.96 to -1.50 MPa at sunrise and from -1.94 to -2.83 MPa at midday, respectively, under control and T3 treatments. C. siliqua accessions responded to drought through exhibiting significant changes in their physiological and morphological behavior. Both accessions A1 and A2 showed greater drought tolerance than accession A3. These seedlings exhibit different adaptive mechanisms such as stress avoidance, which are aimed at reducing transpiration, limiting leaf growth, and increasing root growth to exploit more soil water. Therefore, C. siliqua can be recommended for the ecological restoration in Mediterranean ecosystems.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Projecting future precipitation change across the semi-arid Borana lowland, southern Ethiopia
Mitiku A WORKU, Gudina L FEYISA, Kassahun T BEKETIE, Emmanuel GARBOLINO
Journal of Arid Land    2023, 15 (9): 1023-1036.   DOI: 10.1007/s40333-023-0063-y
Abstract469)   HTML418)    PDF(pc) (1928KB)(99)       Save

Climate change caused by past, current, and future greenhouse gas emissions has become a major concern for scientists in the field in many countries and regions of the world. This study modelled future precipitation change by downscaling a set of large-scale climate predictor variables (predictors) from the second generation Canadian Earth System Model (CanESM2) under two Representative Concentration Pathway (RCP) emission scenarios (RCP4.5 and RCP8.5) in the semi-arid Borana lowland, southern Ethiopia. The Statistical DownScaling Model (SDSM) 4.2.9 was employed to downscale and project future precipitation change in the middle (2036-2065; 2050s) and far (2066-2095; 2080s) future at the local scale. Historical precipitation observations from eight meteorological stations stretching from 1981 to 1995 and 1996 to 2005 were used for the model calibration and validation, respectively, and the time period of 1981-2018 was considered and used as the baseline period to analyze future precipitation change. The results revealed that the surface-specific humidity and the geopotential height at 500 hPa were the preferred large-scale predictors. Compared to the middle future (2050s), precipitation showed a much greater increase in the far future (2080s) under both RCP4.5 and RCP8.5 scenarios at all meteorological stations (except Teletele and Dillo stations). At Teltele station, the projected annual precipitation will decrease by 26.53% (2050s) and 39.45% (2080s) under RCP4.5 scenario, and 34.99% (2050s) and 60.62% (2080s) under RCP8.5 scenario. Seasonally, the main rainy period would shift from spring (March to May) to autumn (September to November) at Dehas, Dire, Moyale, and Teltele stations, but for Arero and Yabelo stations, spring would consistently receive more precipitation than autumn. It can be concluded that future precipitation in the semi-arid Borana lowland is predicted to differ under the two climate scenarios (RCP4.5 and RCP8.5), showing an increasing trend at most meteorological stations. This information could be helpful for policymakers to design adaptation plans in water resources management, and we suggest that the government should give more attention to improve early warning systems in drought-prone areas by providing dependable climate forecast information as early as possible.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Distribution patterns of fire regime in the Pendjari Biosphere Reserve, West Africa
Omobayo G ZOFFOUN, Chabi A M S DJAGOUN, Etotépé A SOGBOHOSSOU
Journal of Arid Land    2023, 15 (10): 1160-1173.   DOI: 10.1007/s40333-023-0027-2
Abstract469)   HTML573)    PDF(pc) (3201KB)(489)       Save

Pendjari Biosphere Reserve (PBR), a primary component of the W-Arly-Pendjari transboundary biosphere reserve, represents the largest intact wild ecosystem and pristine biodiversity spot in West Africa. This savannah ecosystem has long been affected by fire, which is the main ecological driver for the annual rhythm of life in the reserve. Understanding the fire distribution patterns will help to improve its management plan in the region. This study explores the fire regime in the PRB during 2001-2021 in terms of burned area, seasonality, fire frequency, and mean fire return interval (MFRI) by analysing moderate resolution imaging spectroradiometer (MODIS) burned area product. Results indicated that the fire season in the PBR extends from October to May with a peak in early dry season (November-December). The last two fire seasons (2019-2020 and 2020-2021) recorded the highest areas burned in the PBR out of the twenty fire seasons studied. During the twenty years period, 8.2% of the reserve burned every 10-11 months and 11.5% burned annually. The largest part of the reserve burned every one to two years (63.1%), while 8.3% burned every two to four years, 5.8% burned every four to ten years, and 1.9% burned every ten to twenty years. Only 1.3% of the entire area did not fire during the whole study period. Fire returned to a particular site every 1.39 a and the annual percentage of area burned in the PBR was 71.9%. The MFRI (MFRI<2.00 a) was low in grasslands, shrub savannah, tree savannah, woodland savannah, and rock vegetation. Fire regime must be maintained to preserve the integrity of the PBR. In this context, we suggest applying early fire in tree and woodland savannahs to lower grass height, and late dry season fires every two to three years in shrub savannah to limit the expansion of shrubs and bushes. We propose a laissez-faire system in areas in woodland savannah where the fire frequency is sufficient to allow tree growth. Our findings highlight the utility of remote sensing in defining the geographical and temporal patterns of fire in the PBR and could help to manage this important fire prone area.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Combination of artificial zeolite and microbial fertilizer to improve mining soils in an arid area of Inner Mongolia, China
LI Wenye, ZHANG Jianfeng, SONG Shuangshuang, LIANG Yao, SUN Baoping, WU Yi, MAO Xiao, LIN Yachao
Journal of Arid Land    2023, 15 (9): 1067-1083.   DOI: 10.1007/s40333-023-0028-1
Abstract468)   HTML8)    PDF(pc) (4252KB)(702)       Save

Restoration of mining soils is important to the vegetation and environment. This study aimed to explore the variations in soil nutrient contents, microbial abundance, and biomass under different gradients of substrate amendments in mining soils to select effective measures. Soil samples were collected from the Bayan Obo mining region in Inner Mongolia Autonomous Region, China. Contents of soil organic matter (SOM), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon/microbial biomass nitrogen (MBC/MBN) ratio, biomass, and bacteria, fungi, and actinomycetes abundance were assessed in Agropyron cristatum L. Gaertn., Elymus dahuricus Turcz., and Medicago sativa L. soils with artificial zeolite (AZ) and microbial fertilizer (MF) applied at T0 (0 g/kg), T1 (5 g/kg), T2 (10 g/kg), and T3 (20 g/kg). Redundancy analysis (RDA) and technique for order preference by similarity to ideal solution (TOPSIS) were used to identify the main factors controlling the variation of biomass. Results showed that chemical indices and microbial content of restored soils were far greater than those of control. The application of AZ significantly increases SOM, AN, and AP by 20.27%, 23.61%, and 40.43%, respectively. AZ significantly increased bacteria, fungi, and actinomycetes abundance by 0.63, 3.12, and 1.93 times of control, respectively. RDA indicated that AN, MBC/MBN ratio, and SOM were dominant predictors for biomass across samples with AZ application, explaining 87.6% of the biomass variance. SOM, MBC/MBN ratio, and AK were dominant predictors with MF application, explaining 82.9% of the biomass variance. TOPSIS indicated that T2 was the best dosage and the three plant species could all be used to repair mining soils. AZ and MF application at T2 concentration in the mining soils with M. sativa was found to be the most appropriate measure.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Modelling the dead fuel moisture content in a grassland of Ergun City, China
CHANG Chang, CHANG Yu, GUO Meng, HU Yuanman
Journal of Arid Land    2023, 15 (6): 710-723.   DOI: 10.1007/s40333-023-0103-7
Abstract463)   HTML7)    PDF(pc) (4071KB)(475)       Save

The dead fuel moisture content (DFMC) is the key driver leading to fire occurrence. Accurately estimating the DFMC could help identify locations facing fire risks, prioritise areas for fire monitoring, and facilitate timely deployment of fire-suppression resources. In this study, the DFMC and environmental variables, including air temperature, relative humidity, wind speed, solar radiation, rainfall, atmospheric pressure, soil temperature, and soil humidity, were simultaneously measured in a grassland of Ergun City, Inner Mongolia Autonomous Region of China in 2021. We chose three regression models, i.e., random forest (RF) model, extreme gradient boosting (XGB) model, and boosted regression tree (BRT) model, to model the seasonal DFMC according to the data collected. To ensure accuracy, we added time-lag variables of 3 d to the models. The results showed that the RF model had the best fitting effect with an R2 value of 0.847 and a prediction accuracy with a mean absolute error score of 4.764% among the three models. The accuracies of the models in spring and autumn were higher than those in the other two seasons. In addition, different seasons had different key influencing factors, and the degree of influence of these factors on the DFMC changed with time lags. Moreover, time-lag variables within 44 h clearly improved the fitting effect and prediction accuracy, indicating that environmental conditions within approximately 48 h greatly influence the DFMC. This study highlights the importance of considering 48 h time-lagged variables when predicting the DFMC of grassland fuels and mapping grassland fire risks based on the DFMC to help locate high-priority areas for grassland fire monitoring and prevention.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China
ZHANG Hui, Giri R KATTEL, WANG Guojie, CHUAI Xiaowei, ZHANG Yuyang, MIAO Lijuan
Journal of Arid Land    2023, 15 (7): 871-885.   DOI: 10.1007/s40333-023-0019-2
Abstract463)   HTML6)    PDF(pc) (4504KB)(170)       Save

Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21st century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI (normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region (northern China) during 1982-2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors, precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023
YAN Yujie, CHENG Yiben, XIN Zhiming, ZHOU Junyu, ZHOU Mengyao, WANG Xiaoyu
Journal of Arid Land    2024, 16 (8): 1062-1079.   DOI: 10.1007/s40333-024-0082-3
Abstract285)   HTML11)    PDF(pc) (2052KB)(446)       Save

The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world. Under the impacts of climate change and human activities, desertification is becoming increasingly severe on the Mongolian Plateau. Understanding the vegetation dynamics in this region can better characterize its ecological changes. In this study, based on Moderate Resolution Imaging Spectroradiometer (MODIS) images, we calculated the kernel normalized difference vegetation index (kNDVI) on the Mongolian Plateau from 2000 to 2023, and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test. We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis, and quantified the effects of climate change and human activities on kNDVI change by residual analysis. The results showed that kNDVI on the Mongolian Plateau was increasing overall, and the vegetation recovery area in the southern region was significantly larger than that in the northern region. About 50.99% of the plateau showed dominant climate-driven effects of temperature, precipitation, and wind speed on kNDVI change. Residual analysis showed that climate change and human activities together contributed to 94.79% of the areas with vegetation improvement. Appropriate human activities promoted the recovery of local vegetation, and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau. This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China
LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue
Journal of Arid Land    2024, 16 (6): 798-815.   DOI: 10.1007/s40333-024-0078-z
Abstract182)   HTML10)    PDF(pc) (4664KB)(236)       Save

Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas. This study took Gansu Province, China, a typical area with complex terrain and variable climate, as the research subject. Based on Google Earth Engine, we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022, and quantitatively analyzed the main causes of regional differences in surface water area. The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022. Seasonal surface water area exhibited significant fluctuations, while permanent surface water area showed a steady increase. Notably, terrestrial water storage exhibited a trend of first decreasing and then increasing, correlated with the dynamics of surface water area. Climate change and human activities jointly affected surface hydrological processes, with the impact of climate change being slightly higher than that of human activities. Spatially, climate change affected the 'source' of surface water to a greater extent, while human activities tended to affect the 'destination' of surface water. Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted. Therefore, we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water 'supply-demand' balance strategies. The study not only sheds light on the dynamics of surface water area in Gansu Province, but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Seasonal variations in glacier velocity in the High Mountain Asia region during 2015-2020
ZHANG Zhen, XU Yangyang, LIU Shiyin, DING Jing, ZHAO Jinbiao
Journal of Arid Land    2023, 15 (6): 637-648.   DOI: 10.1007/s40333-023-0016-5
Abstract151)   HTML300)    PDF(pc) (4417KB)(326)       Save

Velocity is an important component of glacier dynamics and directly reflects the response of glaciers to climate change. As a result, an accurate determination of seasonal variation in glacier velocity is very important in understanding the annual variation in glacier dynamics. However, few studies of glacier velocity in the High Mountain Asia (HMA) region were done. Along these lines, in this work, based on Sentinel-1 glacier velocity data, the distribution of glacier velocity in the HMA region was plotted and their seasonal variations during 2015-2020 were systematically analysed. The average glacier velocity in the HMA region was 0.053 m/d, and was positively correlated with the glacier area and slope. Glaciers in the Karakoram Mountains had the fastest average flow velocity (0.060 m/d), where the glaciers exhibited the largest average area and average slope. Moreover, glaciers in the Gangdisê Mountains had the slowest velocity (0.022 m/d) and the smallest average glacier area. The glacier flows were the fastest in spring (0.058 m/d), followed by summer (0.050 m/d), autumn (0.041 m/d), and winter (0.040 m/d). In addition, the glacier flows were the maximum in May, being 1.4 times of the annual average velocity. In some areas, such as the Qilian, Altun, Tibetan Interior, Eastern Kunlun, and Western Kunlun mountains, the peak glacier velocities appeared in June and July. The glacier velocity in the HMA region decreased in midsummer and reached the minimum in December when it was 75% of the annual average. These results highlight the role of meltwater in the seasonal variation in glacier flows in late spring and early summer. The seasonal velocity variation of lake-terminating glaciers was similar to that of land-terminating ones, but the former flowed faster. The velocity difference close to the mass balance line between the lake- and land-terminating glaciers was obviously greater in spring than in other seasons. In summer, the difference between the lake- and land-terminating glaciers at a normalized distance of 0.05-0.40 from the terminus was significantly greater than those of other seasons. The velocity difference between the lake- and land-terminating glaciers is closely related to the variable of ice thickness, and also to the frictional force of the terminal base reduced by proglacial lakes. Thus, it can be concluded that in addition to the variation of the glacier thickness and viscosity, the variation of glacier water input also plays a key role in the seasonal variation of glacier velocity.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Review and prospect of soil compound erosion
YANG Wenqian, ZHANG Gangfeng, YANG Huimin, LIN Degen, SHI Peijun
Journal of Arid Land    2023, 15 (9): 1007-1022.   DOI: 10.1007/s40333-023-0107-3
Abstract135)   HTML611)    PDF(pc) (1035KB)(359)       Save

Soil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies. Soil compound erosion is the result of the alternation or interaction between two or more erosion forces. In recent years, fluctuations and extreme changes in climatic factors (air temperature, precipitation, wind speed, etc.) have led to an increase in the intensity and extent of compound erosion, which is increasingly considered in soil erosion research. First, depending on the involvement of gravity, compound erosion process can be divided into compound erosion with and without gravity. We systematically summarized the research on the mechanisms and processes of alternating or interacting soil erosion forces (wind, water, and freeze-thaw) considering different combinations, combed the characteristics of compound erosion in three typical regions, namely, high-elevation areas, high-latitude areas, and dry and wet transition regions, and reviewed soil compound erosion research methods, such as station observations, simulation experiments, prediction models, and artificial neural networks. The soil erosion model of wind, water, and freeze-thaw interaction is the most significant method for quantifying and predicting compound erosion. Furthermore, it is proposed that there are several issues such as unclear internal mechanisms, lack of comprehensive prediction models, and insufficient scale conversion methods in soil compound erosion research. It is also suggested that future soil compound erosion mechanism research should prioritize the coupling of compound erosion forces and climate change.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Temporal and spatial variation characteristics of extreme precipitation on the Loess Plateau of China facing the precipitation process
ZHANG Yixin, LI Peng, XU Guoce, MIN Zhiqiang, LI Qingshun, LI Zhanbin, WANG Bin, CHEN Yiting
Journal of Arid Land    2023, 15 (4): 439-459.   DOI: 10.1007/s40333-023-0098-0
Abstract133)   HTML9)    PDF(pc) (3224KB)(252)       Save

The preceding and succeeding precipitation (PSP) often act together with extreme precipitation (EP), in turn, causing floods, which is an objective component that is often overlooked with regard to summer flood hazards in the arid region of Northwest China. In this study, event-based extreme precipitation (EEP) was defined as continuous precipitation that includes at least one day of EP. We analyzed the spatiotemporal variation characteristics of four EEP types (front EEP, late EEP, balanced EEP, and single day EEP) across the Loess Plateau (LP) based on data acquired from 87 meteorological stations from 1960 to 2019. Precipitation on the LP basically maintained a spatial pattern of "low in the northwest region and high in the southeast region", and EP over the last 10 a increased significantly. The cumulative precipitation percentage of single day EEP was 34% and was dominant for 60 a, while the cumulative precipitation percentage of front, late, and balanced EEP types associated with PSP accounted for 66%, which confirms to the connotation of EEP. The cumulative frequencies of front and late EEP types were 23% and 21%, respectively, while the cumulative frequency of balanced EEP had the lowest value at only 13%. Moreover, global warming could lead to more single day EEP across the LP, and continuous EEP could increase in the northwestern region and decrease in the eastern region in the future. The concept of process-oriented EP could facilitate further exploration of disaster-causing processes associated with different types of EP, and provide a theoretical basis for deriving precipitation disaster chains and construction of disaster cluster characteristics.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Aeolian activity in the southern Gurbantunggut Desert of China during the last 900 years
LI Wen, MU Guijin, YE Changsheng, XU Lishuai, LI Gen
Journal of Arid Land    2023, 15 (6): 649-666.   DOI: 10.1007/s40333-023-0057-9
Abstract126)   HTML278)    PDF(pc) (2633KB)(593)       Save

The mineral dust emitted from Central Asia has a significant influence on the global climate system. However, the history and mechanisms of aeolian activity in Central Asia remain unclear, due to the lack of well-dated records of aeolian activity and the intense wind erosion in some of the dust source areas (e.g., deserts). Here, we present the records of aeolian activity from a sedimentary sequence in the southern Gurbantunggut Desert of China using grain size analysis and optically stimulated luminescence (OSL) dating, based on field sampling in 2019. Specifically, we used eight OSL dates to construct chronological frameworks and applied the end-member (EM) analysis for the grain size data to extract the information of aeolian activity in the southern Gurbantunggut Desert during the last 900 a. The results show that the grain size dataset can be subdivided into three EMs (EM1, EM2, and EM3). The primary modal sizes of these EMs (EM1, EM2, and EM3) are 126.00, 178.00, and 283.00 μm, respectively. EM1 represents a mixture of the suspension components and saltation dust, while EM2 and EM3 show saltation dust transported over a shorter distance via strengthened near-surface winds, which can be used to trace aeolian activity. Combined with the OSL chronology, our results demonstrate that during the last 900 a, more intensive and frequent aeolian activity occurred during 450-100 a BP (Before Present) (i.e., the Little Ice Age (LIA)), which was reflected by a higher proportion of the coarse-grained components (EM2+EM3). Aeolian activity decreased during 900-450 a BP (i.e., the Medieval Warm Period (MWP)) and 100 a BP-present (i.e., the Current Warm Period (CWP)). Intensified aeolian activity was associated with the strengthening of the Siberian High and cooling events at high northern latitudes. We propose that the Siberian High, under the influence of temperature changes at high northern latitudes, controlled the frequency and intensity of aeolian activity in Central Asia. Cooling at high northern latitudes would have significantly enhanced the Siberian High, causing its position to shift southward. Subsequently, the incursion of cold air masses from high northern latitudes resulted in stronger wind regimes and increased dust emissions from the southern Gurbantunggut Desert. It is possible that aeolian activity may be weakened in Central Asia under future global warming scenarios, but the impact of human activities on this region must also be considered.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model
CAO Yijie, MA Yonggang, BAO Anming, CHANG Cun, LIU Tie
Journal of Arid Land    2023, 15 (12): 1455-1473.   DOI: 10.1007/s40333-023-0074-8
Abstract122)   HTML17)    PDF(pc) (7283KB)(373)       Save

The Ili River Delta (IRD) is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia. In this study, we selected the IRD as a typical research area, and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020, and investigated the main driving factors (precipitation, potential evapotranspiration, land use/land cover change, and inflow from the Ili River) of the water conservation variation based on the linear regression, piecewise linear regression, and Pearson's correlation coefficient analyses. The results indicated that from 1975 to 2020, the water yield and water conservation in the IRD showed a decreasing trend, and the spatial distribution pattern was "high in the east and low in the west"; overall, the water conservation of all land use types decreased slightly. The water conservation volume of grassland was the most reduced, although the area of grassland increased owing to the increased inflow from the Ili River. At the same time, the increased inflow has led to the expansion of wetland areas, the improvement of vegetation growth, and the increase of regional evapotranspiration, thus resulting in an overall reduction in the water conservation. The water conservation depth and precipitation had similar spatial distribution patterns; the change in climate factors was the main reason for the decline in the water conservation function in the delta. The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash, promoted vegetation restoration, and had a positive effect on the water conservation; however, this positive effect cannot offset the negative effect of enhanced evapotranspiration. These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Landscape ecological risk assessment and its driving factors in the Weihe River basin, China
CHANG Sen, WEI Yaqi, DAI Zhenzhong, XU Wen, WANG Xing, DUAN Jiajia, ZOU Liang, ZHAO Guorong, REN Xiaoying, FENG Yongzhong
Journal of Arid Land    2024, 16 (5): 603-614.   DOI: 10.1007/s40333-024-0013-3
Abstract119)   HTML10)    PDF(pc) (1295KB)(326)       Save

Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development. Based on land use data of the Weihe River basin in 2000, 2010, and 2020, with the support of Aeronautical Reconnaissance Coverage Geographic Information System (ArcGIS), GeoDa, and other technologies, this study analyzed the spatial-temporal characteristics and driving factors of land use pattern and landscape ecological risk. Results showed that land use structure of the Weihe River basin has changed significantly, with the decrease of cropland and the increase of forest land and construction land. In the past 20 a, cropland has decreased by 7347.70 km2, and cropland was mainly converted into forest land, grassland, and construction land. The fragmentation and dispersion of ecological landscape pattern in the Weihe River basin were improved, and land use pattern became more concentrated. Meanwhile, landscape ecological risk of the Weihe River basin has been improved. Severe landscape ecological risk area decreased by 19,177.87 km2, high landscape ecological risk area decreased by 3904.35 km2, and moderate and low landscape ecological risk areas continued to increase. It is worth noting that landscape ecological risks in the upper reaches of the Weihe River basin are still relatively serious, especially in the contiguous areas of high ecological risk, such as Tianshui, Pingliang, Dingxi areas and some areas of Ningxia Hui Autonomous Region. Landscape ecological risk showed obvious spatial dependence, and high ecological risk area was concentrated. Among the driving factors, population density, precipitation, normalized difference vegetation index (NDVI), and their interactions are the most important factors affecting the landscape ecological risk of the Weihe River basin. The findings significantly contribute to our understanding of the ecological dynamics in the Weihe River basin, providing crucial insights for sustainable management in the region.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of temperature and precipitation on drought trends in Xinjiang, China
YANG Jianhua, LI Yaqian, ZHOU Lei, ZHANG Zhenqing, ZHOU Hongkui, WU Jianjun
Journal of Arid Land    2024, 16 (8): 1098-1117.   DOI: 10.1007/s40333-024-0105-0
Abstract118)   HTML16)    PDF(pc) (3116KB)(351)       Save

The characteristics of drought in Xinjiang Uygur Autonomous Region (Xinjiang), China have changed due to changes in the spatiotemporal patterns of temperature and precipitation, however, the effects of temperature and precipitation—the two most important factors influencing drought—have not yet been thoroughly explored in this region. In this study, we first calculated the standard precipitation evapotranspiration index (SPEI) in Xinjiang from 1980 to 2020 based on the monthly precipitation and monthly average temperature. Then the spatiotemporal characteristics of temperature, precipitation, and drought in Xinjiang from 1980 to 2020 were analyzed using the Theil-Sen median trend analysis method and Mann-Kendall test. A series of SPEI-based scenario-setting experiments by combining the observed and detrended climatic factors were utilized to quantify the effects of individual climatic factor (i.e., temperature and precipitation). The results revealed that both temperature and precipitation had experienced increasing trends at most meteorological stations in Xinjiang from 1980 to 2020, especially the spring temperature and winter precipitation. Due to the influence of temperature, trends of intensifying drought have been observed at spring, summer, autumn, and annual scales. In addition, the drought trends in southern Xinjiang were more notable than those in northern Xinjiang. From 1980 to 2020, temperature trends exacerbated drought trends, but precipitation trends alleviated drought trends in Xinjiang. Most meteorological stations in Xinjiang exhibited temperature-dominated drought trend except in winter; in winter, most stations exhibited precipitation-dominated wetting trend. The findings of this study highlight the importance of the impact of temperature on drought in Xinjiang and deepen the understanding of the factors influencing drought.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Assessment of runoff changes in the sub-basin of the upper reaches of the Yangtze River basin, China based on multiple methods
WANG Xingbo, ZHANG Shuanghu, TIAN Yiman
Journal of Arid Land    2024, 16 (4): 461-482.   DOI: 10.1007/s40333-024-0010-6
Abstract116)   HTML14)    PDF(pc) (3663KB)(406)       Save

Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity. This study considered six sub-basins in the upper reaches of the Yangtze River basin, China, to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956-2020. Linear regression, Mann-Kendall test, and sliding t-test were used to study the trend of the hydrometeorological elements, while cumulative distance level and ordered clustering methods were applied to identify mutation points. The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods, i.e., the rainfall-runoff relationship method, slope variation method, and variable infiltration capacity (Budyko) hypothesis method. Then, the availability and stability of the three methods were compared. The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020, with an abrupt change in 1985. For attribution analysis, the runoff series could be divided into two phases, i.e., 1961-1985 (baseline period) and 1986-2020 (changing period); and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods, while the slope variation and Budyko hypothesis methods had highly consistent results. Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin. Moreover, human disturbance was the main factor that contributed to the runoff changes, accounting for 53.0%-82.0%; and the contribution of climate factors to the runoff change was 17.0%-47.0%, making it the secondary factor, in which precipitation was the most representative climate factor. These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?
M'hammed BOUALLALA, Souad NEFFAR, Lyès BRADAI, Haroun CHENCHOUNI
Journal of Arid Land    2023, 15 (6): 667-694.   DOI: 10.1007/s40333-023-0014-7
Abstract116)   HTML33)    PDF(pc) (7273KB)(284)       Save

The effects of sand encroachment on composition, diversity, and functional patterns of vegetation in drylands are rarely studied, and yet addressing these aspects is important to deepen our understanding of the biodiversity conservation. This study aimed to investigate the effect of sand encroachment on plant functional biodiversity of desert pavements (gravel deserts) in the Sahara Desert of Algeria. Plants were sampled and analyzed in three desert pavements with different levels of sand encroachment (LSE) and quantity of aeolian deposits (low, LLSE; medium, MLSE; and high, HLSE). Within the sample-plot area (100 m2), density of every plant species was identified and total vegetation cover was determined. Plant taxonomic and functional diversity were analyzed and compared between LSE. Result showed that 19 plant species in desert pavements were classified into 18 genera and 13 families. Asteraceae and Poaceae were the most important families. The species Anabasis articulata (Forssk) Moq. characterized LLSE desert pavements with 11 species, whereas Thymelaea microphylla Coss. & Durieu ex Meisn. and Calobota saharae (C&D) Boatwr. & van Wyk were dominant species of desert pavements with MLSE (14 species) and HLSE (10 species), respectively. The highest values of species richness and biodiversity were recorded in desert pavements with MLSE, while low values of these ecological parameters were obtained in desert pavements with HLSE. Desert pavements with LLSE were characterized with the highest values of species abundances. Plant communities were dominated by chamaephytes, anemochorous, arido-active, and competitive stress-tolerant plants. The increase in LSE along the gradient from LLSE to HLSE induced significant changes in plant community variables including decreases in plant density, plant rarity, lifeform composition, morphological type, and aridity adaptation. Desert pavements with HLSE favor the degradation of vegetation and trigger biodiversity erosion.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal evolution and future simulation of land use/land cover in the Turpan-Hami Basin, China
CHEN Yiyang, ZHANG Li, YAN Min, WU Yin, DONG Yuqi, SHAO Wei, ZHANG Qinglan
Journal of Arid Land    2024, 16 (10): 1303-1326.   DOI: 10.1007/s40333-024-0086-z
Abstract113)   HTML7)    PDF(pc) (3964KB)(128)       Save

The Turpan-Hami (Tuha) Basin in Xinjiang Uygur Autonomous Region of China, holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative, necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover (LULC) to foster sustainable planning that is tailored to the region's unique resource endowments. However, existing LULC classification methods demonstrate inadequate accuracy, hindering effective regional planning. In this study, we established a two-level LULC classification system (8 primary types and 22 secondary types) for the Tuha Basin. By employing Landsat 5/7/8 imagery at 5-a intervals, we developed the LULC dataset of the Tuha Basin from 1990 to 2020, conducted the accuracy assessment and spatiotemporal evolution analysis, and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation (Markov-FLUS) model. The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types, respectively. Compared with the seven mainstream LULC products (GlobeLand30, Global 30-meter Land Cover with Fine Classification System (GLC_FCS30), Finer Resolution Observation and Monitoring of Global Land Cover PLUS (FROM_GLC PLUS), ESA Global Land Cover (ESA_LC), Esri Land Cover (ESRI_LC), China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset (CNLUCC), and China Annual Land Cover Dataset (CLCD)) in 2020, our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features, thereby yielding high-quality data backups for land resource analyses within the basin. In 2020, unused land (78.0% of the study area) and grassland (18.6%) were the dominant LULC types of the basin; although cropland and construction land constituted less than 1.0% of the total area, they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami. Between 1990 and 2020, cropland and construction land exhibited a rapid expansion, and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond. In future scenario simulations, significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario, whereas the wetland area will decrease, suggesting the need for ecological attention under this development pathway. In contrast, the economic development scenario underscores the fast-paced expansion of construction land, primarily from the conversion of unused land, highlighting the significant developmental potential of unused land with a slowing increase in cropland. Special attention should thus be directed toward ecological and cropland protection during development. This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Responses of runoff to changes in climate and human activities in the Liuhe River Basin, China
LI Mingqian, WANG He, DU Wei, GU Hongbiao, ZHOU Fanchao, CHI Baoming
Journal of Arid Land    2024, 16 (8): 1023-1043.   DOI: 10.1007/s40333-024-0023-1
Abstract113)   HTML13)    PDF(pc) (2577KB)(536)       Save

Since the 1950s, numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin (LRB), China. While these measures have protected the upstream soil and water ecological environment, they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment. Therefore, it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes. Using the Soil and Water Assessment Tool (SWAT) models and sensitivity analyses based on the Budyko hypothesis, this study quantitatively evaluated the effects of climate change, direct water withdrawal, and soil and water conservation measures on runoff in the LRB during different periods, including different responses to runoff discharge, hydrological regime, and flood processes. The runoff series were divided into a baseline period (1956-1969) and two altered periods, i.e., period 1 (1970-1999) and period 2 (2000-2020). Human activities were the main cause of the decrease in runoff during the altered periods, contributing 86.03% (-29.61 mm), while the contribution of climate change was only 13.70% (-4.70 mm). The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season. Analysis of two flood cases indicated a 66.00%-84.00% reduction in basin runoff capacity due to soil and water conservation measures in the upstream area. Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98% and 55.16%, respectively, even with nearly double the precipitation. The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area. These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal variation of land surface temperature and its driving factors in Xinjiang, China
ZHANG Mingyu, CAO Yu, ZHANG Zhengyong, ZHANG Xueying, LIU Lin, CHEN Hongjin, GAO Yu, YU Fengchen, LIU Xinyi
Journal of Arid Land    2024, 16 (3): 373-395.   DOI: 10.1007/s40333-024-0072-5
Abstract109)   HTML10)    PDF(pc) (2393KB)(313)       Save

Land surface temperature (LST) directly affects the energy balance of terrestrial surface systems and impacts regional resources, ecosystem evolution, and ecosystem structures. Xinjiang Uygur Autonomous Region is located at the arid Northwest China and is extremely sensitive to climate change. There is an urgent need to understand the distribution patterns of LST in this area and quantitatively measure the nature and intensity of the impacts of the major driving factors from a spatial perspective, as well as elucidate the formation mechanisms. In this study, we used the MOD11C3 LST product developed on the basis of Moderate Resolution Imaging Spectroradiometer (MODIS) to conduct regression analysis and determine the spatiotemporal variation and differentiation pattern of LST in Xinjiang from 2000 to 2020. We analyzed the driving mechanisms of spatial heterogeneity of LST in Xinjiang and the six geomorphic zones (the Altay Mountains, Junggar Basin, Tianshan Mountains, Tarim Basin, Turpan-Hami (Tuha) Basin, and Pakakuna Mountain Group) using geographical detector (Geodetector) and geographically weighted regression (GWR) models. The warming rate of LST in Xinjiang during the study period was 0.24°C/10a, and the spatial distribution pattern of LST had obvious topographic imprints, with 87.20% of the warming zone located in the Gobi desert and areas with frequent human activities, and the cooling zone mainly located in the mountainous areas. The seasonal LST in Xinjiang was at a cooling rate of 0.09°C/10a in autumn, and showed a warming trend in other seasons. Digital elevation model (DEM), latitude, wind speed, precipitation, normalized difference vegetation index (NDVI), and sunshine duration in the single-factor and interactive detections were the key factors driving the LST changes. The direction and intensity of each major driving factor on the spatial variations of LST in the study area were heterogeneous. The negative feedback effect of DEM on the spatial differentiation of LST was the strongest. Lower latitudes, lower vegetation coverage, lower levels of precipitation, and longer sunshine duration increased LST. Unused land was the main heat source landscape, water body was the most important heat sink landscape, grassland and forest land were the land use and land cover (LULC) types with the most prominent heat sink effect, and there were significant differences in different geomorphic zones due to the influences of their vegetation types, climatic conditions, soil types, and human activities. The findings will help to facilitate sustainable climate change management, analyze local climate and environmental patterns, and improve land management strategies in Xinjiang and other arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Responses of soil fauna community under changing environmental conditions
KUDURETI Ayijiamali, ZHAO Shuai, Dina ZHAKYP, TIAN Changyan
Journal of Arid Land    2023, 15 (5): 620-636.   DOI: 10.1007/s40333-023-0009-4
Abstract106)   HTML4)    PDF(pc) (685KB)(233)       Save

Soil faunas account for 23% of known animal species and play a crucial role in ecosystem processes such as mineralizing nutrients, regulating microbial community composition, forming soil aggregates, and enhancing primary productivity. However, due to global climate change, population density, community composition, and distribution patterns of soil fauna vary. Understanding the responses of soil fauna to major environmental change facilitate the conservation of biodiversity. Therefore, a review work of recent researches for analysing the effects of key environmental factors on soil fauna, such as warming, drought, food quality, and soil physical-chemical properties was studied. For most species, warming may exert a positive effect on their abundance and population development, however, it can inhibit the survival and reproduction of hibernating species. Drought leads to low soil porosity and water holding capacity, which reduces soil fauna population and changes their community composition. Drought also can reduce the coverage of flora and alter microclimate of the soil surface, which in turn indirectly reduces fauna abundance. Climate warming and elevated atmospheric carbon dioxide can reduce litter quality, which will force soil fauna to change their dietary choices (from higher-quality foods to poor quality foods) and reduce reproduction for survival. However, it is still predicted that enhanced species richness of plant (or litter) mixtures will positively affect soil fauna diversity. Habitat loss caused by the deterioration of soil physical-chemical property is primary factor affecting soil fauna. We mainly discuss the threats of increased salinity (a major factor in arid land) to soil fauna and their potential responses to anthropogenic disturbance in saline soils. The increase in soil salinity can override other factors that favour habitat specialists, leading to negative effects on soil fauna. Moreover, we find that more studies are needed to explore the responses of soil fauna in saline soils to human activities. And the relationship of important ecological processes with soil fauna density, community structure, and diversity needs to be redefined.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Parkland trees on smallholder farms ameliorate soil physical-chemical properties in the semi-arid area of Tigray, Ethiopia
Selam LJALEM, Emiru BIRHANE, Kassa TEKA, Daniel H BERHE
Journal of Arid Land    2024, 16 (1): 1-13.   DOI: 10.1007/s40333-024-0002-6
Abstract103)   HTML8)    PDF(pc) (583KB)(425)       Save

Proposed agroforestry options should begin with the species that farmers are most familiar with, which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions. The African birch (Anogeissus leiocarpa (DC.) Guill. & Perr.) and pink jacaranda (Stereospermum kunthianum Cham.) trees are the dominant species in the agroforestry parkland system in the drylands of Tigray, Ethiopia. Smallholder farmers highly value these trees for their multifunctional uses including timber, firewood, charcoal, medicine, etc. These trees also could improve soil fertility. However, the amount of soil physical and chemical properties enhanced by the two species must be determined to maintain the sustainable conservation of the species in the parklands and to scale up to similar agro- ecological systems. Hence, we selected twelve isolated trees, six from each species that had similar dendrometric characteristics and were growing in similar environmental conditions. We divided the canopy cover of each tree into three radial distances: mid-canopy, canopy edge, and canopy gap (control). At each distance, we took soil samples from three different depths. We collected 216 soil samples (half disturbed and the other half undisturbed) from each canopy position and soil depth. Bulk density (BD), soil moisture content (SMC), soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP), available potassium (AK), pH, electrical conductivity (EC), and cation exchange capacity (CEC) were analysed. Results revealed that soil physical and chemical properties significantly improved except for soil texture and EC under both species, CEC under A. leiocarpus, and soil pH under S. kunthianum, all the studied soils were improved under both species canopy as compared with canopy gap. SMC, TN, AP, and AK under canopy of these trees were respectively 24.1%, 11.1%, 55.0%, and 9.3% higher than those soils under control. The two parkland agroforestry species significantly enhanced soil fertility near the canopy of topsoil through improving soil physical and chemical properties. These two species were recommended in the drylands with similar agro-ecological systems.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of degradation and species composition on soil seed density in the alpine grasslands, China
LI Chunming, MA Jiahui, LI Liangyu, HUANG Junlin, LU Jinhua, HUANG Mei, Allan DEGEN, SHANG Zhanhuan
Journal of Arid Land    2023, 15 (12): 1510-1528.   DOI: 10.1007/s40333-023-0036-1
Abstract102)   HTML12)    PDF(pc) (2096KB)(510)       Save

Grassland degradation can alter the structure and function of ecosystem and soil seed bank. Therefore, estimating the role of soil seed bank in vegetation regeneration of degraded grasslands is crucial. We selected grasslands with three levels of degradation, namely non-degraded (ND), mildly degraded (MD), and heavily degraded (HD) to analyze the effect of grassland degradation on soil seed bank, as well as the role of soil seed bank on vegetation regeneration of the alpine grasslands, China. Soil samples from each level were collected in May, before seedling emergence, in August, after completion of transient seed bank germination, and in December, after seed dispersal, to determine the seed density and species composition through germination experiment. Result showed that a total of 35 plant species was identified, including 15 species observed in both soil seed bank and above-ground vegetation. A total of 19, 15, and 14 species of soil seed bank were identified in December, May, and August, respectively. The most abundant species in soil seed bank were Compositae (5 species), followed by Poaceae (4 species), and Cyperaceae (3 species). Degradation level has no significant impact on species richness and Shannon- Wiener index of soil seed bank. In addition, sampling month and grassland degradation affected soil seed bank density, in which December>May>August, and ND>MD>HD, indicating that density of transient seed bank was greater than persistent seed bank. Soil seed bank density of surface layer (0-5 cm) accounting for 42%-72% of the total density, which was significantly higher than that of deep layer (5-10 cm). Similarity of species composition between vegetation and soil seed bank was low, and it increased with degradation level (ranged from 0.14 to 0.69). We concluded that grassland degradation affects soil seed bank density more than species diversity, and soil seed bank contributed slightly to vegetation regeneration of degraded alpine grassland. Therefore, it is unlikely that degraded alpine meadow can be restored solely through soil seed bank.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Remote sensing monitoring of the recent rapid increase in cultivation activities and its effects on desertification in the Mu Us Desert, China
ZHAO Hongyan, YAN Changzhen, LI Sen, WANG Yahui
Journal of Arid Land    2023, 15 (7): 812-826.   DOI: 10.1007/s40333-023-0061-0
Abstract102)   HTML8)    PDF(pc) (12402KB)(141)       Save

The recent ecological improvement in the Mu Us Desert of China, largely attributed to large-scale afforestation projects, has created new opportunities for cultivation activities. However, the subsequent rapid increase in reclamation on desertification land and its impact on desertification have raised concerns. In this study, we first extracted data on cultivated land and desertification land in 1975, 1990, 2000, 2005, 2010, 2015, and 2020 through the human-computer interaction visual interpretation method. By overlaying the cultivated land dynamics and desertification land, we subsequently explored the effect of cultivation activities on desertification in the Mu Us Desert during the six periods from 1975 to 2020 (1975-1990, 1990-2000, 2000-2005, 2005-2010, 2010-2015, and 2015-2020). The results showed that cultivated land in the Mu Us Desert showed a fluctuating and increasing trend from 3769.26 km2 in 1975 to 4865.73 km2 in 2020, with 2010 as the turning point for the recent rapid increase. The main contributors included the large and regular patches distributed in Yuyang District and Shenmu of Shaanxi Province, and relatively smaller patches concentrated in Inner Mongolia Autonomous Region. The increased cultivated land from the reclamation on desertification land was dominated by moderate and severe desertification lands, and the decreased cultivated land that was transferred into desertification land as abandoned cultivated land was dominated by slight and moderate desertification lands. The effect of cultivation activities on desertification reversal (average area proportion of 10.61% for reversed desertification land) was greater than that of the development of desertification (average area proportion of 5.82% for developed desertification land). Nevertheless, compared to reversed desertification land, both the significant increase of developed desertification land during the periods of 2000-2005 and 2005-2010 and the insignificant decrease during the periods of 2005-2010, 2010-2015, and 2015-2020 implied a potential remobilization risk. Therefore, this study provides a significant theoretical reference for the formulation of ecological restoration projects and regional macroeconomic development policies by considering the influence of cultivation activities, to ensure the overall environmental stability and sustainability in desertification land where reclamation and abandonment activities have taken place.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index
ZHAO Lili, LI Lusheng, LI Yanbin, ZHONG Huayu, ZHANG Fang, ZHU Junzhen, DING Yibo
Journal of Arid Land    2023, 15 (12): 1421-1438.   DOI: 10.1007/s40333-023-0072-x
Abstract101)   HTML19)    PDF(pc) (7579KB)(102)       Save

The effect of global climate change on vegetation growth is variable. Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation, and even regional protection of ecological environments. In this study, we constructed a new drought index (i.e., Vegetation Drought Condition Index (VDCI)) based on precipitation, potential evapotranspiration, soil moisture and Normalized Difference Vegetation Index (NDVI) data, to monitor vegetation drought in the nine major river basins (including the Songhua River and Liaohe River Basin, Haihe River Basin, Yellow River Basin, Huaihe River Basin, Yangtze River Basin, Southeast River Basin, Pearl River Basin, Southwest River Basin and Continental River Basin) in China at 1-month-12-month (T1-T12) time scales. We used the Pearson's correlation coefficients to assess the relationships between the drought indices (the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Soil Moisture Index (SSMI) and Self-calibrating Palmer Drought Severity Index (scPDSI)) and the NDVI at T1-T12 time scales, and to estimate and compare the lag times of vegetation response to drought among different drought indices. The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1-T6 time scales. Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales. Potential evapotranspiration shows a higher degree of positive influence on vegetation, and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins. The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin, Haihe River Basin, Yellow River Basin, Huaihe River Basin and Yangtze River Basin at T1-T4 time scales. In general, the VDCI is more sensitive (with shorter lag time of vegetation response to drought) than the traditional drought indices (SPEI, scPDSI and SSMI) in monitoring vegetation drought, and thus it could be applied to monitor short-term vegetation drought. The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate, and can be applied in other fields of vegetation drought monitoring with complex mechanisms.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Wind regime features and their impacts on the middle reaches of the Yarlung Zangbo River on the Tibetan Plateau, China
ZHANG Yan, ZHANG Zhengcai, MA Pengfei, PAN Kaijia, ZHA Duo, CHEN Dingmei, SHEN Caisheng, LIANG Aimin
Journal of Arid Land    2023, 15 (10): 1174-1195.   DOI: 10.1007/s40333-023-0066-8
Abstract101)   HTML4)    PDF(pc) (4201KB)(100)       Save

The wide valley of the Yarlung Zangbo River is one of the most intense areas in terms of aeolian activity on the Tibetan Plateau, China. In the past, the evaluation of the intensity of aeolian activity in the Quxu-Sangri section of the Yarlung Zangbo River Valley was mainly based on data from the old meteorological stations, especially in non-sandy areas. In 2020, six new meteorological stations, which are closest to the new meteorological stations, were built in the wind erosion source regions (i.e., sandy areas) in the Quxu-Sangri section. In this study, based on mathematical statistics and empirical orthogonal function (EOF) decomposition analysis, we compared the difference of the wind regime between new meteorological stations and old meteorological stations from December 2020 to November 2021, and discussed the reasons for the discrepancy. The results showed that sandy and non-sandy areas differed significantly regarding the mean velocity (8.3 (±0.3) versus 7.7 (±0.3) m/s, respectively), frequency (12.9% (±6.2%) versus 2.9% (±1.9%), respectively), and dominant direction (nearly east or west versus nearly north or south, respectively) of sand-driving winds, drift potential (168.1 (±77.3) versus 24.0 (±17.9) VU (where VU is the vector unit), respectively), resultant drift potential (92.3 (±78.5) versus 8.7 (±9.2) VU, respectively), and resultant drift direction (nearly westward or eastward versus nearly southward or northward, respectively). This indicated an obvious spatial variation in the wind regime between sandy and non-sandy areas and suggested that there exist problems when using wind velocity data from non-sandy areas to evaluate the wind regime in sandy areas. The wind regime between sandy and non-sandy areas differed due to the differences in topography, heat flows, and their coupling with underlying surface, thereby affecting the local atmospheric circulation. Affected by large-scale circulations (westerly jet and Indian monsoon systems), both sandy and non-sandy areas showed similar seasonal variations in their respective wind regime. These findings provide a credible reference for re-understanding the wind regime and scientific wind-sand control in the middle reaches of the Yarlung Zangbo River Valley.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Fate of rubber bush (Calotropis procera (Aiton) W. T. Aiton) in adversary environment modulated by microstructural and functional attributes
Ummar IQBAL, Mansoor HAMEED, Farooq AHMAD, Muhammad S AAHMAD, Muhammad ASHRAF
Journal of Arid Land    2023, 15 (5): 578-601.   DOI: 10.1007/s40333-023-0012-9
Abstract99)   HTML7)    PDF(pc) (18279KB)(221)       Save

Calotropis procera (Aiton) W. T. Aiton, belonging to the family Apocynaceae, is C3 evergreen plant species in arid and semi-arid areas of the Punjab Province, Pakistan. It grows in a variety of habitats like salt affected and waterlogged area, desert/semi-desert, roadside, wasteland, graveyard, forest, crop field, coastline, and river/canal bank. A total of 12 populations growing in different ecological regions were sampled to evaluate their growth, physio-biochemical, and anatomical responses to specific environmental condition. Population adapted to desert/semi-desert showed vigorous growth (plant height, shoot length, and number of leaves), enhanced photosynthetic level (chlorophyll a, chlorophyll b, carotenoids, and total chlorophyll), and apparent anatomical modifications such as increased stem radius, cuticle thickness, storage parenchyma tissues (cortex and pith), and vascular bundles in stems, while the maximum of midrib and lamina thickness, epidermal cells, cuticle thickness, cortical proportion, abaxial stomatal density, and its area in leaves. There was high plasticity in structural and functional features of these populations, which enable them to survive and tolerate under such hot and dry desert environment. Population of saline areas exhibited very critical modifications to sustain under salt prone environment. At physiological level, it possesses the maximum amount of organic osmolytes (glycine betaine and proline) and antioxidants (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)), while at anatomical level, it showed intensive sclerification, large phloem region (inner and outer), pith parenchyma cells, and metaxylem vessels in stems and leaves. The population of dry mountains showed very distinctive features, such as increased shoot ionic contents (K+ and Ca2+), collenchyma and sclerenchyma thickness in stems, trichomes size, and numerous small stomata on abaxial surface of leaves. It is concluded that no definite or precise single character can be taken as a yardstick for adjudging the biomass production in this rubber bush weed population.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Grassland-type ecosystem stability in China differs under the influence of drought and wet events
CAO Wenyu, BAI Jianjun, YU Leshan
Journal of Arid Land    2024, 16 (5): 615-631.   DOI: 10.1007/s40333-024-0098-8
Abstract99)   HTML2)    PDF(pc) (1811KB)(246)       Save

Ecological stability is a core issue in ecological research and holds significant implications for humanity. The increased frequency and intensity of drought and wet climate events resulting from climate change pose a major threat to global ecological stability. Variations in stability among different ecosystems have been confirmed, but it remains unclear whether there are differences in stability within the same terrestrial vegetation ecosystem under the influence of climate events in different directions and intensities. China's grassland ecosystem includes most grassland types and is a good choice for studying this issue. This study used the Standardized Precipitation Evapotranspiration Index-12 (SPEI-12) to identify the directions and intensities of different types of climate events, and based on Normalized Difference Vegetation Index (NDVI), calculated the resistance and resilience of different grassland types for 30 consecutive years from 1990 to 2019 (resistance and resilience are important indicators to measure stability). Based on a traditional regression model, standardized methods were integrated to analyze the impacts of the intensity and duration of drought and wet events on vegetation stability. The results showed that meadow steppe exhibited the highest stability, while alpine steppe and desert steppe had the lowest overall stability. The stability of typical steppe, alpine meadow, temperate meadow was at an intermediate level. Regarding the impact of the duration and intensity of climate events on vegetation ecosystem stability for the same grassland type, the resilience of desert steppe during drought was mainly affected by the duration. In contrast, the impact of intensity was not significant. However, alpine steppe was mainly affected by intensity in wet environments, and duration had no significant impact. Our conclusions can provide decision support for the future grassland ecosystem governance.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset
Sakine KOOHI, Hadi RAMEZANI ETEDALI
Journal of Arid Land    2023, 15 (4): 377-392.   DOI: 10.1007/s40333-023-0097-1
Abstract98)   HTML292)    PDF(pc) (1598KB)(263)       Save

Investigation of the climate change effects on drought is required to develop management strategies for minimizing adverse social and economic impacts. Therefore, studying the future meteorological drought conditions at a local scale is vital. In this study, we assessed the efficiency of seven downscaled Global Climate Models (GCMs) provided by the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), and investigated the impacts of climate change on future meteorological drought using Standard Precipitation Index (SPI) in the Karoun River Basin (KRB) of southwestern Iran under two Representative Concentration Pathway (RCP) emission scenarios, i.e., RCP4.5 and RCP8.5. The results demonstrated that SPI estimated based on the Meteorological Research Institute Coupled Global Climate Model version 3 (MRI-CGCM3) is consistent with the one estimated by synoptic stations during the historical period (1990-2005). The root mean square error (RMSE) value is less than 0.75 in 77% of the synoptic stations. GCMs have high uncertainty in most synoptic stations except those located in the plain. Using the average of a few GCMs to improve performance and reduce uncertainty is suggested by the results. The results revealed that with the areas affected by wetness decreasing in the KRB, drought frequency in the North KRB is likely to increase at the end of the 21st century under RCP4.5 and RCP8.5 scenarios. At the seasonal scale, the decreasing trend for SPI in spring, summer, and winter shows a drought tendency in this region. The climate-induced drought hazard can have vast consequences, especially in agriculture and rural livelihoods. Accordingly, an increasing trend in drought during the growing seasons under RCP scenarios is vital for water managers and farmers to adopt strategies to reduce the damages. The results of this study are of great value for formulating sustainable water resources management plans affected by climate change.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels
Teame G KEBEDE, Emiru BIRHANE, Kiros-Meles AYIMUT, Yemane G EGZIABHER
Journal of Arid Land    2023, 15 (8): 975-988.   DOI: 10.1007/s40333-023-0022-7
Abstract97)   HTML8)    PDF(pc) (901KB)(763)       Save

Opuntia ficus-indica (L.) Miller is a CAM (crassulacean acid metabolism) plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO2 at nighttime, store a significant amount of water in cladodes, and reduce root growth. Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi (AMF) to adapt to drought stress. Water stress can limit plant growth and biomass production, which can be rehabilitated by AMF association through improved physiological performance. The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass, photosynthesis, and water use efficiency of the spiny and spineless O. ficus-indica. The experiment was conducted in a greenhouse with a full factorial experiment using O. ficus-indica type (spiny or spineless), AMF (presence or absence), and four soil water available (SWA) treatments through seven replications. Water treatments applied were 0%-25% SWA (T1), 25%-50% SWA (T2), 50%-75% SWA (T3), and 75%-100% SWA (T4). Drought stress reduced biomass and cladode growth, while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O. ficus-indica. AMF presence significantly increased biomass of both O. ficus-indica plant types through improved growth, photosynthetic water use efficiency, and photosynthesis. The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency. Net photosynthesis, photosynthetic water use efficiency, transpiration, and stomatal conductance rate significantly decreased with increased drought stress. Under drought stress, some planted mother cladodes with the absence of AMF have not established daughter cladodes, whereas AMF-inoculated mother cladodes fully established daughter cladodes. AMF root colonization significantly increased with the decrease of SWA. AMF caused an increase in biomass production, increased tolerance to drought stress, and improved photosynthesis and water use efficiency performance of O. ficus-indica. The potential of O. ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Soil seed bank is affected by transferred soil thickness and properties in the reclaimed coal mine in the Qilian Mountains, China
YANG Jingyi, LUO Weicheng, ZHAO Wenzhi, LIU Jiliang, WANG Dejin, LI Guang
Journal of Arid Land    2023, 15 (12): 1529-1543.   DOI: 10.1007/s40333-023-0113-5
Abstract97)   HTML6)    PDF(pc) (2560KB)(482)       Save

Reclamation of lands abandoned after mining in mountain areas is critical to erosion control, safety from landslides, and ecological protection of mountain ecosystems. However, little is known about alpine coal mine reclamation using the soil seed bank as a potential source for revegetation. We collected samples of persistent soil seed bank for germination experiments from nine reclaimed sites with different soil cover thicknesses and from six control sites in the Qilian Mountains of China. Soil properties of each site were determined (including soil water content, soil available potassium, soil available phosphorus, soil total nitrogen, pH, soil organic matter, soil total phosphorus, and soil total potassium, and soil alkali-hydrolyzable nitrogen), and the relationships of the characteristics of the soil seed bank with soil cover thickness and soil properties were examined. The results showed that the density, number of species, and diversity of the topsoil seed bank were significantly correlated with soil cover thickness, and all increased with the increment of soil cover thickness. Soil cover thickness controlled the soil seed bank by influencing soil properties. With the increase in soil cover thickness, soil properties (e.g., soil organic matter, soil total nitrogen, etc.) content increased while soil pH decreased. The soil seed bank had the potential to restored the pre-mining habitat at reclaimed sites with approximately 20-cm soil cover thickness. Soil properties of reclaimed sites were lower than that of natural sites. The relationship between the soil seed bank and soil cover thickness determined in this study provides a foundation for improving reclamation measures used in coal mines, as well as for the management and monitoring of reclaimed areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021
QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo
Journal of Arid Land    2023, 15 (9): 1037-1051.   DOI: 10.1007/s40333-023-0067-7
Abstract96)   HTML6)    PDF(pc) (3298KB)(310)       Save

Groundwater overexploitation is a serious problem in the Turpan Basin, Xinjiang Uygur Autonomous Region of China, causing groundwater level declines and ecological and environmental problems such as the desiccation of karez wells and the shrinkage of lakes. Based on historical groundwater data and field survey data from 1959 to 2021, we comprehensively studied the evolution of groundwater recharge and discharge terms in the Turpan Basin using the groundwater equilibrium method, mathematical statistics, and GIS spatial analysis. The reasons for groundwater overexploitation were also discussed. The results indicated that groundwater recharge increased from 14.58×108 m3 in 1959 to 15.69×108 m3 in 1980, then continued to decrease to 6.77×108 m3 in 2021. Groundwater discharge increased from 14.49×108 m3 in 1959 to 16.02×108 m3 in 1989, while continued to decrease to 9.97×108 m3 in 2021. Since 1980, groundwater recharge-discharge balance has been broken, the decrease rate of groundwater recharge exceeded that of groundwater discharge and groundwater recharge was always lower than groundwater discharge, showing in a negative equilibrium, which caused the continuous decrease in groundwater level in the Turpan Basin. From 1980 to 2002, groundwater overexploitation increased rapidly, peaking from 2003 to 2011 with an average overexploitation rate of 4.79×108 m3/a; then, it slowed slightly from 2012 to 2021, and the cumulative groundwater overexploitation was 99.21×108 m3 during 1980-2021. This research can provide a scientific foundation for the restoration and sustainable use of groundwater in the overexploited areas of the Turpan Basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau
KOU Zhaoyang, LI Chunyue, CHANG Shun, MIAO Yu, ZHANG Wenting, LI Qianxue, DANG Tinghui, WANG Yi
Journal of Arid Land    2023, 15 (8): 960-974.   DOI: 10.1007/s40333-023-0023-6
Abstract95)   HTML6)    PDF(pc) (756KB)(682)       Save

Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs. The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements, namely nitrogen (N) and phosphorus (P). Nevertheless, the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood. Therefore, we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment. Nine fertilization treatments with complete interactions of high, medium, and low N and P gradients were set up. Soil physical and chemical properties, along with the microbial community structure were measured in this study. Additionally, relevant ecological processes such as microbial biomass, respiration, N mineralization, and enzyme activity were quantified. To elucidate the relationships between these variables, we examined correlation-mediated processes using statistical techniques, including redundancy analysis (RDA) and structural equation modeling (SEM). The results showed that the addition of N alone had a detrimental effect on soil microbial biomass, mineralized N accumulation, and β-1,4-glucosidase activity. Conversely, the addition of P exhibited an opposing effect, leading to positive influences on these soil parameters. The interactive addition of N and P significantly changed the microbial community structure, increasing microbial activity (microbial biomass and soil respiration), but decreasing the accumulation of mineralized N. Among them, N24P12 treatment showed the greatest increase in the soil nutrient content and respiration. N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid (PLFA) content by 70.93%. N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes. Soil microbial biomass, respiration, and overall enzyme activity are driven by mineralized N. Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem
Orhan DENGİZ, İnci DEMİRAĞ TURAN
Journal of Arid Land    2023, 15 (7): 779-796.   DOI: 10.1007/s40333-023-0020-9
Abstract95)   HTML442)    PDF(pc) (23771KB)(206)       Save

Since there are some signs of land degradation and desertification showing how soil sustainability is threatened, it is crucial to create a soil quality index (SQI) model in the semi-arid Çorum Basin, situated between the Black Sea and Anatolia Region, Central Turkey. The primary aims of the study are: (1) to determine SQI values of the micro-basin in terms of land degradation and desertification. Moreover, the best-worst method (BWM) was used to determine the weighting score for each parameter; (2) to produce the soils' spatial distribution by utilizing different geostatistical models and GIS (geographic information system) techniques; and (3) to validate the obtained SQI values with biomass reflectance values. Therefore, the relationship of RE-OSAVI (red-edge optimized soil-adjusted vegetation index) and NDVI (normalized difference vegetation index) generated from Sentinel-2A satellite images at different time series with soil quality was examined. Results showed that SQI values were high in the areas that had almost a flat and slight slope. Moreover, the areas with high clay content and thick soil depth did not have salinity problems, and were generally distributed in the middle parts of the basin. However, the areas with a high slope, poor vegetation, high sand content, and low water holding capacity had low SQI values. Furthermore, a statistically high positive correlation of RE-OSAVI and NDVI indices with soil quality was found, and NDVI had the highest correlative value for June (R2=0.802) compared with RE-OSAVI.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Improving the accuracy of precipitation estimates in a typical inland arid area of China using a dynamic Bayesian model averaging approach
XU Wenjie, DING Jianli, BAO Qingling, WANG Jinjie, XU Kun
Journal of Arid Land    2024, 16 (3): 331-354.   DOI: 10.1007/s40333-024-0054-7
Abstract95)   HTML6)    PDF(pc) (2277KB)(309)       Save

Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations, limited access to precipitation data, and significant water scarcity. Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region, which can even improve the performance of hydrological modelling. This study evaluated the applicability of widely used five satellite-based precipitation products (Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), China Meteorological Forcing Dataset (CMFD), Climate Prediction Center morphing method (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA)) and a reanalysis precipitation dataset (ECMWF Reanalysis v5-Land Dataset (ERA5-Land)) in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations. Based on this assessment, we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging (DBMA) approach, the expectation-maximization method, and the ordinary Kriging interpolation method. The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability, with an outstanding performance, as indicated by low root mean square error (RMSE=1.40 mm/d) and high Person's correlation coefficient (CC=0.67). Compared with the traditional simple model averaging (SMA) and individual product data, although the DBMA-fused precipitation data were slightly lower than the best precipitation product (CMFD), the overall performance of DBMA was more robust. The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final (IMERG-F) precipitation product, as well as hydrological simulations in the Ebinur Lake Basin, further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region. The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas, and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of drought treatment on photosystem II activity in the ephemeral plant Erodium oxyrhinchum
CHEN Yingying, LIN Yajun, ZHOU Xiaobing, ZHANG Jing, YANG Chunhong, ZHANG Yuanming
Journal of Arid Land    2023, 15 (6): 724-739.   DOI: 10.1007/s40333-023-0058-8
Abstract94)   HTML4)    PDF(pc) (2233KB)(374)       Save

Drought is a critical limiting factor affecting the growth and development of plants in arid and semi-arid areas. Photosynthesis, one of the most important physiological processes of plants, can be significantly inhibited by drought. Photosystem II (PSII) is considered the main attack target when photosynthesis is affected by drought. To clarify how PSII components of the ephemeral plant Erodium oxyrhinchum (grown in the Gurbantunggut Desert, China) respond to drought treatment, we evaluated the functional activity of PSII by determining chlorophyll fluorescence and gas exchange parameters under different drought treatment levels (control (400 mL), moderate drought (200 mL), and severe drought (100 mL)). Under moderate drought treatment, significant decreases were found in net photosynthetic rate (Pn), effective quantum yield of PSII (Y(II)), relative electron transfer rate of PSII (rETR(II)), oxygen-releasing complex, probability of an absorbed exciton moving an electron into the electron transport chain beyond primary quinone receptor QA- (Φ(Eo)), probability of a trapped exciton moving an electron into the electron transport chain beyond primary quinone receptor QA- (ψ(Eo)), and performance index of PSII (PIabs). Compared to control treatment, marked increases were observed in water use efficiency (WUE), relative variable fluorescence at the J step (VJ), initial fluorescence (Fo), and dissipated energy per active reaction center (DIo/RC) under moderate drought treatment, but there were no substantial changes in semi-saturated light intensity (IK), active reaction centers per cross-section (RC/CS), and total performance index of PSII and PSI (PItotal, where PSI is the photosystem I). The changes of the above parameters under severe drought treatment were more significant than those under moderate drought treatment. In addition, severe drought treatment significantly increased the absorbed energy per active reaction center (ABS/RC) and trapping energy per active reaction center (TRo/RC) but decreased the energy transmission connectivity of PSII components, RC/CS, and PItotal, compared to moderate drought and control treatments. Principle component analysis (PCA) revealed similar information according to the grouping of parameters. Moderate drought treatment was obviously characterized by RC/CS parameter, and the values of Fo, VJ, ABS/RC, DIo/RC, and TRo/RC showed specific reactions to severe drought treatment. These results demonstrated that moderate drought treatment reduced the photochemical activity of PSII to a certain extent but E. oxyrhinchum still showed strong adaptation against drought treatment, while severe drought treatment seriously damaged the structure of PSII. The results of this study are useful for further understanding the adaptations of ephemeral plants to different water conditions and can provide a reference for the selection of relevant parameters for photosynthesis measurements of large samples in the field.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau, China
SUN Lin, YU Zhouchang, TIAN Xingfang, ZHANG Ying, SHI Jiayi, FU Rong, LIANG Yujie, ZHANG Wei
Journal of Arid Land    2023, 15 (9): 1107-1128.   DOI: 10.1007/s40333-023-0025-4
Abstract93)   HTML6)    PDF(pc) (1962KB)(286)       Save

Leguminosae are an important part of terrestrial ecosystems and play a key role in promoting soil nutrient cycling and improving soil properties. However, plant composition and species diversity change rapidly during the process of succession, the effect of leguminosae on soil physical-chemical and biological properties is still unclear. This study investigated the changes in the composition of plant community, vegetation characteristics, soil physical-chemical properties, and soil biological properties on five former farmlands in China, which had been abandoned for 0, 5, 10, 18, and 30 a. Results showed that, with successional time, plant community developed from annual plants to perennial plants, the importance of Leguminosae and Asteraceae significantly increased and decreased, respectively, and the importance of grass increased and then decreased, having a maximum value after 5 a of abandonment. Plant diversity indices increased with successional time, and vegetation coverage and above- and below-ground biomass increased significantly with successional time after 5 a of abandonment. Compared with farmland, 30 a of abandonment significantly increased soil nutrient content, but total and available phosphorus decreased with successional time. Changes in plant community composition and vegetation characteristics not only change soil properties and improve soil physical-chemical properties, but also regulate soil biological activity, thus affecting soil nutrient cycling. Among these, Leguminosae have the greatest influence on soil properties, and their importance values and community composition are significantly correlated with soil properties. Therefore, this research provides more scientific guidance for selecting plant species to stabilize soil ecosystem of farmland to grassland in the Loess Plateau, China.

Table and Figures | Reference | Related Articles | Metrics | Comments0