Most Read

Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria
Fateme RIGI, Morteza SABERI, Mahdieh EBRAHIMI
Journal of Arid Land    2023, 15 (6): 740-755.   DOI: 10.1007/s40333-023-0015-6
Abstract147)   HTML7)    PDF(pc) (1088KB)(419)       Save

Numerous ecological factors influence a plant's ability to live and grow, in which dryness is a substantial constraint on plant growth in arid and semi-arid areas. In response to a specific environmental stress, plants can use the most effective bacteria to support and facilitate their growth and development. Today, plant growth promoting rhizobacteria (PGPR) is widely used to reduce drought stress on plant growth. In this study, the effects of drought on Festuca ovina L. germination, growth, and nutrient absorption were investigated using PGPR in a factorial test with a completely random design under four water regimes. Soil water content was kept at 100% FC (field capacity), 70% FC (FC), 50% FC, and 30% FC. The treatments were inoculated with Azotobacter vinelandii, Pantoea agglomerans+Pseudomonas putida, and a mixture of bio-fertilizers. Results showed that the effects of drought stress were significantly reduced (P<0.05) when A. vinelandii and P. agglomerans+P. putida were used separately, however, the combined treatment of bio-fertilizers had a greater influence on seed germination than the single application. P. agglomerans+P. putida under 30% FC condition resulted in higher increases in stem, root length, and plant dry biomass. The highest uptake of nutrients was observed for the combined treatment of bio-fertilizers under 30% FC condition. Therefore, the use of A. vinelandii and P. agglomerans+P. putida, applied separately or combined, increased tolerance to drought stress in F. ovina by increased germination indices, dry weight, stem length, and root length. Because of the beneficial effects of PGPR on the growth characteristics of plants under drought conditions and the reduction of negative effects of drought stress, inoculating F. ovina seeds with Azotobacter and Pseudomonas is recommended to improve their growth and development characteristics under drought conditions. PGPR, as an affordable and environmentally friendly method, can improve the production of forage in water-stress rangelands.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Distribution patterns of fire regime in the Pendjari Biosphere Reserve, West Africa
Journal of Arid Land    2023, 15 (10): 1160-1173.   DOI: 10.1007/s40333-023-0027-2
Abstract140)   HTML571)    PDF(pc) (3201KB)(252)       Save

Pendjari Biosphere Reserve (PBR), a primary component of the W-Arly-Pendjari transboundary biosphere reserve, represents the largest intact wild ecosystem and pristine biodiversity spot in West Africa. This savannah ecosystem has long been affected by fire, which is the main ecological driver for the annual rhythm of life in the reserve. Understanding the fire distribution patterns will help to improve its management plan in the region. This study explores the fire regime in the PRB during 2001-2021 in terms of burned area, seasonality, fire frequency, and mean fire return interval (MFRI) by analysing moderate resolution imaging spectroradiometer (MODIS) burned area product. Results indicated that the fire season in the PBR extends from October to May with a peak in early dry season (November-December). The last two fire seasons (2019-2020 and 2020-2021) recorded the highest areas burned in the PBR out of the twenty fire seasons studied. During the twenty years period, 8.2% of the reserve burned every 10-11 months and 11.5% burned annually. The largest part of the reserve burned every one to two years (63.1%), while 8.3% burned every two to four years, 5.8% burned every four to ten years, and 1.9% burned every ten to twenty years. Only 1.3% of the entire area did not fire during the whole study period. Fire returned to a particular site every 1.39 a and the annual percentage of area burned in the PBR was 71.9%. The MFRI (MFRI<2.00 a) was low in grasslands, shrub savannah, tree savannah, woodland savannah, and rock vegetation. Fire regime must be maintained to preserve the integrity of the PBR. In this context, we suggest applying early fire in tree and woodland savannahs to lower grass height, and late dry season fires every two to three years in shrub savannah to limit the expansion of shrubs and bushes. We propose a laissez-faire system in areas in woodland savannah where the fire frequency is sufficient to allow tree growth. Our findings highlight the utility of remote sensing in defining the geographical and temporal patterns of fire in the PBR and could help to manage this important fire prone area.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Modelling the dead fuel moisture content in a grassland of Ergun City, China
CHANG Chang, CHANG Yu, GUO Meng, HU Yuanman
Journal of Arid Land    2023, 15 (6): 710-723.   DOI: 10.1007/s40333-023-0103-7
Abstract136)   HTML5)    PDF(pc) (4071KB)(149)       Save

The dead fuel moisture content (DFMC) is the key driver leading to fire occurrence. Accurately estimating the DFMC could help identify locations facing fire risks, prioritise areas for fire monitoring, and facilitate timely deployment of fire-suppression resources. In this study, the DFMC and environmental variables, including air temperature, relative humidity, wind speed, solar radiation, rainfall, atmospheric pressure, soil temperature, and soil humidity, were simultaneously measured in a grassland of Ergun City, Inner Mongolia Autonomous Region of China in 2021. We chose three regression models, i.e., random forest (RF) model, extreme gradient boosting (XGB) model, and boosted regression tree (BRT) model, to model the seasonal DFMC according to the data collected. To ensure accuracy, we added time-lag variables of 3 d to the models. The results showed that the RF model had the best fitting effect with an R2 value of 0.847 and a prediction accuracy with a mean absolute error score of 4.764% among the three models. The accuracies of the models in spring and autumn were higher than those in the other two seasons. In addition, different seasons had different key influencing factors, and the degree of influence of these factors on the DFMC changed with time lags. Moreover, time-lag variables within 44 h clearly improved the fitting effect and prediction accuracy, indicating that environmental conditions within approximately 48 h greatly influence the DFMC. This study highlights the importance of considering 48 h time-lagged variables when predicting the DFMC of grassland fuels and mapping grassland fire risks based on the DFMC to help locate high-priority areas for grassland fire monitoring and prevention.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Combination of artificial zeolite and microbial fertilizer to improve mining soils in an arid area of Inner Mongolia, China
LI Wenye, ZHANG Jianfeng, SONG Shuangshuang, LIANG Yao, SUN Baoping, WU Yi, MAO Xiao, LIN Yachao
Journal of Arid Land    2023, 15 (9): 1067-1083.   DOI: 10.1007/s40333-023-0028-1
Abstract132)   HTML6)    PDF(pc) (4252KB)(212)       Save

Restoration of mining soils is important to the vegetation and environment. This study aimed to explore the variations in soil nutrient contents, microbial abundance, and biomass under different gradients of substrate amendments in mining soils to select effective measures. Soil samples were collected from the Bayan Obo mining region in Inner Mongolia Autonomous Region, China. Contents of soil organic matter (SOM), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon/microbial biomass nitrogen (MBC/MBN) ratio, biomass, and bacteria, fungi, and actinomycetes abundance were assessed in Agropyron cristatum L. Gaertn., Elymus dahuricus Turcz., and Medicago sativa L. soils with artificial zeolite (AZ) and microbial fertilizer (MF) applied at T0 (0 g/kg), T1 (5 g/kg), T2 (10 g/kg), and T3 (20 g/kg). Redundancy analysis (RDA) and technique for order preference by similarity to ideal solution (TOPSIS) were used to identify the main factors controlling the variation of biomass. Results showed that chemical indices and microbial content of restored soils were far greater than those of control. The application of AZ significantly increases SOM, AN, and AP by 20.27%, 23.61%, and 40.43%, respectively. AZ significantly increased bacteria, fungi, and actinomycetes abundance by 0.63, 3.12, and 1.93 times of control, respectively. RDA indicated that AN, MBC/MBN ratio, and SOM were dominant predictors for biomass across samples with AZ application, explaining 87.6% of the biomass variance. SOM, MBC/MBN ratio, and AK were dominant predictors with MF application, explaining 82.9% of the biomass variance. TOPSIS indicated that T2 was the best dosage and the three plant species could all be used to repair mining soils. AZ and MF application at T2 concentration in the mining soils with M. sativa was found to be the most appropriate measure.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Projecting future precipitation change across the semi-arid Borana lowland, southern Ethiopia
Mitiku A WORKU, Gudina L FEYISA, Kassahun T BEKETIE, Emmanuel GARBOLINO
Journal of Arid Land    2023, 15 (9): 1023-1036.   DOI: 10.1007/s40333-023-0063-y
Abstract132)   HTML417)    PDF(pc) (1928KB)(66)       Save

Climate change caused by past, current, and future greenhouse gas emissions has become a major concern for scientists in the field in many countries and regions of the world. This study modelled future precipitation change by downscaling a set of large-scale climate predictor variables (predictors) from the second generation Canadian Earth System Model (CanESM2) under two Representative Concentration Pathway (RCP) emission scenarios (RCP4.5 and RCP8.5) in the semi-arid Borana lowland, southern Ethiopia. The Statistical DownScaling Model (SDSM) 4.2.9 was employed to downscale and project future precipitation change in the middle (2036-2065; 2050s) and far (2066-2095; 2080s) future at the local scale. Historical precipitation observations from eight meteorological stations stretching from 1981 to 1995 and 1996 to 2005 were used for the model calibration and validation, respectively, and the time period of 1981-2018 was considered and used as the baseline period to analyze future precipitation change. The results revealed that the surface-specific humidity and the geopotential height at 500 hPa were the preferred large-scale predictors. Compared to the middle future (2050s), precipitation showed a much greater increase in the far future (2080s) under both RCP4.5 and RCP8.5 scenarios at all meteorological stations (except Teletele and Dillo stations). At Teltele station, the projected annual precipitation will decrease by 26.53% (2050s) and 39.45% (2080s) under RCP4.5 scenario, and 34.99% (2050s) and 60.62% (2080s) under RCP8.5 scenario. Seasonally, the main rainy period would shift from spring (March to May) to autumn (September to November) at Dehas, Dire, Moyale, and Teltele stations, but for Arero and Yabelo stations, spring would consistently receive more precipitation than autumn. It can be concluded that future precipitation in the semi-arid Borana lowland is predicted to differ under the two climate scenarios (RCP4.5 and RCP8.5), showing an increasing trend at most meteorological stations. This information could be helpful for policymakers to design adaptation plans in water resources management, and we suggest that the government should give more attention to improve early warning systems in drought-prone areas by providing dependable climate forecast information as early as possible.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China
ZHANG Hui, Giri R KATTEL, WANG Guojie, CHUAI Xiaowei, ZHANG Yuyang, MIAO Lijuan
Journal of Arid Land    2023, 15 (7): 871-885.   DOI: 10.1007/s40333-023-0019-2
Abstract121)   HTML6)    PDF(pc) (4504KB)(83)       Save

Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21st century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI (normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region (northern China) during 1982-2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors, precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Seasonal variations in glacier velocity in the High Mountain Asia region during 2015-2020
ZHANG Zhen, XU Yangyang, LIU Shiyin, DING Jing, ZHAO Jinbiao
Journal of Arid Land    2023, 15 (6): 637-648.   DOI: 10.1007/s40333-023-0016-5
Abstract100)   HTML300)    PDF(pc) (4417KB)(187)       Save

Velocity is an important component of glacier dynamics and directly reflects the response of glaciers to climate change. As a result, an accurate determination of seasonal variation in glacier velocity is very important in understanding the annual variation in glacier dynamics. However, few studies of glacier velocity in the High Mountain Asia (HMA) region were done. Along these lines, in this work, based on Sentinel-1 glacier velocity data, the distribution of glacier velocity in the HMA region was plotted and their seasonal variations during 2015-2020 were systematically analysed. The average glacier velocity in the HMA region was 0.053 m/d, and was positively correlated with the glacier area and slope. Glaciers in the Karakoram Mountains had the fastest average flow velocity (0.060 m/d), where the glaciers exhibited the largest average area and average slope. Moreover, glaciers in the Gangdisê Mountains had the slowest velocity (0.022 m/d) and the smallest average glacier area. The glacier flows were the fastest in spring (0.058 m/d), followed by summer (0.050 m/d), autumn (0.041 m/d), and winter (0.040 m/d). In addition, the glacier flows were the maximum in May, being 1.4 times of the annual average velocity. In some areas, such as the Qilian, Altun, Tibetan Interior, Eastern Kunlun, and Western Kunlun mountains, the peak glacier velocities appeared in June and July. The glacier velocity in the HMA region decreased in midsummer and reached the minimum in December when it was 75% of the annual average. These results highlight the role of meltwater in the seasonal variation in glacier flows in late spring and early summer. The seasonal velocity variation of lake-terminating glaciers was similar to that of land-terminating ones, but the former flowed faster. The velocity difference close to the mass balance line between the lake- and land-terminating glaciers was obviously greater in spring than in other seasons. In summer, the difference between the lake- and land-terminating glaciers at a normalized distance of 0.05-0.40 from the terminus was significantly greater than those of other seasons. The velocity difference between the lake- and land-terminating glaciers is closely related to the variable of ice thickness, and also to the frictional force of the terminal base reduced by proglacial lakes. Thus, it can be concluded that in addition to the variation of the glacier thickness and viscosity, the variation of glacier water input also plays a key role in the seasonal variation of glacier velocity.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Review and prospect of soil compound erosion
YANG Wenqian, ZHANG Gangfeng, YANG Huimin, LIN Degen, SHI Peijun
Journal of Arid Land    2023, 15 (9): 1007-1022.   DOI: 10.1007/s40333-023-0107-3
Abstract79)   HTML609)    PDF(pc) (1035KB)(302)       Save

Soil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies. Soil compound erosion is the result of the alternation or interaction between two or more erosion forces. In recent years, fluctuations and extreme changes in climatic factors (air temperature, precipitation, wind speed, etc.) have led to an increase in the intensity and extent of compound erosion, which is increasingly considered in soil erosion research. First, depending on the involvement of gravity, compound erosion process can be divided into compound erosion with and without gravity. We systematically summarized the research on the mechanisms and processes of alternating or interacting soil erosion forces (wind, water, and freeze-thaw) considering different combinations, combed the characteristics of compound erosion in three typical regions, namely, high-elevation areas, high-latitude areas, and dry and wet transition regions, and reviewed soil compound erosion research methods, such as station observations, simulation experiments, prediction models, and artificial neural networks. The soil erosion model of wind, water, and freeze-thaw interaction is the most significant method for quantifying and predicting compound erosion. Furthermore, it is proposed that there are several issues such as unclear internal mechanisms, lack of comprehensive prediction models, and insufficient scale conversion methods in soil compound erosion research. It is also suggested that future soil compound erosion mechanism research should prioritize the coupling of compound erosion forces and climate change.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Aeolian activity in the southern Gurbantunggut Desert of China during the last 900 years
LI Wen, MU Guijin, YE Changsheng, XU Lishuai, LI Gen
Journal of Arid Land    2023, 15 (6): 649-666.   DOI: 10.1007/s40333-023-0057-9
Abstract68)   HTML278)    PDF(pc) (2633KB)(375)       Save

The mineral dust emitted from Central Asia has a significant influence on the global climate system. However, the history and mechanisms of aeolian activity in Central Asia remain unclear, due to the lack of well-dated records of aeolian activity and the intense wind erosion in some of the dust source areas (e.g., deserts). Here, we present the records of aeolian activity from a sedimentary sequence in the southern Gurbantunggut Desert of China using grain size analysis and optically stimulated luminescence (OSL) dating, based on field sampling in 2019. Specifically, we used eight OSL dates to construct chronological frameworks and applied the end-member (EM) analysis for the grain size data to extract the information of aeolian activity in the southern Gurbantunggut Desert during the last 900 a. The results show that the grain size dataset can be subdivided into three EMs (EM1, EM2, and EM3). The primary modal sizes of these EMs (EM1, EM2, and EM3) are 126.00, 178.00, and 283.00 μm, respectively. EM1 represents a mixture of the suspension components and saltation dust, while EM2 and EM3 show saltation dust transported over a shorter distance via strengthened near-surface winds, which can be used to trace aeolian activity. Combined with the OSL chronology, our results demonstrate that during the last 900 a, more intensive and frequent aeolian activity occurred during 450-100 a BP (Before Present) (i.e., the Little Ice Age (LIA)), which was reflected by a higher proportion of the coarse-grained components (EM2+EM3). Aeolian activity decreased during 900-450 a BP (i.e., the Medieval Warm Period (MWP)) and 100 a BP-present (i.e., the Current Warm Period (CWP)). Intensified aeolian activity was associated with the strengthening of the Siberian High and cooling events at high northern latitudes. We propose that the Siberian High, under the influence of temperature changes at high northern latitudes, controlled the frequency and intensity of aeolian activity in Central Asia. Cooling at high northern latitudes would have significantly enhanced the Siberian High, causing its position to shift southward. Subsequently, the incursion of cold air masses from high northern latitudes resulted in stronger wind regimes and increased dust emissions from the southern Gurbantunggut Desert. It is possible that aeolian activity may be weakened in Central Asia under future global warming scenarios, but the impact of human activities on this region must also be considered.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?
Journal of Arid Land    2023, 15 (6): 667-694.   DOI: 10.1007/s40333-023-0014-7
Abstract65)   HTML31)    PDF(pc) (7273KB)(147)       Save

The effects of sand encroachment on composition, diversity, and functional patterns of vegetation in drylands are rarely studied, and yet addressing these aspects is important to deepen our understanding of the biodiversity conservation. This study aimed to investigate the effect of sand encroachment on plant functional biodiversity of desert pavements (gravel deserts) in the Sahara Desert of Algeria. Plants were sampled and analyzed in three desert pavements with different levels of sand encroachment (LSE) and quantity of aeolian deposits (low, LLSE; medium, MLSE; and high, HLSE). Within the sample-plot area (100 m2), density of every plant species was identified and total vegetation cover was determined. Plant taxonomic and functional diversity were analyzed and compared between LSE. Result showed that 19 plant species in desert pavements were classified into 18 genera and 13 families. Asteraceae and Poaceae were the most important families. The species Anabasis articulata (Forssk) Moq. characterized LLSE desert pavements with 11 species, whereas Thymelaea microphylla Coss. & Durieu ex Meisn. and Calobota saharae (C&D) Boatwr. & van Wyk were dominant species of desert pavements with MLSE (14 species) and HLSE (10 species), respectively. The highest values of species richness and biodiversity were recorded in desert pavements with MLSE, while low values of these ecological parameters were obtained in desert pavements with HLSE. Desert pavements with LLSE were characterized with the highest values of species abundances. Plant communities were dominated by chamaephytes, anemochorous, arido-active, and competitive stress-tolerant plants. The increase in LSE along the gradient from LLSE to HLSE induced significant changes in plant community variables including decreases in plant density, plant rarity, lifeform composition, morphological type, and aridity adaptation. Desert pavements with HLSE favor the degradation of vegetation and trigger biodiversity erosion.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Parkland trees on smallholder farms ameliorate soil physical-chemical properties in the semi-arid area of Tigray, Ethiopia
Selam LJALEM, Emiru BIRHANE, Kassa TEKA, Daniel H BERHE
Journal of Arid Land    2024, 16 (1): 1-13.   DOI: 10.1007/s40333-024-0002-6
Abstract63)   HTML6)    PDF(pc) (583KB)(175)       Save

Proposed agroforestry options should begin with the species that farmers are most familiar with, which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions. The African birch (Anogeissus leiocarpa (DC.) Guill. & Perr.) and pink jacaranda (Stereospermum kunthianum Cham.) trees are the dominant species in the agroforestry parkland system in the drylands of Tigray, Ethiopia. Smallholder farmers highly value these trees for their multifunctional uses including timber, firewood, charcoal, medicine, etc. These trees also could improve soil fertility. However, the amount of soil physical and chemical properties enhanced by the two species must be determined to maintain the sustainable conservation of the species in the parklands and to scale up to similar agro- ecological systems. Hence, we selected twelve isolated trees, six from each species that had similar dendrometric characteristics and were growing in similar environmental conditions. We divided the canopy cover of each tree into three radial distances: mid-canopy, canopy edge, and canopy gap (control). At each distance, we took soil samples from three different depths. We collected 216 soil samples (half disturbed and the other half undisturbed) from each canopy position and soil depth. Bulk density (BD), soil moisture content (SMC), soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP), available potassium (AK), pH, electrical conductivity (EC), and cation exchange capacity (CEC) were analysed. Results revealed that soil physical and chemical properties significantly improved except for soil texture and EC under both species, CEC under A. leiocarpus, and soil pH under S. kunthianum, all the studied soils were improved under both species canopy as compared with canopy gap. SMC, TN, AP, and AK under canopy of these trees were respectively 24.1%, 11.1%, 55.0%, and 9.3% higher than those soils under control. The two parkland agroforestry species significantly enhanced soil fertility near the canopy of topsoil through improving soil physical and chemical properties. These two species were recommended in the drylands with similar agro-ecological systems.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021
QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo
Journal of Arid Land    2023, 15 (9): 1037-1051.   DOI: 10.1007/s40333-023-0067-7
Abstract62)   HTML6)    PDF(pc) (3298KB)(184)       Save

Groundwater overexploitation is a serious problem in the Turpan Basin, Xinjiang Uygur Autonomous Region of China, causing groundwater level declines and ecological and environmental problems such as the desiccation of karez wells and the shrinkage of lakes. Based on historical groundwater data and field survey data from 1959 to 2021, we comprehensively studied the evolution of groundwater recharge and discharge terms in the Turpan Basin using the groundwater equilibrium method, mathematical statistics, and GIS spatial analysis. The reasons for groundwater overexploitation were also discussed. The results indicated that groundwater recharge increased from 14.58×108 m3 in 1959 to 15.69×108 m3 in 1980, then continued to decrease to 6.77×108 m3 in 2021. Groundwater discharge increased from 14.49×108 m3 in 1959 to 16.02×108 m3 in 1989, while continued to decrease to 9.97×108 m3 in 2021. Since 1980, groundwater recharge-discharge balance has been broken, the decrease rate of groundwater recharge exceeded that of groundwater discharge and groundwater recharge was always lower than groundwater discharge, showing in a negative equilibrium, which caused the continuous decrease in groundwater level in the Turpan Basin. From 1980 to 2002, groundwater overexploitation increased rapidly, peaking from 2003 to 2011 with an average overexploitation rate of 4.79×108 m3/a; then, it slowed slightly from 2012 to 2021, and the cumulative groundwater overexploitation was 99.21×108 m3 during 1980-2021. This research can provide a scientific foundation for the restoration and sustainable use of groundwater in the overexploited areas of the Turpan Basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels
Journal of Arid Land    2023, 15 (8): 975-988.   DOI: 10.1007/s40333-023-0022-7
Abstract61)   HTML7)    PDF(pc) (901KB)(378)       Save

Opuntia ficus-indica (L.) Miller is a CAM (crassulacean acid metabolism) plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO2 at nighttime, store a significant amount of water in cladodes, and reduce root growth. Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi (AMF) to adapt to drought stress. Water stress can limit plant growth and biomass production, which can be rehabilitated by AMF association through improved physiological performance. The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass, photosynthesis, and water use efficiency of the spiny and spineless O. ficus-indica. The experiment was conducted in a greenhouse with a full factorial experiment using O. ficus-indica type (spiny or spineless), AMF (presence or absence), and four soil water available (SWA) treatments through seven replications. Water treatments applied were 0%-25% SWA (T1), 25%-50% SWA (T2), 50%-75% SWA (T3), and 75%-100% SWA (T4). Drought stress reduced biomass and cladode growth, while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O. ficus-indica. AMF presence significantly increased biomass of both O. ficus-indica plant types through improved growth, photosynthetic water use efficiency, and photosynthesis. The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency. Net photosynthesis, photosynthetic water use efficiency, transpiration, and stomatal conductance rate significantly decreased with increased drought stress. Under drought stress, some planted mother cladodes with the absence of AMF have not established daughter cladodes, whereas AMF-inoculated mother cladodes fully established daughter cladodes. AMF root colonization significantly increased with the decrease of SWA. AMF caused an increase in biomass production, increased tolerance to drought stress, and improved photosynthesis and water use efficiency performance of O. ficus-indica. The potential of O. ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Assessment of runoff changes in the sub-basin of the upper reaches of the Yangtze River basin, China based on multiple methods
WANG Xingbo, ZHANG Shuanghu, TIAN Yiman
Journal of Arid Land    2024, 16 (4): 461-482.   DOI: 10.1007/s40333-024-0010-6
Abstract59)   HTML12)    PDF(pc) (3663KB)(133)       Save

Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity. This study considered six sub-basins in the upper reaches of the Yangtze River basin, China, to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956-2020. Linear regression, Mann-Kendall test, and sliding t-test were used to study the trend of the hydrometeorological elements, while cumulative distance level and ordered clustering methods were applied to identify mutation points. The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods, i.e., the rainfall-runoff relationship method, slope variation method, and variable infiltration capacity (Budyko) hypothesis method. Then, the availability and stability of the three methods were compared. The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020, with an abrupt change in 1985. For attribution analysis, the runoff series could be divided into two phases, i.e., 1961-1985 (baseline period) and 1986-2020 (changing period); and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods, while the slope variation and Budyko hypothesis methods had highly consistent results. Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin. Moreover, human disturbance was the main factor that contributed to the runoff changes, accounting for 53.0%-82.0%; and the contribution of climate factors to the runoff change was 17.0%-47.0%, making it the secondary factor, in which precipitation was the most representative climate factor. These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau, China
SUN Lin, YU Zhouchang, TIAN Xingfang, ZHANG Ying, SHI Jiayi, FU Rong, LIANG Yujie, ZHANG Wei
Journal of Arid Land    2023, 15 (9): 1107-1128.   DOI: 10.1007/s40333-023-0025-4
Abstract56)   HTML6)    PDF(pc) (1962KB)(126)       Save

Leguminosae are an important part of terrestrial ecosystems and play a key role in promoting soil nutrient cycling and improving soil properties. However, plant composition and species diversity change rapidly during the process of succession, the effect of leguminosae on soil physical-chemical and biological properties is still unclear. This study investigated the changes in the composition of plant community, vegetation characteristics, soil physical-chemical properties, and soil biological properties on five former farmlands in China, which had been abandoned for 0, 5, 10, 18, and 30 a. Results showed that, with successional time, plant community developed from annual plants to perennial plants, the importance of Leguminosae and Asteraceae significantly increased and decreased, respectively, and the importance of grass increased and then decreased, having a maximum value after 5 a of abandonment. Plant diversity indices increased with successional time, and vegetation coverage and above- and below-ground biomass increased significantly with successional time after 5 a of abandonment. Compared with farmland, 30 a of abandonment significantly increased soil nutrient content, but total and available phosphorus decreased with successional time. Changes in plant community composition and vegetation characteristics not only change soil properties and improve soil physical-chemical properties, but also regulate soil biological activity, thus affecting soil nutrient cycling. Among these, Leguminosae have the greatest influence on soil properties, and their importance values and community composition are significantly correlated with soil properties. Therefore, this research provides more scientific guidance for selecting plant species to stabilize soil ecosystem of farmland to grassland in the Loess Plateau, China.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem
Journal of Arid Land    2023, 15 (7): 779-796.   DOI: 10.1007/s40333-023-0020-9
Abstract55)   HTML442)    PDF(pc) (23771KB)(76)       Save

Since there are some signs of land degradation and desertification showing how soil sustainability is threatened, it is crucial to create a soil quality index (SQI) model in the semi-arid Çorum Basin, situated between the Black Sea and Anatolia Region, Central Turkey. The primary aims of the study are: (1) to determine SQI values of the micro-basin in terms of land degradation and desertification. Moreover, the best-worst method (BWM) was used to determine the weighting score for each parameter; (2) to produce the soils' spatial distribution by utilizing different geostatistical models and GIS (geographic information system) techniques; and (3) to validate the obtained SQI values with biomass reflectance values. Therefore, the relationship of RE-OSAVI (red-edge optimized soil-adjusted vegetation index) and NDVI (normalized difference vegetation index) generated from Sentinel-2A satellite images at different time series with soil quality was examined. Results showed that SQI values were high in the areas that had almost a flat and slight slope. Moreover, the areas with high clay content and thick soil depth did not have salinity problems, and were generally distributed in the middle parts of the basin. However, the areas with a high slope, poor vegetation, high sand content, and low water holding capacity had low SQI values. Furthermore, a statistically high positive correlation of RE-OSAVI and NDVI indices with soil quality was found, and NDVI had the highest correlative value for June (R2=0.802) compared with RE-OSAVI.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Remote sensing monitoring of the recent rapid increase in cultivation activities and its effects on desertification in the Mu Us Desert, China
ZHAO Hongyan, YAN Changzhen, LI Sen, WANG Yahui
Journal of Arid Land    2023, 15 (7): 812-826.   DOI: 10.1007/s40333-023-0061-0
Abstract55)   HTML8)    PDF(pc) (12402KB)(85)       Save

The recent ecological improvement in the Mu Us Desert of China, largely attributed to large-scale afforestation projects, has created new opportunities for cultivation activities. However, the subsequent rapid increase in reclamation on desertification land and its impact on desertification have raised concerns. In this study, we first extracted data on cultivated land and desertification land in 1975, 1990, 2000, 2005, 2010, 2015, and 2020 through the human-computer interaction visual interpretation method. By overlaying the cultivated land dynamics and desertification land, we subsequently explored the effect of cultivation activities on desertification in the Mu Us Desert during the six periods from 1975 to 2020 (1975-1990, 1990-2000, 2000-2005, 2005-2010, 2010-2015, and 2015-2020). The results showed that cultivated land in the Mu Us Desert showed a fluctuating and increasing trend from 3769.26 km2 in 1975 to 4865.73 km2 in 2020, with 2010 as the turning point for the recent rapid increase. The main contributors included the large and regular patches distributed in Yuyang District and Shenmu of Shaanxi Province, and relatively smaller patches concentrated in Inner Mongolia Autonomous Region. The increased cultivated land from the reclamation on desertification land was dominated by moderate and severe desertification lands, and the decreased cultivated land that was transferred into desertification land as abandoned cultivated land was dominated by slight and moderate desertification lands. The effect of cultivation activities on desertification reversal (average area proportion of 10.61% for reversed desertification land) was greater than that of the development of desertification (average area proportion of 5.82% for developed desertification land). Nevertheless, compared to reversed desertification land, both the significant increase of developed desertification land during the periods of 2000-2005 and 2005-2010 and the insignificant decrease during the periods of 2005-2010, 2010-2015, and 2015-2020 implied a potential remobilization risk. Therefore, this study provides a significant theoretical reference for the formulation of ecological restoration projects and regional macroeconomic development policies by considering the influence of cultivation activities, to ensure the overall environmental stability and sustainability in desertification land where reclamation and abandonment activities have taken place.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Saxicolous lichen communities in three basins associated with mining activity in northwestern Argentina
Journal of Arid Land    2023, 15 (8): 989-1005.   DOI: 10.1007/s40333-023-0024-5
Abstract54)   HTML6)    PDF(pc) (1362KB)(94)       Save

Mining activity affects the vegetation and soils of the ecosystems. However, the effects of mining activity on saxicolous lichen communities are less concerned. Thus, the aim of this study was to characterize saxicolous lichen communities in three basins (Vis-Vis River basin, Poteros River basin, and Capillitas River basin) surrounding metalliferous mining projects of different types of operation and at different stages of exploitation. A large-scale mine (Bajo de la Alumbrera) with more than 25 a of open-pit mining located in the Vis-Vis River basin (CRV). A pre-exploitation mine (Agua Rica) located in the Poteros River basin (CRP), and a small-scale mine (Minas Capillitas) with more than 160 a of underground mining located in the Capillitas River basin (CAC). In each basin, species richness, cover, and frequency of lichen communities were measured on 40 rock outcrops. Also, explanatory variables were recorded, i.e., altitude, slope, aspect, vegetation cover, rock, and soil cover around the rocky area sampled. Richness and total cover of lichen communities were analysed using linear models, and species composition was explored using multivariate ordination analysis. Results showed that a total of 118 lichen species were identified. The species richness differed among basins and the lichen composition present in areas close to mining sites responded mainly to basins, altitude, and microsite variables. The lichen cover showed no difference among basins, but it changed under different rock and vegetation cover. It was not possible to quantify the effects of mining activity on species richness and composition. However, the low richness values found in the downstream of Minera Alumbrera could be associated with the negative impact of open-pit mining. Moreover, the effects of large-scale mining activity on lichen communities needs more investigation.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Correlation analysis between the Aral Sea shrinkage and the Amu Darya River
WANG Min, CHEN Xi, CAO Liangzhong, KURBAN Alishir, SHI Haiyang, WU Nannan, EZIZ Anwar, YUAN Xiuliang, Philippe DE MAEYER
Journal of Arid Land    2023, 15 (7): 757-778.   DOI: 10.1007/s40333-023-0062-z
Abstract53)   HTML404)    PDF(pc) (1917KB)(342)       Save

The shrinkage of the Aral Sea, which is closely related to the Amu Darya River, strongly affects the sustainability of the local natural ecosystem, agricultural production, and human well-being. In this study, we used the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) model to detect the historical change points in the variation of the Aral Sea and the Amu Darya River and analyse the causes of the Aral Sea shrinkage during the 1950-2016 period. Further, we applied multifractal detrend cross-correlation analysis (MF-DCCA) and quantitative analysis to investigate the responses of the Aral Sea to the runoff in the Amu Darya River, which is the main source of recharge to the Aral Sea. Our results showed that two significant trend change points in the water volume change of the Aral Sea occurred, in 1961 and 1974. Before 1961, the water volume in the Aral Sea was stable, after which it began to shrink, with a shrinkage rate fluctuating around 15.21 km3/a. After 1974, the water volume of the Aral Sea decreased substantially at a rate of up to 48.97 km3/a, which was the highest value recorded in this study. In addition, although the response of the Aral Sea's water volume to its recharge runoff demonstrated a complex non-linear relationship, the replenishment of the Aral Sea by the runoff in the lower reaches of the Amu Darya River was identified as the dominant factor affecting the Aral Sea shrinkage. Based on the scenario analyses, we concluded that it is possible to slow down the retreat of the Aral Sea and restore its ecosystem by increasing the efficiency of agricultural water use, decreasing agricultural water use in the middle and lower reaches, reducing ineffective evaporation from reservoirs and wetlands, and increasing the water coming from the lower reaches of the Amu Darya River to the 1961-1973 level. These measures would maintain and stabilise the water area and water volume of the Aral Sea in a state of ecological restoration. Therefore, this study focuses on how human consumption of recharge runoff affects the Aral Sea and provides scientific perspective on its ecological conservation and sustainable development.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index
ZHAO Lili, LI Lusheng, LI Yanbin, ZHONG Huayu, ZHANG Fang, ZHU Junzhen, DING Yibo
Journal of Arid Land    2023, 15 (12): 1421-1438.   DOI: 10.1007/s40333-023-0072-x
Abstract53)   HTML16)    PDF(pc) (7579KB)(64)       Save

The effect of global climate change on vegetation growth is variable. Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation, and even regional protection of ecological environments. In this study, we constructed a new drought index (i.e., Vegetation Drought Condition Index (VDCI)) based on precipitation, potential evapotranspiration, soil moisture and Normalized Difference Vegetation Index (NDVI) data, to monitor vegetation drought in the nine major river basins (including the Songhua River and Liaohe River Basin, Haihe River Basin, Yellow River Basin, Huaihe River Basin, Yangtze River Basin, Southeast River Basin, Pearl River Basin, Southwest River Basin and Continental River Basin) in China at 1-month-12-month (T1-T12) time scales. We used the Pearson's correlation coefficients to assess the relationships between the drought indices (the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Soil Moisture Index (SSMI) and Self-calibrating Palmer Drought Severity Index (scPDSI)) and the NDVI at T1-T12 time scales, and to estimate and compare the lag times of vegetation response to drought among different drought indices. The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1-T6 time scales. Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales. Potential evapotranspiration shows a higher degree of positive influence on vegetation, and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins. The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin, Haihe River Basin, Yellow River Basin, Huaihe River Basin and Yangtze River Basin at T1-T4 time scales. In general, the VDCI is more sensitive (with shorter lag time of vegetation response to drought) than the traditional drought indices (SPEI, scPDSI and SSMI) in monitoring vegetation drought, and thus it could be applied to monitor short-term vegetation drought. The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate, and can be applied in other fields of vegetation drought monitoring with complex mechanisms.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model
CAO Yijie, MA Yonggang, BAO Anming, CHANG Cun, LIU Tie
Journal of Arid Land    2023, 15 (12): 1455-1473.   DOI: 10.1007/s40333-023-0074-8
Abstract52)   HTML10)    PDF(pc) (7283KB)(110)       Save

The Ili River Delta (IRD) is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia. In this study, we selected the IRD as a typical research area, and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020, and investigated the main driving factors (precipitation, potential evapotranspiration, land use/land cover change, and inflow from the Ili River) of the water conservation variation based on the linear regression, piecewise linear regression, and Pearson's correlation coefficient analyses. The results indicated that from 1975 to 2020, the water yield and water conservation in the IRD showed a decreasing trend, and the spatial distribution pattern was "high in the east and low in the west"; overall, the water conservation of all land use types decreased slightly. The water conservation volume of grassland was the most reduced, although the area of grassland increased owing to the increased inflow from the Ili River. At the same time, the increased inflow has led to the expansion of wetland areas, the improvement of vegetation growth, and the increase of regional evapotranspiration, thus resulting in an overall reduction in the water conservation. The water conservation depth and precipitation had similar spatial distribution patterns; the change in climate factors was the main reason for the decline in the water conservation function in the delta. The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash, promoted vegetation restoration, and had a positive effect on the water conservation; however, this positive effect cannot offset the negative effect of enhanced evapotranspiration. These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Ecological problems and ecological restoration zoning of the Aral Sea
BAO Anming, YU Tao, XU Wenqiang, LEI Jiaqiang, JIAPAER Guli, CHEN Xi, Tojibaev KOMILJON, Shomurodov KHABIBULLO, Xabibullaev B SAGIDULLAEVICH, Idirisov KAMALATDIN
Journal of Arid Land    2024, 16 (3): 315-330.   DOI: 10.1007/s40333-024-0055-6
Abstract47)   HTML2)    PDF(pc) (1853KB)(153)       Save

The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Aral Sea have attracted widespread attention, and the alleviation of the Aral Sea ecological crisis has reached a consensus among the five Central Asian countries (Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan, and Turkmenistan). In the past decades, many ecological management measures have been implemented for the ecological restoration of the Aral Sea. However, due to the lack of regional planning and zoning, the results are not ideal. In this study, we mapped the ecological zoning of the Aral Sea from the perspective of ecological restoration based on soil type, soil salinity, surface water, groundwater table, Normalized Difference Vegetation Index (NDVI), land cover, and aerosol optical depth (AOD) data. Soil salinization and salt dust are the most prominent ecological problems in the Aral Sea. We divided the Aral Sea into 7 first-level ecological restoration subregions (North Aral Sea catchment area in the downstream of the Syr Darya River (Subregion I); artificial flood overflow area in the downstream of the Aral Sea (Subregion II); physical/chemical remediation area of the salt dust source area in the eastern part of the South Aral Sea (Subregion III); physical/chemical remediation area of severe salinization in the central part of the South Aral Sea (Subregion IV); existing water surface and potential restoration area of the South Aral Sea (Subregion V); Aral Sea vegetation natural recovery area (Subregion VI); and vegetation planting area with slight salinization in the South Aral Sea (Subregion VII)) and 14 second-level ecological restoration subregions according to the ecological zoning principles. Implementable measures are proposed for each ecological restoration subregion. For Subregion I and Subregion II with lower elevations, artificial flooding should be carried out to restore the surface of the Aral Sea. Subregion III and Subregion IV have severe salinization, making it difficult for vegetation to grow. In these subregions, it is recommended to cover and pave the areas with green biomatrix coverings and environmentally sustainable bonding materials. In Subregion V located in the central and western parts of the South Aral Sea, surface water recharge should be increased to ensure that this subregion can maintain normal water levels. In Subregion VI and Subregion VII where natural conditions are suitable for vegetation growth, measures such as afforestation and buffer zones should be implemented to protect vegetation. This study could provide a reference basis for future comprehensive ecological management and restoration of the Aral Sea.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Environmental significance and hydrochemical characteristics of rivers in the western region of the Altay Mountains, China
LIU Shuangshuang, WANG Feiteng, XU Chunhai, WANG Lin, LI Huilin
Journal of Arid Land    2023, 15 (9): 1052-1066.   DOI: 10.1007/s40333-023-0106-4
Abstract47)   HTML13)    PDF(pc) (2120KB)(333)       Save

Analysis of environmental significance and hydrochemical characteristics of river water in mountainous regions is vital for ensuring water security. In this study, we collected a total of 164 water samples in the western region of the Altay Mountains, China, in 2021. We used principal component analysis and enrichment factor analysis to examine the chemical properties and spatiotemporal variations of major ions (including F-, Cl-, NO3-, SO42-, Li+, Na+, NH4+, K+, Mg2+, and Ca2+) present in river water, as well as to identify the factors influencing these variations. Additionally, we assessed the suitability of river water for drinking and irrigation purposes based on the total dissolved solids, soluble sodium percentage, sodium adsorption ratio, and total hardness. Results revealed that river water had an alkaline aquatic environment with a mean pH value of 8.00. The mean ion concentration was ranked as follows: Ca2+>SO42->Na+>NO3->Mg2+>K+>Cl->F->NH4+>Li+. Ca2+, SO42-, Na+, and NO3- occupied 83% of the total ion concentration. In addition, compared with other seasons, the spatial variation of the ion concentration in spring was obvious. An analysis of the sources of major ions revealed that these ions originated mainly from carbonate dissolution and silicate weathering. The recharge impact of precipitation and snowmelt merely influenced the concentration of Cl-, NO3-, SO42-, Ca2+, and Na+. Overall, river water was in pristine condition in terms of quality and was suitable for both irrigation and drinking. This study provides a scientific basis for sustainable management of water quality in rivers of the Altay Mountains.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal variations in ecological quality of Otindag Sandy Land based on a new modified remote sensing ecological index
ZHAO Xiaohan, HAN Dianchen, LU Qi, LI Yunpeng, ZHANG Fangmin
Journal of Arid Land    2023, 15 (8): 920-939.   DOI: 10.1007/s40333-023-0065-9
Abstract46)   HTML7)    PDF(pc) (3224KB)(190)       Save

Otindag Sandy Land in China is an important ecological barrier to Beijing; the changes in its ecological quality are major concerns for sustainable development and planning of this area. Based on principal component analysis and path analysis, we first generated a modified remote sensing ecological index (MRSEI) coupled with satellite and ground observational data during 2001-2020 that integrated four local indicators (greenness, wetness, and heatness that reflect vegetation status, water, and heat conditions, respectively, as well as soil erosion). Then, we assessed the ecological quality in Otindag Sandy Land during 2001-2020 based on the MRSEI at different time scales (i.e., the whole year, growing season, and non-growing season). MRSEI generally increased with an upward rate of 0.006/a during 2001-2020, with clear seasonal and spatial variations. Ecological quality was significantly improved in most regions of Otindag Sandy Land but degraded in the southern part. Regions with ecological degradation expanded to 18.64% of the total area in the non-growing season. The area with the worst grade of MRSEI shrunk by 15.83% of the total area from 2001 to 2020, while the area with the best grade of MRSEI increased by 9.77% of the total area. The temporal heterogeneity of ecological conditions indicated that the improvement process of ecological quality in the growing season may be interrupted or deteriorated in the following non-growing season. The implementation of ecological restoration measures in Otindag Sandy Land should not ignore the seasonal characteristics and spatial heterogeneity of local ecological quality. The results can explore the effectiveness of ecological restoration and provide scientific guides on sustainable development measures for drylands.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Dividing the transit wind speeds into intervals as a favorable methodology for analyzing the relationship between wind speed and the aerodynamic impedance of vegetation in semiarid grasslands
LI Ruishen, PEI Haifeng, ZHANG Shengwei, LI Fengming, LIN Xi, WANG Shuai, YANG Lin
Journal of Arid Land    2023, 15 (8): 887-900.   DOI: 10.1007/s40333-023-0102-8
Abstract45)   HTML589)    PDF(pc) (2378KB)(317)       Save

In grassland ecosystems, the aerodynamic roughness (Z0) and frictional wind speed (u*) contribute to the aerodynamic impedance of the grassland canopy. Thus, they are often used in the studies of wind erosion and evapotranspiration. However, the effect of wind speed and grazing measures on the aerodynamic impedance of the grassland canopy has received less analysis. In this study, we monitored wind speeds at multiple heights in grazed and grazing-prohibited grasslands for 1 month in 2021, determined the transit wind speed at 2.0 m height by comparing wind speed differences at the same height in both grasslands, and divided these transit wind speeds at intervals of 2.0 m/s to analyze the effect of the transit wind speed on the relationship among Z0, u*, and wind speed within the grassland canopy. The results showed that dividing the transit wind speeds into intervals has a positive effect on the logarithmic fit of the wind speed profile. After dividing the transit wind speeds into intervals, the wind speed at 0.1 m height (V0.1) gradually decreased with the increase of Z0, exhibiting three distinct stages: a sharp change zone, a steady change zone, and a flat zone; while the overall trend of u* increased first and then decreased with the increase of V0.1. Dividing the transit wind speeds into intervals improved the fitting relationship between Z0 and V0.1 and changed their fitting functions in grazed and grazing-prohibited grasslands. According to the computational fluid dynamic results, we found that the number of tall-stature plants has a more significant effect on windproof capacity than their height. The results of this study contribute to a better understanding of the relationship between wind speed and the aerodynamic impedance of vegetation in grassland environments.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Characteristics of snow cover distribution along railway subgrade and the protective effect of snow fences
LEI Jia, CHENG Jianjun, GAO Li, MA Benteng, AN Yuanfeng, DONG Hongguang
Journal of Arid Land    2023, 15 (8): 901-919.   DOI: 10.1007/s40333-023-0105-5
Abstract43)   HTML548)    PDF(pc) (2863KB)(167)       Save

Railways built in cold, snowy, and lightly populated areas are subjected to wind and snow disasters. In this study, we selected a snow hazard prevention and control section of the Altay-Zhundong Railway in Xinjiang Uygur Autonomous Region of China as the research object. We investigated the deposited snowfall variation characteristics on the two sides and in the embankment pavement area of snow fences with different porosities, fence heights, and arrangement distances using single-factor tests and orthogonal tests based on global atmospheric reanalysis climate data, field survey data, and a multi-phase flow analysis model. The results showed significant differences in the characteristics of snow cover distribution and snow cover thickness between the embankment and the cutting in the absence of snow protection measures. The maximum snow cover thickness of the embankment pavement decreased by 12.6% relative to the cutting pavement. The snow cover thickness of the embankment exhibited an increasing trend from windward shoulder to leeward shoulder, whereas the snow cover thickness of the cutting presented a declining trend from windward shoulder to leeward toe. In the collaborative prevention and control of snow fences and embankments, the three factors can be ranked in terms of their sensitivity to deposited snowfall within the influence scope of snow fences as follows: fence height>arrangement distance>porosity. At the same time, fence height yielded a significant relationship for the influence scope of snow fences (P<0.05). The three factors can also be ranked in terms of their sensitivity to deposited snowfall on the pavement as follows: porosity>fence height>arrangement distance. For the embankment protection of the Altay-Zhundong Railway against wind and snow, snow fence with a porosity of 75%, a fence height of 4.8 m, and an arrangement distance from the embankment of 60 m produced the best snow control effect. By revealing the characteristics of snow cover distribution along railway subgrade and the protective effect of snow fences, this study provides valuable references for the engineering applications of railway construction in areas prone to wind and snow disasters.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau
KOU Zhaoyang, LI Chunyue, CHANG Shun, MIAO Yu, ZHANG Wenting, LI Qianxue, DANG Tinghui, WANG Yi
Journal of Arid Land    2023, 15 (8): 960-974.   DOI: 10.1007/s40333-023-0023-6
Abstract43)   HTML6)    PDF(pc) (756KB)(312)       Save

Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs. The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements, namely nitrogen (N) and phosphorus (P). Nevertheless, the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood. Therefore, we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment. Nine fertilization treatments with complete interactions of high, medium, and low N and P gradients were set up. Soil physical and chemical properties, along with the microbial community structure were measured in this study. Additionally, relevant ecological processes such as microbial biomass, respiration, N mineralization, and enzyme activity were quantified. To elucidate the relationships between these variables, we examined correlation-mediated processes using statistical techniques, including redundancy analysis (RDA) and structural equation modeling (SEM). The results showed that the addition of N alone had a detrimental effect on soil microbial biomass, mineralized N accumulation, and β-1,4-glucosidase activity. Conversely, the addition of P exhibited an opposing effect, leading to positive influences on these soil parameters. The interactive addition of N and P significantly changed the microbial community structure, increasing microbial activity (microbial biomass and soil respiration), but decreasing the accumulation of mineralized N. Among them, N24P12 treatment showed the greatest increase in the soil nutrient content and respiration. N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid (PLFA) content by 70.93%. N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes. Soil microbial biomass, respiration, and overall enzyme activity are driven by mineralized N. Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Long-term light grazing does not change soil organic carbon stability and stock in biocrust layer in the hilly regions of drylands
MA Xinxin, ZHAO Yunge, YANG Kai, MING Jiao, QIAO Yu, XU Mingxiang, PAN Xinghui
Journal of Arid Land    2023, 15 (8): 940-959.   DOI: 10.1007/s40333-023-0064-x
Abstract40)   HTML4)    PDF(pc) (2465KB)(264)       Save

Livestock grazing is the most extensive land use in global drylands and one of the most extensive stressors of biological soil crusts (biocrusts). Despite widespread concern about the importance of biocrusts for global carbon (C) cycling, little is known about whether and how long-term grazing alters soil organic carbon (SOC) stability and stock in the biocrust layer. To assess the responses of SOC stability and stock in the biocrust layer to grazing, from June to September 2020, we carried out a large scale field survey in the restored grasslands under long-term grazing with different grazing intensities (represented by the number of goat dung per square meter) and in the grasslands strictly excluded from grazing in four regions (Dingbian County, Shenmu City, Guyuan City and Ansai District) along precipitation gradient in the hilly Loess Plateau, China. In total, 51 representative grassland sites were identified as the study sampling sites in this study, including 11 sites in Guyuan City, 16 sites in Dingbian County, 15 sites in Shenmu City and 9 sites in Ansai District. Combined with extensive laboratory analysis and statistical analysis, at each sampling site, we obtained data on biocrust attributes (cover, community structure, biomass and thickness), soil physical-chemical properties (soil porosity and soil carbon-to-nitrogen ratio (C/N ratio)), and environmental factors (mean annual precipitation, mean annual temperature, altitude, plant cover, litter cover, soil particle-size distribution (the ratio of soil clay and silt content to sand content)), SOC stability index (SI) and SOC stock (SOCS) in the biocrust layer, to conduct this study. Our results revealed that grazing did not change total biocrust cover but markedly altered biocrust community structure by reducing plant cover, with a considerable increase in the relative cover of cyanobacteria (23.1%) while a decrease in the relative cover of mosses (42.2%). Soil porosity and soil C/N ratio in the biocrust layer under grazing decreased significantly by 4.1%-7.2% and 7.2%-13.3%, respectively, compared with those under grazing exclusion. The shifted biocrust community structure ultimately resulted in an average reduction of 15.5% in SOCS in the biocrust layer under grazing. However, compared with higher grazing (intensity of more than 10.00 goat dung/m2), light grazing (intensity of 0.00-10.00 goat dung/m2 or approximately 1.20-2.60 goat/(hm2·a)) had no adverse effect on SOCS. SOC stability in the biocrust layer remained unchanged under long-term grazing due to the offset between the positive effect of the decreased soil porosity and the negative effect of the decreased soil C/N ratio on the SOC resistance to decomposition. Mean annual precipitation and soil particle-size distribution also regulated SOC stability indirectly by influencing soil porosity through plant cover and biocrust community structure. These findings suggest that proper grazing might not increase the CO2 release potential or adversely affect SOCS in the biocrust layer. This research provides some guidance for proper grazing management in the sustainable utilization of grassland resources and C sequestration in biocrusts in the hilly regions of drylands.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Effects of drought treatment on photosystem II activity in the ephemeral plant Erodium oxyrhinchum
CHEN Yingying, LIN Yajun, ZHOU Xiaobing, ZHANG Jing, YANG Chunhong, ZHANG Yuanming
Journal of Arid Land    2023, 15 (6): 724-739.   DOI: 10.1007/s40333-023-0058-8
Abstract40)   HTML4)    PDF(pc) (2233KB)(90)       Save

Drought is a critical limiting factor affecting the growth and development of plants in arid and semi-arid areas. Photosynthesis, one of the most important physiological processes of plants, can be significantly inhibited by drought. Photosystem II (PSII) is considered the main attack target when photosynthesis is affected by drought. To clarify how PSII components of the ephemeral plant Erodium oxyrhinchum (grown in the Gurbantunggut Desert, China) respond to drought treatment, we evaluated the functional activity of PSII by determining chlorophyll fluorescence and gas exchange parameters under different drought treatment levels (control (400 mL), moderate drought (200 mL), and severe drought (100 mL)). Under moderate drought treatment, significant decreases were found in net photosynthetic rate (Pn), effective quantum yield of PSII (Y(II)), relative electron transfer rate of PSII (rETR(II)), oxygen-releasing complex, probability of an absorbed exciton moving an electron into the electron transport chain beyond primary quinone receptor QA- (Φ(Eo)), probability of a trapped exciton moving an electron into the electron transport chain beyond primary quinone receptor QA- (ψ(Eo)), and performance index of PSII (PIabs). Compared to control treatment, marked increases were observed in water use efficiency (WUE), relative variable fluorescence at the J step (VJ), initial fluorescence (Fo), and dissipated energy per active reaction center (DIo/RC) under moderate drought treatment, but there were no substantial changes in semi-saturated light intensity (IK), active reaction centers per cross-section (RC/CS), and total performance index of PSII and PSI (PItotal, where PSI is the photosystem I). The changes of the above parameters under severe drought treatment were more significant than those under moderate drought treatment. In addition, severe drought treatment significantly increased the absorbed energy per active reaction center (ABS/RC) and trapping energy per active reaction center (TRo/RC) but decreased the energy transmission connectivity of PSII components, RC/CS, and PItotal, compared to moderate drought and control treatments. Principle component analysis (PCA) revealed similar information according to the grouping of parameters. Moderate drought treatment was obviously characterized by RC/CS parameter, and the values of Fo, VJ, ABS/RC, DIo/RC, and TRo/RC showed specific reactions to severe drought treatment. These results demonstrated that moderate drought treatment reduced the photochemical activity of PSII to a certain extent but E. oxyrhinchum still showed strong adaptation against drought treatment, while severe drought treatment seriously damaged the structure of PSII. The results of this study are useful for further understanding the adaptations of ephemeral plants to different water conditions and can provide a reference for the selection of relevant parameters for photosynthesis measurements of large samples in the field.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Integrating stable isotopes and factor analysis to delineate the groundwater provenance and pollution sources in the northwestern part of the Amman-Al Zarqa Basin, Jordan
Journal of Arid Land    2023, 15 (12): 1490-1509.   DOI: 10.1007/s40333-023-0112-6
Abstract40)   HTML6)    PDF(pc) (1347KB)(224)       Save

Globally, groundwater contamination by nitrate is one of the most widespread environmental problems, particularly in arid and semiarid areas, which are characterized by low amounts of rainfall and groundwater recharge. The stable isotope composition of groundwater (δ2H-H2O and δ18O-H2O) and dissolved nitrate (δ15N-NO3- and δ18O-NO3-) and factor analysis (FA) were applied to explore groundwater provenance, pollution, and chemistry evolution in the northwestern part of the Amman-Al Zarqa Basin, Jordan. In this study, we collected 23 samples from the Lower Ajloun aquifer in 2021, including 1 sample from a groundwater well and 22 samples from springs. These samples were tested for electrical conductivity, total dissolved solids, pH, temperature, dissolved oxygen, the concentration of major ions (Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO42-, and NO3-), and the stable isotope composition of groundwater and dissolved nitrate. The results revealed that groundwater in the study area is mainly Ca-Mg-HCO3 type and can be classified as fresh water, hard water, and very hard water. The range and average concentration of NO3- were 3.5-230.8 and 50.9 mg/L, respectively. Approximately 33% of the sampling points showed NO3- levels above the maximum allowable concentration of 50.0 mg/L set by the World Health Organization (WHO) guidelines for drinking water quality. The values of δ18O-H2O and δ2H-H2O showed that groundwater in the study area is part of the current water cycle, originating in the Mediterranean Sea, with significant evaporation, orographic, and amount effects. The values of the stable isotope composition of NO3- corresponded to δ15N-NO3- and δ18O-NO3- values produced by the nitrification process of manure or septic waste and soil NH4+. The FA performed on the hydrochemical parameters and isotope data resulted in three main factors, with Factor 1, Factor 2, and Factor 3, accounting for 50%, 21%, and 11% of the total variance, respectively. Factor 1 was considered human-induced factor, named "pollution factor", whereas Factor 2, named "conservative fingerprint factor", and Factor 3, named "hardness factor", were considered natural factors. This study will help local researchers manage groundwater sustainably in the study area and other similar arid and semiarid areas in the world.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Erratum to: Effects of dieback on the vegetative, chemical, and physiological status of mangrove forests, Iran
Vahid Farashi KAHNOUJ, Marzieh REZAI, Rasool MAHDAVI, Maryam MOSLEHI, Saeedeh ESKANDARI
Journal of Arid Land    2023, 15 (12): 1544-1544.   DOI: 10.1007/s40333-023-0038-z
Abstract40)   HTML1)    PDF(pc) (131KB)(112)       Save
Reference | Related Articles | Metrics | Comments0
Effects of degradation and species composition on soil seed density in the alpine grasslands, China
LI Chunming, MA Jiahui, LI Liangyu, HUANG Junlin, LU Jinhua, HUANG Mei, Allan DEGEN, SHANG Zhanhuan
Journal of Arid Land    2023, 15 (12): 1510-1528.   DOI: 10.1007/s40333-023-0036-1
Abstract39)   HTML9)    PDF(pc) (2096KB)(205)       Save

Grassland degradation can alter the structure and function of ecosystem and soil seed bank. Therefore, estimating the role of soil seed bank in vegetation regeneration of degraded grasslands is crucial. We selected grasslands with three levels of degradation, namely non-degraded (ND), mildly degraded (MD), and heavily degraded (HD) to analyze the effect of grassland degradation on soil seed bank, as well as the role of soil seed bank on vegetation regeneration of the alpine grasslands, China. Soil samples from each level were collected in May, before seedling emergence, in August, after completion of transient seed bank germination, and in December, after seed dispersal, to determine the seed density and species composition through germination experiment. Result showed that a total of 35 plant species was identified, including 15 species observed in both soil seed bank and above-ground vegetation. A total of 19, 15, and 14 species of soil seed bank were identified in December, May, and August, respectively. The most abundant species in soil seed bank were Compositae (5 species), followed by Poaceae (4 species), and Cyperaceae (3 species). Degradation level has no significant impact on species richness and Shannon- Wiener index of soil seed bank. In addition, sampling month and grassland degradation affected soil seed bank density, in which December>May>August, and ND>MD>HD, indicating that density of transient seed bank was greater than persistent seed bank. Soil seed bank density of surface layer (0-5 cm) accounting for 42%-72% of the total density, which was significantly higher than that of deep layer (5-10 cm). Similarity of species composition between vegetation and soil seed bank was low, and it increased with degradation level (ranged from 0.14 to 0.69). We concluded that grassland degradation affects soil seed bank density more than species diversity, and soil seed bank contributed slightly to vegetation regeneration of degraded alpine grassland. Therefore, it is unlikely that degraded alpine meadow can be restored solely through soil seed bank.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Estimation of aboveground biomass of arboreal species in the semi-arid region of Brazil using SAR (synthetic aperture radar) images
Janisson B de JESUS, Tatiana M KUPLICH, Íkaro D de C BARRETO, Fernando L HILLEBRAND, Cristiano N da ROSA
Journal of Arid Land    2023, 15 (6): 695-709.   DOI: 10.1007/s40333-023-0017-4
Abstract38)   HTML5)    PDF(pc) (2327KB)(157)       Save

The Caatinga biome is an important ecosystem in the semi-arid region of Brazil. It has significantly degraded due to human activities and is currently a region undergoing desertification. Thus, monitoring the variation in the Caatinga biome has become essential for its sustainable development. However, traditional methods for estimating aboveground biomass (AGB) are time-consuming and destructive. Remote sensing, such as optical and radar imaging, can estimate and correlate with vegetation. Nevertheless, radar imaging is still a novelty to be applied in estimating the AGB of this biome, which is an area with little research. Therefore, this study aimed to use Sentinel-1 images to estimate the AGB of the Caatinga biome in Sergipe State (northeastern Brazil) and to verify its influencing factors. Nineteen sample plots (30 m×30 m) were selected, and the stems of individuals with a circumference at breast height (1.3 m above the ground) equal to or greater than 6.0 cm were measured, and the AGB through an allometric equation was estimated. The Sentinel-1 images from 3 different periods (green, intermediate, and dry periods) were used to consider the phenological conditions of the Caatinga biome. All the pre-processing and extraction of attributes (co-polarized VV (vertical transmit and vertical receive), cross-polarized VH (vertical transmit and horizontal receive), and band ratio VH/VV backscatter, radar vegetation index, dual polarization synthetic aperture radar (SAR) vegetation index (DPSVI), entropy (H), and alpha angle (α)) were performed with Sentinel's Application Platform. These attributes were used to estimate the AGB through simple and multiple linear regressions and evaluated by the coefficients of determination (R2), correlation (r), and root mean squared error (RMSE). The results showed that the attributes individually had little ability to estimate the AGB of the Caatinga biome in the three periods. Combined with multiple regression, we found that the intermediate period presented the equation with the best results among the observed and estimated variables (R2=0.73; r=0.85; RMSE=8.33 Mg/hm2), followed by the greenness period (R2=0.72; r=0.85; RMSE=8.40 Mg/hm2). The attributes contributing to these equations were VH/VV, DPSVI, H, α, and co-polarized VV for the green period and cross-polarized VH for the intermediate period. The study showed that the Sentinel-1 images could be used to estimate the AGB of the Caatinga biome in the green and intermediate phenological periods since the SAR attributes highly correlated with the estimated variable (i.e., AGB) through multiple linear equations.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Nutrient resorption and its influencing factors of typical desert plants in different habitats on the northern margin of the Tarim Basin, China
ZHOU Chongpeng, GONG Lu, WU Xue, LUO Yan
Journal of Arid Land    2023, 15 (7): 858-870.   DOI: 10.1007/s40333-023-0104-6
Abstract38)   HTML7)    PDF(pc) (1318KB)(307)       Save

The resorption of nutrients from senescent leaves allows plants to conserve and recycle nutrients. To explore the adaptation strategies of desert plants to nutrient-limited environments, we selected four typical desert plants (Populus euphratica Oliv., Tamarix ramosissima Ledeb., Glycyrrhiza inflata Batal., and Alhagi camelorum Fisch.) growing in the desert area of the northern margin of the Tarim Basin, China. The contents of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and Ferrum (Fe) in the leaves of these four typical desert plants and their resorption characteristics were analyzed. The relationship of nutrient resorption efficiency with leaf functional traits and soil physical-chemical properties in two different habitats (saline-alkali land and sandy land) was discussed. The results showed that the four plants resorbed most of the elements. Ca was enriched in the leaves of P. euphratica, G. inflate, and A. camelorum; Mg was enriched in the leaves of G. inflata; and Fe was enriched in the leaves of the four plants. The results of the redundancy analysis showed that leaf thickness, soil electrical conductivity, and soil P content were the major factors affecting the nutrient resorption efficiency of the four plants. Leaf thickness was negatively correlated with N resorption efficiency (NRE), P resorption efficiency, and Fe resorption efficiency; soil electrical conductivity was positively correlated with the resorption efficiency of most elements; and soil P content was negatively correlated with the resorption efficiency of most elements in the plant leaves. The results showed that soil physical-chemical properties and soil nutrient contents had an important impact on the nutrient resorption of plant leaves. The same species growing in different habitats also differed in their resorption of different elements. The soil environment of plants and the biological characteristics of plant leaves affected the resorption of nutrient elements in different plants. The purpose of this study is to provide small-scale data support for the protection of ecosystems in nutrient-deficient areas by studying leaf functional strategies and nutrient conservation mechanisms of several typical desert plants.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Estimation and inter-comparison of infiltration models in the agricultural area of the Mitidja Plain, Algeria
Amina MAZIGHI, Hind MEDDI, Mohamed MEDDI, Ishak ABDI, Giovanni RAVAZZANI, Mouna FEKI
Journal of Arid Land    2023, 15 (12): 1474-1489.   DOI: 10.1007/s40333-023-0037-0
Abstract37)   HTML6)    PDF(pc) (2527KB)(232)       Save

Infiltration is an important part of the hydrological cycle, and it is one of the main abstractions accounted for in the rainfall-runoff modeling. The main purpose of this study is to compare the infiltration models that were used to assess the infiltration rate of the Mitidja Plain in Algeria. Field infiltration tests were conducted at 40 different sites using a double ring infiltrometer. Five statistical comparison criteria including root mean squared error (RMSE), normalized root mean squared error (NRMSE), coefficient of correlation (CC), Nash-Sutcliffe efficiency (NSE), and Kling-Gupta efficiency (KGE) were used to determine the best performing infiltration model and to confirm anomalies between predicted and observed values. Then we evaluated performance of five models (i.e., the Philip model, Kostiakov model, Modified Kostiakov model, Novel model, and Horton model) in simulating the infiltration process based on the adjusted performance parameters cited above. Results indicated that the Novel model had the best simulated water infiltration process in the Mitidja Plain in Algeria. However, the Philip model was the weakest to simulate the infiltration process. The conclusion of this study can be useful for estimating infiltration rate at various sites using a Novel model when measured infiltration data are not available and are useful for planning and managing water resources in the study area.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia
Journal of Arid Land    2023, 15 (11): 1269-1289.   DOI: 10.1007/s40333-023-0110-8
Abstract37)   HTML226)    PDF(pc) (2075KB)(219)       Save

Droughts and soil erosion are among the most prominent climatic driven hazards in drylands, leading to detrimental environmental impacts, such as degraded lands, deteriorated ecosystem services and biodiversity, and increased greenhouse gas emissions. In response to the current lack of studies combining drought conditions and soil erosion processes, in this study, we developed a comprehensive Geographic Information System (GIS)-based approach to assess soil erosion and droughts, thereby revealing the relationship between soil erosion and droughts under an arid climate. The vegetation condition index (VCI) and temperature condition index (TCI) derived respectively from the enhanced vegetation index (EVI) MOD13A2 and land surface temperature (LST) MOD11A2 products were combined to generate the vegetation health index (VHI). The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed, southeastern Tunisia. The revised universal soil loss equation (RUSLE) model was applied to quantitatively estimate soil erosion. The relationship between soil erosion and droughts was investigated through Pearson correlation. Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000-2016. The average soil erosion rate was determined to be 1.8 t/(hm2·a). The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts. The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion. The relationship between droughts and soil erosion had a positive correlation (r=0.3); however, the correlation was highly varied spatially across the watershed. Drought was linked to soil erosion in the Negueb watershed. The current study provides insight for natural disaster risk assessment, land managers, and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal variability of rain-on-snow events in the arid region of Northwest China
YANG Zhiwei, CHEN Rensheng, LIU Zhangwen, ZHAO Yanni, LIU Yiwen, WU Wentong
Journal of Arid Land    2024, 16 (4): 483-499.   DOI: 10.1007/s40333-024-0074-3
Abstract37)   HTML6)    PDF(pc) (1779KB)(28)       Save

Rain-on-snow (ROS) events involve rainfall on snow surfaces, and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China (ARNC). In this study, using daily snow depth data and daily meteorological data from 68 meteorological stations provided by the China Meteorological Administration National Meteorological Information Centre, we investigated the spatiotemporal variability of ROS events in the ARNC from 1978 to 2015 and examined the factors affecting these events and possible changes of future ROS events in the ARNC. The results showed that ROS events in the ARNC mainly occurred from October to May of the following year and were largely distributed in the Qilian Mountains, Tianshan Mountains, Ili River Valley, Tacheng Prefecture, and Altay Prefecture, with the Ili River Valley, Tacheng City, and Altay Mountains exhibiting the most occurrences. Based on the intensity of ROS events, the areas with the highest risk of flooding resulting from ROS events in the ARNC were the Tianshan Mountains, Ili River Valley, Tacheng City, and Altay Mountains. The number and intensity of ROS events in the ARNC largely increased from 1978 to 2015, mainly influenced by air temperature and the number of rainfall days. However, due to the snowpack abundance in areas experiencing frequent ROS events in the ARNC, snowpack changes exerted slight impact on ROS events, which is a temporary phenomenon. Furthermore, elevation imposed lesser impact on ROS events in the ARNC than other factors. In the ARNC, the start time of rainfall and the end time of snowpack gradually advanced from the spring of the current year to the winter of the previous year, while the end time of rainfall and the start time of snowpack gradually delayed from autumn to winter. This may lead to more ROS events in winter in the future. These results could provide a sound basis for managing water resources and mitigating related disasters caused by ROS events in the ARNC.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Grassland-type ecosystem stability in China differs under the influence of drought and wet events
CAO Wenyu, BAI Jianjun, YU Leshan
Journal of Arid Land    2024, 16 (5): 615-631.   DOI: 10.1007/s40333-024-0098-8
Abstract36)   HTML1)    PDF(pc) (1811KB)(9)       Save

Ecological stability is a core issue in ecological research and holds significant implications for humanity. The increased frequency and intensity of drought and wet climate events resulting from climate change pose a major threat to global ecological stability. Variations in stability among different ecosystems have been confirmed, but it remains unclear whether there are differences in stability within the same terrestrial vegetation ecosystem under the influence of climate events in different directions and intensities. China's grassland ecosystem includes most grassland types and is a good choice for studying this issue. This study used the Standardized Precipitation Evapotranspiration Index-12 (SPEI-12) to identify the directions and intensities of different types of climate events, and based on Normalized Difference Vegetation Index (NDVI), calculated the resistance and resilience of different grassland types for 30 consecutive years from 1990 to 2019 (resistance and resilience are important indicators to measure stability). Based on a traditional regression model, standardized methods were integrated to analyze the impacts of the intensity and duration of drought and wet events on vegetation stability. The results showed that meadow steppe exhibited the highest stability, while alpine steppe and desert steppe had the lowest overall stability. The stability of typical steppe, alpine meadow, temperate meadow was at an intermediate level. Regarding the impact of the duration and intensity of climate events on vegetation ecosystem stability for the same grassland type, the resilience of desert steppe during drought was mainly affected by the duration. In contrast, the impact of intensity was not significant. However, alpine steppe was mainly affected by intensity in wet environments, and duration had no significant impact. Our conclusions can provide decision support for the future grassland ecosystem governance.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Temporal and spatial responses of ecological resilience to climate change and human activities in the economic belt on the northern slope of the Tianshan Mountains, China
ZHANG Shubao, LEI Jun, TONG Yanjun, ZHANG Xiaolei, LU Danni, FAN Liqin, DUAN Zuliang
Journal of Arid Land    2023, 15 (10): 1245-1268.   DOI: 10.1007/s40333-023-0070-z
Abstract36)   HTML4)    PDF(pc) (5051KB)(243)       Save

In the Anthropocene era, human activities have become increasingly complex and diversified. The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities, especially in arid and semi-arid areas. In the study, we chose the economic belt on the northern slope of the Tianshan Mountains (EBNSTM) in Xinjiang Uygur Autonomous Region of China as a case study. By collecting geographic data and statistical data from 2010 and 2020, we constructed an ecological resilience assessment model based on the ecosystem habitat quality (EHQ), ecosystem landscape stability (ELS), and ecosystem service value (ESV). Further, we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis, and explored its responses to climate change and human activities using the geographically weighted regression (GWR) model. The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010-2020. The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of "high in the western region and low in the eastern region", and the spatial clustering trend was enhanced during the study period. Desert, Gobi and rapidly urbanized areas showed low level of ecological resilience, and oasis and mountain areas exhibited high level of ecological resilience. Climate factors had an important impact on ecological resilience. Specifically, average annual temperature and annual precipitation were the key climate factors that improved ecological resilience, while average annual evapotranspiration was the main factor that blocked ecological resilience. Among the human activity factors, the distance from the main road showed a negative correlation with ecological resilience. Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions, whereas in the areas with poorer ecological conditions, the correlations were positive. The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change
ZHAO Xuqin, LUO Min, MENG Fanhao, SA Chula, BAO Shanhu, BAO Yuhai
Journal of Arid Land    2024, 16 (1): 46-70.   DOI: 10.1007/s40333-024-0090-3
Abstract36)   HTML7)    PDF(pc) (5095KB)(101)       Save

Gross primary productivity (GPP) of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought. Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks, aiding efforts to mitigate the detrimental effects of climate change. In this study, we utilized the precipitation and temperature data from the Climatic Research Unit, the standardized precipitation evapotranspiration index (SPEI), the standardized precipitation index (SPI), and the simulated vegetation GPP using the eddy covariance-light use efficiency (EC-LUE) model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018. The main findings indicated that vegetation GPP decreased in 50.53% of the plateau, mainly in its northern and northeastern parts, while it increased in the remaining 49.47% area. Specifically, meadow steppe (78.92%) and deciduous forest (79.46%) witnessed a significant decrease in vegetation GPP, while alpine steppe (75.08%), cropland (76.27%), and sandy vegetation (87.88%) recovered well. Warming aridification areas accounted for 71.39% of the affected areas, while 28.53% of the areas underwent severe aridification, mainly located in the south and central regions. Notably, the warming aridification areas of desert steppe (92.68%) and sandy vegetation (90.24%) were significant. Climate warming was found to amplify the sensitivity of coniferous forest, deciduous forest, meadow steppe, and alpine steppe GPP to drought. Additionally, the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased. The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months. The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.

Table and Figures | Reference | Related Articles | Metrics | Comments0